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Abstract— This paper examines the passive dynamics of
straight-ahead level ground quadrupedal running and explores
its use in formulating design guidelines that would: a) reduce
steady-state roll and b) self-stabilize the rolling motion, thus
making the control of the robot more straightforward. To study
the effect of mechanical design in the rolling motion, a simple
bounding-in-place (BIP) template is introduced as a candidate
frontal plane model that captures the targeted steady-state
behavior of a straight-ahead level ground running quadruped
robot. This model is parametrically analyzed and local stability
analysis shows that the dynamics of the open loop passive
system alone can confer stability of the motion! These results
might explain the success of simple, open loop running
controllers on existing experimental robots and can be further
used in developing control methodologies for legged robots that
take advantage of the mechanical system.

I. INTRODUCTION

EGGED robots appear to be the best candidates for

negotiating rough terrain. Animals exhibit impressive
performance in handling rough terrain and hence they can
reach a much larger fraction of the earth landmass on foot.
However, their robotic counterparts have not yet benefited
from the improved mobility and versatility that legs offer.
Early attempts to design legged platforms resulted in slow,
statically stable robots; see [1] for a survey. In this paper,
however, we focus on dynamically stable legged robots. We
seek to increase our understanding of the dynamics of
straight-ahead level ground running, and hence increase our
ability to develop fast and stable legged robots.
In an attempt to study the basic properties of sagittal plane
running, Schwind proposed the Spring Loaded Inverted
Pendulum (SLIP) template, which, despite its structural
simplicity, was found to sufficiently encode the task-level
behavior of animals and robots, [2]. Likewise, Schmitt and
Holmes proposed the Lateral Leg Spring (LLS) template to
analyze the horizontal dynamics of sprawled postured
animals, [3]. Surprisingly they found that, despite its
conservative nature, the LLS template exhibits some degree
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of asymptotic stability without the need of feedback control
laws. In addition, recent research conducted independently
by Seyfarth et al. ([4]) and Ghigliazza et al. ([5]) showed that
when the SLIP is supplied with the appropriate initial
conditions and for certain touchdown angles, not only does it
follow a cyclic motion, but it also tolerates small
perturbations without the need of a feedback control law.

This inherent stability of SLIP and LLS models is a very
interesting property. Using such simple models and
understanding how animal legs act like springs ([6]), i.e.
absorbing part of the kinetic energy during touchdown and
partially restoring it at liftoff ([7]), has encouraged or led
directly to the design of many dynamic runners. Raibert set
the stage with his groundbreaking work on dynamic legged
locomotion by introducing one-, two- and four-legged
robots, [8]. Later on, Buehler designed and built power
autonomous legged robots with one, four and six legs, which
demonstrate running in a dynamic fashion, [9]. Patrush and
Tekken robotic quadrupeds by Kimura and co-workers are
another successful example of dynamic locomotion, [10].

Besides the oscillations in the sagittal and horizontal
planes, animals and dynamic robots of various morphologies
typically exhibit rolling motions not captured in either the
SLIP or LLS model. The observation of a roll component in
legged locomotion has a long history in robotics, stretching
back at least two decades, [11]. Various techniques, such as
simple pelvic ([12]) or step-placement ([13]) feedback, can
be shown to stabilize roll. Still, it appears that these
controllers do not diminish its magnitude. Furthermore, it is
generally accepted that roll in steady state legged gaits is not
desired. As Koditschek and co-workers aptly suggest, such
motion makes exteroceptive and even proprioceptive sensing
more difficult, [14]. Visual data incurs a significant
rotational overlay that necessitates extra processing;
gyroscopic effects are harder to measure; and even tactile
sensing by legs is complicated by alterations in touch-down
timing arising from roll. From these perspectives, any design
change that would reduce steady-state roll might seem to
make the control of the robot more straightforward.
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In this paper, the passive dynamics of straight-ahead level
ground quadrupedal running are examined and its use in
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formulating design guidelines that would reduce steady-state
roll and self-stabilize the rolling motion are explored. To
realize these goals, a simple bounding-in-place (BIP)
template as a candidate frontal plane model is introduced in
Section II. This model, which captures the targeted steady-
state behavior of a straight-ahead running quadruped robot,
is parametrically analyzed next. Numerical return map
studies presented in Section IV reveal that passive generation
of a large variety of cyclic motion is possible. Surprisingly,
the local stability analysis in Section V shows that the
dynamics of the open loop passive system alone can confer
stability of the rolling motion. Findings and design
guidelines that could assist in the design of new, and
modifications of existing quadruped robots are drawn.

