
 

 

 

  

Abstract— This paper examines the passive dynamics of 

straight-ahead level ground quadrupedal running and explores 

its use in formulating design guidelines that would: a) reduce 

steady-state roll and b) self-stabilize the rolling motion, thus 

making the control of the robot more straightforward. To study 

the effect of mechanical design in the rolling motion, a simple 

bounding-in-place (BIP) template is introduced as a candidate 

frontal plane model that captures the targeted steady-state 

behavior of a straight-ahead level ground running quadruped 

robot. This model is parametrically analyzed and local stability 

analysis shows that the dynamics of the open loop passive 

system alone can confer stability of the motion! These results 

might explain the success of simple, open loop running 

controllers on existing experimental robots and can be further 

used in developing control methodologies for legged robots that 

take advantage of the mechanical system. 

I. INTRODUCTION 

EGGED robots appear to be the best candidates for 

negotiating rough terrain. Animals exhibit impressive 

performance in handling rough terrain and hence they can 

reach a much larger fraction of the earth landmass on foot. 

However, their robotic counterparts have not yet benefited 

from the improved mobility and versatility that legs offer. 

Early attempts to design legged platforms resulted in slow, 

statically stable robots; see [1] for a survey. In this paper, 

however, we focus on dynamically stable legged robots. We 

seek to increase our understanding of the dynamics of 

straight-ahead level ground running, and hence increase our 

ability to develop fast and stable legged robots. 

In an attempt to study the basic properties of sagittal plane 

running, Schwind proposed the Spring Loaded Inverted 

Pendulum (SLIP) template, which, despite its structural 

simplicity, was found to sufficiently encode the task-level 

behavior of animals and robots, [2]. Likewise, Schmitt and 

Holmes proposed the Lateral Leg Spring (LLS) template to 

analyze the horizontal dynamics of sprawled postured 

animals, [3]. Surprisingly they found that, despite its 

conservative nature, the LLS template exhibits some degree 
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of asymptotic stability without the need of feedback control 

laws. In addition, recent research conducted independently 

by Seyfarth et al. ([4]) and Ghigliazza et al. ([5]) showed that 

when the SLIP is supplied with the appropriate initial 

conditions and for certain touchdown angles, not only does it 

follow a cyclic motion, but it also tolerates small 

perturbations without the need of a feedback control law.  

This inherent stability of SLIP and LLS models is a very 

interesting property. Using such simple models and 

understanding how animal legs act like springs ([6]), i.e. 

absorbing part of the kinetic energy during touchdown and 

partially restoring it at liftoff ([7]), has encouraged or led 

directly to the design of many dynamic runners. Raibert set 

the stage with his groundbreaking work on dynamic legged 

locomotion by introducing one-, two- and four-legged 

robots, [8]. Later on, Buehler designed and built power 

autonomous legged robots with one, four and six legs, which 

demonstrate running in a dynamic fashion, [9]. Patrush and 

Tekken robotic quadrupeds by Kimura and co-workers are 

another successful example of dynamic locomotion, [10]. 

Besides the oscillations in the sagittal and horizontal 

planes, animals and dynamic robots of various morphologies 

typically exhibit rolling motions not captured in either the 

SLIP or LLS model. The observation of a roll component in 

legged locomotion has a long history in robotics, stretching 

back at least two decades, [11]. Various techniques, such as 

simple pelvic ([12]) or step-placement ([13]) feedback, can 

be shown to stabilize roll. Still, it appears that these 

controllers do not diminish its magnitude. Furthermore, it is 

generally accepted that roll in steady state legged gaits is not 

desired. As Koditschek and co-workers aptly suggest, such 

motion makes exteroceptive and even proprioceptive sensing 

more difficult, [14]. Visual data incurs a significant 

rotational overlay that necessitates extra processing; 

gyroscopic effects are harder to measure; and even tactile 

sensing by legs is complicated by alterations in touch-down 

timing arising from roll. From these perspectives, any design 

change that would reduce steady-state roll might seem to 

make the control of the robot more straightforward. 
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formulating design guidelines that would reduce steady-state 