II. MODELING OF ROLLING

In this section, we propose a template for studying and
analyzing rolling motion. This is inspired by SLIP, LLS and
bounding model proposed by Buhler and coworkers, which
exhibit natural stability. As in these simplified models, we
assume rolling motion to be decoupled of pitching and
yawing motions. In addition to the BIP model recently
proposed in [14], which captures the salient aspects of a
RHex-like robot frontal-plane roll, toe translation along
horizontal plane is considered. We believe that this
component is of significant importance to straight-ahead
stable running. This model is shown in Fig. 1, while its
parameters are given in Table 1.
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Fig. 1. Parameters of the template for straight-ahead level ground
quadrupedal running and gait phases.

As shown in Fig. 1, the planar model represents the
anterior of a quadruped, and consists of a rigid body and two
springy massless legs, attached to either side of the body.
Actuators control the angle of each leg with respect to the
body and the torque delivered to each leg. Each leg
represents either the front or the back leg that supports the
body during the stance phase and includes friction modeling.
Consequently, the gaits that can be studied employing this
template are the two-beat ones, such as the curvet (front and
rear legs move together), the amble (legs on the same side
move together), the trot (diagonal legs move together) and

TABLE L.
VARIABLES AND INDICES USED

Symbol Variable Symbol Variable
Z COM horizontal pos. Napex flight apex position
y COM vertical pos. g gravity acceleration
® body pitch angle m body mass
s leg absolute angle J body inertia
7 leg relative angle w hip to COM distance
2l left toe horizontal pos. r as an index: right leg
Xy right toe horiz. pos. l as an index: left leg
i leg length Jj dimensionless inertia
I, leg rest length r relative leg stiffness
k leg spring stiffness q half hip separation
T torque delivered at hip Fr Froude number
f axial force at leg K time scale
b damping coefficient * dimensionless

the pronk (all legs move together). Particularly for the amble
and pronk gaits, in which the two left or right legs are
moving simultaneously, each modeled leg represents the left
or the right leg pair and is called a virtual leg, [8]. Each
virtual leg has twice the stiffness of the robot leg. The sum of
forces applied on a virtual leg is double the ones on the real
leg. The same rule holds for the joint torques.

In this work, we are primarily interested in providing
design guidelines that would reduce steady-state roll during
pronk. Since this is the gait with the least (practically)
oscillation in the sagittal plane, we believe that pronk is a
candidate well suited for robotic locomotion as it would
make exteroceptive and even proprioceptive sensing less
difficult and the control of the robot more straightforward.
Visual data would incur a minimal rolling and pitching
overlay, gyroscopic effects would be easier to measure and
even tactile sensing by legs would be less complicated as
there would be only few alterations in touch-down timing.

System dynamics are derived using a Lagrangian
formulation, with generalized coordinates to be the Cartesian
variables describing the center of mass (COM) position and
the main body’s attitude. During flight, the robot is under the
influence of gravity only. Throughout the stance phase, the
robot’s toes are fixed on the ground, and act as lossless pivot
joints. The dynamics for any phase may be derived from that
of the double stance, by removing appropriate terms. Hence,
only the double stance dynamics is given here, in the form of
a set of differential and algebraic equations,

mz =~ (k(1,~1,)~bl,)sin f, ~z,cos /1, ~

—(k(1,~1,)=bl,)sin B, —, cos B /1, W

m§ = (k (1, =1,)—bl, )cos B, =, sin B, /I, + o
+(k(1,~1,)=bi,)cos B, ~,sin B, /I, —mg
Ji=1,~w(k(L, 1) =bl,)cos(B, - w)+

+7, +w(k(l, =1, )=bi, )cos(B, — o)+ 3)

+wz,sin(f, - w)/l, —-wrz, sin(B, - )/1,

where
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B, = atan2(y —wsin @, z, + wcos @) @

B =atan2(y+wsinw,z, —wcos )

l, =\/(z, +weosw)’ +(wsinw-y)’

&)

I :\/(zr —wcosa))2 +(wsinw + y)2

III. NON-DIMENSIONAL DYNAMICS

The set of Eqs (1)-(5) is manipulated next to become
independent of the choice of units, i.e. dimensionless. The
non-dimensional variables are formed in ways that define the
morphology of the quadruped robot or that correspond to
ratios of robot physical parameters in the model equations.
To achieve that, the following dimensionless variables are
introduced,

t=t/s (6)

z =z/lo, z =sz'/lo, 7= 'z'/lo @)
y*:y/lo’y*:sy/lo’y*:‘yzy/lo (8)
O =0,0 =s0,d =50 O]

where s is the time scale of the system, and the rest of the
variables are defined in Table 1.