roll and self-stabilize the rolling motion are explored. To 

realize these goals, a simple bounding-in-place (BIP) 

template as a candidate frontal plane model is introduced in 

Section II. This model, which captures the targeted steady-

state behavior of a straight-ahead running quadruped robot, 

is parametrically analyzed next. Numerical return map 

studies presented in Section IV reveal that passive generation 

of a large variety of cyclic motion is possible. Surprisingly, 

the local stability analysis in Section V shows that the 

dynamics of the open loop passive system alone can confer 

stability of the rolling motion. Findings and design 

guidelines that could assist in the design of new, and 

modifications of existing quadruped robots are drawn. 

II. MODELING OF ROLLING 

In this section, we propose a template for studying and 

analyzing rolling motion. This is inspired by SLIP, LLS and 

bounding model proposed by Buhler and coworkers, which 

exhibit natural stability. As in these simplified models, we 

assume rolling motion to be decoupled of pitching and 

yawing motions. In addition to the BIP model recently 

proposed in [14], which captures the salient aspects of a 

RHex-like robot frontal-plane roll, toe translation along 

horizontal plane is considered. We believe that this 

component is of significant importance to straight-ahead 

stable running. This model is shown in Fig. 1, while its 

parameters are given in Table 1. 
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Fig. 1. Parameters of the template for straight-ahead level ground 

quadrupedal running and gait phases. 

As shown in Fig. 1, the planar model represents the 

anterior of a quadruped, and consists of a rigid body and two 

springy massless legs, attached to either side of the body. 

Actuators control the angle of each leg with respect to the 

body and the torque delivered to each leg. Each leg 

represents either the front or the back leg that supports the 

body during the stance phase and includes friction modeling. 

Consequently, the gaits that can be studied employing this 

template are the two-beat ones, such as the curvet (front and 

rear legs move together), the amble (legs on the same side 

move together), the trot (diagonal legs move together) and 

the pronk (all legs move together). Particularly for the amble 

and pronk gaits, in which the two left or right legs are 

moving simultaneously, each modeled leg represents the left 

or the right leg pair and is called a virtual leg, [8]. Each 

virtual leg has twice the stiffness of the robot leg. The sum of 

forces applied on a virtual leg is double the ones on the real 

leg. The same rule holds for the joint torques.  

In this work, we are primarily interested in providing 

design guidelines that would reduce steady-state roll during 

pronk. Since this is the gait with the least (practically) 

oscillation in the sagittal plane, we believe that pronk is a 

candidate well suited for robotic locomotion as it would 

make exteroceptive and even proprioceptive sensing less 

difficult and the control of the robot more straightforward. 

Visual data would incur a minimal rolling and pitching 

overlay, gyroscopic effects would be easier to measure and 

even tactile sensing by legs would be less complicated as 

there would be only few alterations in touch-down timing.  

System dynamics are derived using a Lagrangian 

formulation, with generalized coordinates to be the Cartesian 

variables describing the center of mass (COM) position and 

the main body’s attitude. During flight, the robot is under the 

influence of gravity only. Throughout the stance phase, the 

robot’s toes are fixed on the ground, and act as lossless pivot 

joints. The dynamics for any phase may be derived from that 

of the double stance, by removing appropriate terms. Hence, 

only the double stance dynamics is given here, in the form of 

a set of differential and algebraic equations, 
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where 

TABLE I.  

VARIABLES AND INDICES USED 

Symbol Variable Symbol Variable 

z COM horizontal pos. hapex flight apex position 

y COM vertical pos. g gravity acceleration 

ω body pitch angle m body mass 

β leg absolute angle J body inertia 

ψ leg relative angle w hip to COM distance 

zl left toe horizontal pos. r as an index: right leg 

xr right toe horiz. pos. l as an index: left leg 

l leg length j dimensionless inertia 

lo leg rest length r relative leg stiffness 

k leg spring stiffness q half hip separation 

τ torque delivered at hip Fr Froude number 

f axial force at leg s time scale 

b damping coefficient * dimensionless 
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III. NON-DIMENSIONAL DYNAMICS 

The set of Eqs (1)-(5) is manipulated next to become 

independent of the choice of units, i.e. dimensionless. The 

non-dimensional variables are formed in ways that define the 

morphology of the quadruped robot or that correspond to 

ratios of robot physical parameters in the model equations. 

To achieve that, the following dimensionless variables are 

introduced, 

 *t t s=  (6) 

 * * * 2, ,
o o o

z z l z s z l z s z l= = =� � �� ��  (7) 

 * * * 2, ,
o o o

y y l y s y l y s y l= = =� � �� ��  (8) 

 * * * 2, ,s sω ω ω ω ω ω= = =� � �� ��  (9) 

where s is the time scale of the system, and the rest of the 

variables are defined in Table 1. 

By substituting (6)-(9) into the equations of motion, one 

gets a dimensionless description of the system. The resulting 

motion of the COM is then characterized by a time scale, 

which is associated to the inverse of the natural frequency of 

the horizontal motion, 

 2 1
o o

s g l s l g= ⇒ =  (10) 

While the individual dimensionless equations would be 

different if one uses a different time scale, the relationships 

between them would be invariant. 

Selection of the time scale as in (10), results to a number 

of dimensionless parameter groups, which are widely used 

by experimental biologists and roboticists. These include: (a) 

the Froude number Fr ([15]), defined as 

 
o

Fr v g l=  (11) 

where v is the robot horizontal speed, (b) the dimensionless 

inertia j ([8]), i.e. the robot’s body inertia normalized to mw
2
, 

 2j J m w=  (12) 

and (c) the leg relative stiffness r ([6]), which is given as  

 .
o

r k l m g=  (13) 

Also, the following dimensionless parameters are 

introduced: (a) the normalized half hip separation q 

 
o

q w l=  (14) 

and (b) the dimensionless viscous friction coefficient b
*
 

 * *or 2
o

b b m l g b rζ= =  (15) 

where ζ is the damping ratio. 

Force and torque variables are finally normalized as 

 * *, , and , , .
i i i i o

f f mg i l r mg l i l rτ τ= = = =  (16) 

 

IV. PASSIVE ROLLING CYCLES 

The goals of the analysis are to determine the conditions 

required to permit steady state cyclic motion and to find 

ways to apply these results to facilitate improved quadruped 

robots design. The fact that there exist examples of dynamic 

systems that encode the target behavior of running animals 

and robots with inherent stability, which not only do they 

follow a cyclic motion when supplied with the appropriate 

initial conditions and for certain touchdown angles, but they 

also tolerate small perturbations without the need of a 

feedback control law, motivated us to study the passive 

dynamics (the unforced response of the system under a set of 

initial conditions); see a recent example in [16]. Practically, 

if the system remains close to its passive behavior, then 

active stabilization may not be required or may require less 

control effort and sensing. Furthermore, the actuators have 

less work to do to maintain the motion and energy efficiency 

is improved, an important issue in mobile robots.  

The unactuated and conservative model that is used in our 

analysis is derived from the dimensionless description of the 

system by eliminating actuation and energy dissipation 

terms. An analytical account of this hybrid, tightly coupled, 

nonlinear dynamical model promises to be very complicated 

and lies well beyond the scope of the present paper. Instead, 

we turn to numerical simulations to study the system’s 

behavior. We used numerical simulations to generate system 

trajectories from a variety of initial conditions. In particular, 

we searched for equilibrium gaits (defined as periodic orbits 

of the hybrid dynamical system). To formulate these gaits, 

we employ a Poincaré Map technique, [16]. The return map 

connects the system state at a well-defined locomotion event 

to the state of the same event at the next cycle. Here, this 

event is chosen to be the apex height. We could select any 

other point in the cycle. However, the vertical velocity at 

apex height is always zero, which reduces the dimensions of 

the state vector. A second dimensional reduction to the state 

vector can be obtained by projecting out the horizontal 

component z of the state vector, since it is not relevant to 

describing the running gait. Thus, the state vector x* at apex 

height is given as, 

 
* * * * *

.y zω ω =  x ��  (17) 

The state vector at apex height for some cycle n, xn
*
, 

constitutes the initial conditions. Based on these, the flight 

equations are integrated until one of the touchdown events 

occurs, e.g., left or right leg stance. The touchdown event 

triggers the next phase, whose dynamics are integrated using 

as initial conditions the final conditions of the previous state. 