By substituting (6)-(9) into the equations of motion, one
gets a dimensionless description of the system. The resulting
motion of the COM is then characterized by a time scale,
which is associated to the inverse of the natural frequency of
the horizontal motion,

sgfl, =1=s5=\I/g (10)

While the individual dimensionless equations would be
different if one uses a different time scale, the relationships
between them would be invariant.

Selection of the time scale as in (10), results to a number
of dimensionless parameter groups, which are widely used

by experimental biologists and roboticists. These include: (a)
the Froude number Fr ([15]), defined as

Fr=v/Jsl, (11)

where v is the robot horizontal speed, (b) the dimensionless
inertia j ([8]), i.e. the robot’s body inertia normalized to mw?,

j=J/mw? (12)
and (c) the leg relative stiffness r ([6]), which is given as
r=kl /mg. (13)

Also, the following dimensionless parameters are
introduced: (a) the normalized half hip separation ¢

q=w/l, (14)
and (b) the dimensionless viscous friction coefficient b
b =b/mI,[g orb" =2{r (15)
where ( is the damping ratio.
Force and torque variables are finally normalized as
£ =f/mg.i=Lrandz, =7, /mgl ,i=Lr. (16)

IV. PASSIVE ROLLING CYCLES

The goals of the analysis are to determine the conditions
required to permit steady state cyclic motion and to find
ways to apply these results to facilitate improved quadruped
robots design. The fact that there exist examples of dynamic
systems that encode the target behavior of running animals
and robots with inherent stability, which not only do they
follow a cyclic motion when supplied with the appropriate
initial conditions and for certain touchdown angles, but they
also tolerate small perturbations without the need of a
feedback control law, motivated us to study the passive
dynamics (the unforced response of the system under a set of
initial conditions); see a recent example in [16]. Practically,
if the system remains close to its passive behavior, then
active stabilization may not be required or may require less
control effort and sensing. Furthermore, the actuators have
less work to do to maintain the motion and energy efficiency
is improved, an important issue in mobile robots.

The unactuated and conservative model that is used in our
analysis is derived from the dimensionless description of the
system by eliminating actuation and energy dissipation
terms. An analytical account of this hybrid, tightly coupled,
nonlinear dynamical model promises to be very complicated
and lies well beyond the scope of the present paper. Instead,
we turn to numerical simulations to study the system’s
behavior. We used numerical simulations to generate system
trajectories from a variety of initial conditions. In particular,
we searched for equilibrium gaits (defined as periodic orbits
of the hybrid dynamical system). To formulate these gaits,
we employ a Poincaré Map technique, [16]. The return map
connects the system state at a well-defined locomotion event
to the state of the same event at the next cycle. Here, this
event is chosen to be the apex height. We could select any
other point in the cycle. However, the vertical velocity at
apex height is always zero, which reduces the dimensions of
the state vector. A second dimensional reduction to the state
vector can be obtained by projecting out the horizontal
component z of the state vector, since it is not relevant to
describing the running gait. Thus, the state vector x* at apex
height is given as,

The state vector at apex height for some cycle n, X, ,
constitutes the initial conditions. Based on these, the flight
equations are integrated until one of the touchdown events
occurs, e.g., left or right leg stance. The touchdown event
triggers the next phase, whose dynamics are integrated using
as initial conditions the final conditions of the previous state.
Successive forward integration of the dynamic equations of
all the phases yields the state vector at apex height of the
next stride, which is the value of the Poincaré return map F.
If the state vector at the new apex height is identical to the
initial one, the cycle is repetitive and yields a fixed point.
Mathematically, this is given as

A7)
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X :F(xz,u:)

N (18)
where u*=[ﬂ*z,m ﬂ*r,td] includes the inputs, which are the
touchdown angles, left and right leg.

Although touchdown angles are not part of state vector and
they do not participate in the dynamics, they directly affect
the value of the return map as they determine touchdown and
liftoff events and impose constraints on the motion of robot
during left leg, right leg and double stance phases.