Successive forward integration of the dynamic equations of 

all the phases yields the state vector at apex height of the 

next stride, which is the value of the Poincaré return map F. 

If the state vector at the new apex height is identical to the 

initial one, the cycle is repetitive and yields a fixed point. 

Mathematically, this is given as 
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where u*=[β
*

l,td β
*

r,td] includes the inputs, which are the 

touchdown angles, left and right leg.  

Although touchdown angles are not part of state vector and 

they do not participate in the dynamics, they directly affect 

the value of the return map as they determine touchdown and 

liftoff events and impose constraints on the motion of robot 

during left leg, right leg and double stance phases. 

In order to determine the conditions required to result in 

steady state cyclic motions, we resort to a numerical 

evaluation of the return map using a Newton-Raphson 

method. By employing this method, a large number of fixed 

points can be found for different initial conditions and 

different touchdown angles. Variant dimensionless 

combinations of robot’s physical parameters, as defined in 

(12)-(14), also result to different fixed points. These design 

parameters vary between their extreme values found in 

experimental biology references, [17] and [18], as follows, 

 0.80 1.25,  10 30,  0.2 1.2j r q= − = − = −  (19) 

In Fig. 2 plots showing the evolution of the states during 

one cycle of the rolling motion corresponding to a fixed 

point are presented. 
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Fig. 2. Evolution of the state variables during one passive rolling cycle, 

corresponding to a fixed point. 

Fig. 3 displays the sum of the leg touchdown angles, 

defined as (βl+βr), at fixed points for varying relative 

stiffness r (x axis) and normalized body width q (y axis) and 

for a range of dimensionless body inertia j (upper row) and 

roll rate (lower row). It can be seen that there is a continuum 

of fixed points, which follows different patterns for high and 

low roll rate. As it can be seen from Fig. 3, the sum of 

touchdown angles that corresponds to high roll rate is large. 

This means that the robot must extend its right and left legs 

to a great degree outwards in order to maintain the rolling 

motion and keep running, which is practically difficult to 

achieve as slipping might occur. As expected, low roll rate 

requires only a small sum of touchdown angles.  

Finding 1. High roll rate generally necessitates large 

touchdown angles to stabilize the rolling motion. Contrarily, 

touchdown angles at low roll rate remains relatively small. 

Furthermore, it appears that the effect of dimensionless 

body inertia j is significant to the sum of the touchdown 

angles. Unit dimensionless body inertia (j=1) requires the 

least extension of the right and left legs to the side in order to 

maintain the rolling motion compared to larger values of j. 

We must note here that it was not possible to find fixed 

points for dimensionless body inertia of less than one (j<1). 

This finding is in accordance with the findings in [14], where 

Koditschek and co-workers studied the frontal plane 

disturbance recovery patterns of the conservative version of 

EduBot, a hexapedal RHex-like robot. No matter how 

stringent their error tolerances were, they always found the 

equilibrium gaits to be unstable. The instability observed is 

unmistakably due to the magnitude of the dimensionless 

body inertia, which is less than one. 

Finding 2. Dimensionless inertia more than one mostly 

results to large touchdown angles over the whole range of 

roll rate. For a specific roll rate, touchdown angles become 

least when the dimensionless body inertia is equal to one. 

When the dimensionless body inertia is less than one, it is 

unlikely rolling motion to be passively stable. 
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Fig. 3. Sum of the leg touchdown angles (deg), for varying dimensionless 

robot parameters and roll rate.  

From Fig. 3 it is also evident that the effect of normalized 

body width q is significant to the sum of the touchdown 

angles in any case, at high or low roll rate and various 

dimensionless inertias. As reasonably expected, for wider 

(compared to hip height) body configurations (q→1), it is 

easier to maintain straight ahead running, i.e. the robot must 

extend its right and left legs to a less degree outwards in 

order to maintain the rolling motion. As it can be seen from 

Fig. 3 for low normalized width values (q→0.2), the sum of 

touchdown angles is relatively large, especially at its extreme 

value (q=0.2). 

Finding 3. Wide, compared to hip height, body 

configuration is generally preferred when it comes to how 
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much effort is required to stabilize rolling motion and to 

keep straight ahead running, given that dimensionless 

inertia remains more than or equal to one. 

Finally, equally significant is the effect of relative leg 

stiffness r, as Fig. 3 depicts. It is interesting that the effect of 

r is contradictory for high and low roll rate.  For high roll 

rate, the sum of touchdown angles is increasing function of 

relative leg stiffness, while for low roll rate is decreasing. It 

also appears that the effect of relative leg stiffness is 

independent of the magnitude of dimensionless body inertia. 

Therefore, relative leg stiffness should be large since most of 

the times low roll rate are desired. 

Finding 4. The effect of leg relative stiffness is independent 

of dimensionless body inertia and contradicting at high and 

low roll rate. To keep the effort of maintaining rolling 

motion the least possible, leg relative stiffness should be low 

for high roll rate and large for low roll rate. 

V. STABILITY OF PASSIVE ROLLING 

The existence of passively generated running cycles is by 

itself a very important result since it shows that such a 

complex activity can be simply a natural motion of the 

system. However, in real situations the robot is continuously 

perturbed, therefore, if the fixed point were unstable, then 

the periodic motion would not be sustainable. Hence, it is 

therefore important to study the stability properties of the 

fixed points found above and to identify robot physical 

parameters that improve the robustness of the system against 

perturbations. We characterize the stability of the fixed 

points using the eigenvalues of the linearized return map. For 

that, we assume that the apex height states are perturbed 

from their steady-cycle values, by some small amount ∆x. 

The model that relates the deviations from steady state, i.e. 

the incremental or small-signal model, is 

 
* * * *

* * *

1

( , ) ( , )
n n n+

= =

∂ ∂
∆ = ∆ + ∆

∂ ∂
x x u u

F x u F x u
x x u

x x
 (20) 

with * * *∆ = −x x x  and * * *∆ = −u u u .  

For small perturbations, the apex height states at the next 

stride can be calculated by (20), which is a linear difference 

equation. If all the eigenvalues of the system matrix A, 

 * *( , )
=

= ∂ ∂
x x

A F x u x  (21) 

have magnitude less than one, then the periodic solution is 

stable and disturbances decay in subsequent steps. If not, 

disturbances grow and eventually repetitive motion is lost. 

Fig. 4 shows the eigenvalues of matrix A for varying leg 

relative stiffness. Note that the same pattern is observed for 

different roll rates and apex heights. As it was expected, one 

of the eigenvalues is always located at zero, representing the 

fact that the system is conservative. Two of the eigenvalues 

start on the rim of the unit circle, and as relative leg stiffness 

increases they move towards each other, they meet on the 

real axis and finally they move again towards the rim of the 

unit circle. The third eigenvalue starts at a high value and 

moves towards the unit circle and finally it gets into it, for 

specific values of relative leg stiffness, while the other two 

eigenvalues remain well behaved. Therefore, there is region 

of parameters where the system is passively stable. This is a 

very important result since it shows that the system can 

tolerate small perturbations of the nominal conditions 

without any control action taken! This fact could provide a 

possible explanation to why existing experimental robots can 

run, without the need of complex state feedback. It is 

important to mention that this result is in agreement with 

recent research from biomechanics, which shows that when 

animals run at high speed, passive dynamic self-stabilization 

from a feed-forward, tuned mechanical system can reject 

rapid perturbations and simplify control, [19]. 
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Fig. 4. Root locus showing the paths of the four eigenvalues as leg relative 

stiffness r increases.  

VI. STABILITY AND DESIGN GUIDELINES 

Using this systematic procedure for finding stable fixed 

points described previously, conclusions on how the system 

responds under a set of initial conditions and design 

parameters can be drawn. The purpose of the analysis in this 

section is to quantify the properties of passively generated 

periodic rolling motion for quadruped robots and to search 

for regions where the system can passively tolerate 

departures from the fixed points.  

To show how motion characteristics and design 

parameters affect the stability of the motion, we present 

figures that display isolines of the magnitude of the larger 

eigenvalue of system matrix A. The largest eigenvalue norm 

is interpreted as heights with respect to the x-y plane, where 

x-y variables are either motion characteristics, i.e. the roll 

rate, or the dimensionless combinations of robot physical 

parameters defined in (13) and (14), e.g. leg relative stiffness 

r and normalized half hip separation q. For certain values of 

these variables the larger eigenvalue enters the unit circle, 

while the other eigenvalues remain well behaved. This fact 

shows that, for these parameter values, the system is self-

stabilized. In all figures, the grey hatched area corresponds 

to unstable regions, i.e., regions where at least one 

eigenvalue is located outside of the unit circle and the system 

is not passively stable. The magnitude of the “non-
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participating” variables is shown in the title of each subplot. 

To this end, isolines of the largest eigenvalue norm at 

various pitch rates and values of dimensionless inertia are 

displayed in Fig. 5. The contour plots are drawn for 

dimensionless apex height hapex=1.1, dimensionless body 

inertia j=1, and varying roll rate. It can be seen that the lower 

the relative leg stiffness is, the less unstable the system is, 

especially at high roll rate; for those specific values of our 

experiment the minimum relative leg stiffness is 14, i.e., 

r>14, for the system to be self-stable, that is stable without 

the need of a closed loop controller. Also, lowering the 

normalized body width q, mostly at high roll rate helps 

expanding the range of leg relative stiffness, for which the 

system is passively stable. Nonetheless, q has only minor 

effect to the stability of rolling motion. 

Finding 5. Relative leg stiffness should be above a certain 

threshold to stabilize rolling motion. At high roll rate, low 

normalized body width prevents this threshold to increase. 
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Fig. 5. Largest eigenvalue norm for varying roll rate, relative leg stiffness 

and normalized body width. 

In conjunction to [20], where results about the stability of 

the passive dynamics of a quadruped robot running in the 

sagittal plane with a pronking gait are presented, we 

conclude that a quadruped robot with dimensional body 

inertia (both longitudinal and traversal) j equal to one (j=1), 

low length-to-hip height ratio p (0.3<p<0.5) and width-to-hip 

height ratio q (0.4<q<0.6) and moderate relative leg stiffness 

(14<r<18) could be able to perform self-stable straight-

ahead level ground running behavior in significantly broader 

ranges of forward speed. 

VII. CONSCLUSION 

he stability analysis of the passive dynamics of straight-

ahead level ground quadrupedal running was studied in a 

dimensionless context. A simple bounding-in-place (BIP) 

template as a candidate frontal plane model was introduced 

and parametrically analyzed.  It was shown that mechanical 

design can provide self-stabilizing characteristics to the 

quadruped robot against external perturbations and result to 

dynamically stable rolling motion, with physically realistic 

roll rate, for the two-beat gaits, such as the curvet, the amble, 

the trot and the pronk. We anticipate that the proposed 

guidelines will assist in the design of new, and modification 

of existing quadruped robots. These can be summarized as: 

(a) dimensionless body inertia should be larger than one to 

enable passive rolling motion, and ideally equal to one to 

confer passive stability of the rolling motion, (b) wide body 

configurations reduce the effort required to maintain rolling 

motion, and (c) relative leg stiffness contributes to the 

stability of the open loop system and should be above a 

certain threshold, which depends on specific parameters of 

the system and roll rate. 
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