In order to determine the conditions required to result in
steady state cyclic motions, we resort to a numerical
evaluation of the return map using a Newton-Raphson
method. By employing this method, a large number of fixed
points can be found for different initial conditions and
different touchdown angles. Variant dimensionless
combinations of robot’s physical parameters, as defined in
(12)-(14), also result to different fixed points. These design
parameters vary between their extreme values found in
experimental biology references, [17] and [18], as follows,

j=0.80-1.25, r=10-30, ¢ =0.2-1.2 (19)

In Fig. 2 plots showing the evolution of the states during
one cycle of the rolling motion corresponding to a fixed
point are presented.
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Fig. 2. Evolution of the state variables during one passive rolling cycle,
corresponding to a fixed point.

Fig. 3 displays the sum of the leg touchdown angles,
defined as (f+pf,), at fixed points for varying relative
stiffness r (x axis) and normalized body width ¢ (y axis) and
for a range of dimensionless body inertia j (upper row) and
roll rate (lower row). It can be seen that there is a continuum
of fixed points, which follows different patterns for high and
low roll rate. As it can be seen from Fig. 3, the sum of
touchdown angles that corresponds to high roll rate is large.
This means that the robot must extend its right and left legs
to a great degree outwards in order to maintain the rolling
motion and keep running, which is practically difficult to
achieve as slipping might occur. As expected, low roll rate
requires only a small sum of touchdown angles.

Finding 1. High roll rate generally necessitates large

touchdown angles to stabilize the rolling motion. Contrarily,
touchdown angles at low roll rate remains relatively small.

Furthermore, it appears that the effect of dimensionless
body inertia j is significant to the sum of the touchdown
angles. Unit dimensionless body inertia (j=1) requires the
least extension of the right and left legs to the side in order to
maintain the rolling motion compared to larger values of j.
We must note here that it was not possible to find fixed
points for dimensionless body inertia of less than one (j<1).
This finding is in accordance with the findings in [14], where
Koditschek and co-workers studied the frontal plane
disturbance recovery patterns of the conservative version of
EduBot, a hexapedal RHex-like robot. No matter how
stringent their error tolerances were, they always found the
equilibrium gaits to be unstable. The instability observed is
unmistakably due to the magnitude of the dimensionless
body inertia, which is less than one.

Finding 2. Dimensionless inertia more than one mostly
results to large touchdown angles over the whole range of
roll rate. For a specific roll rate, touchdown angles become
least when the dimensionless body inertia is equal to one.
When the dimensionless body inertia is less than one, it is

unlikely rolling motion to be passively stable.
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Fig. 3. Sum of the leg touchdown angles (deg), for varying dimensionless
robot parameters and roll rate.

From Fig. 3 it is also evident that the effect of normalized
body width g is significant to the sum of the touchdown
angles in any case, at high or low roll rate and various
dimensionless inertias. As reasonably expected, for wider
(compared to hip height) body configurations (g—1), it is
easier to maintain straight ahead running, i.e. the robot must
extend its right and left legs to a less degree outwards in
order to maintain the rolling motion. As it can be seen from
Fig. 3 for low normalized width values (g—0.2), the sum of
touchdown angles is relatively large, especially at its extreme
value (¢g=0.2).

Finding 3. Wide, compared to hip height, body
configuration is generally preferred when it comes to how
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much effort is required to stabilize rolling motion and to
keep straight ahead running, given that dimensionless
inertia remains more than or equal to one.

Finally, equally significant is the effect of relative leg
stiffness r, as Fig. 3 depicts. It is interesting that the effect of
r is contradictory for high and low roll rate. For high roll
rate, the sum of touchdown angles is increasing function of
relative leg stiffness, while for low roll rate is decreasing. It
also appears that the effect of relative leg stiffness is
independent of the magnitude of dimensionless body inertia.
Therefore, relative leg stiffness should be large since most of
the times low roll rate are desired.

Finding 4. The effect of leg relative stiffness is independent
of dimensionless body inertia and contradicting at high and
low roll rate. To keep the effort of maintaining rolling
motion the least possible, leg relative stiffness should be low
for high roll rate and large for low roll rate.

V. STABILITY OF PASSIVE ROLLING

The existence of passively generated running cycles is by
itself a very important result since it shows that such a
complex activity can be simply a natural motion of the
system. However, in real situations the robot is continuously
perturbed, therefore, if the fixed point were unstable, then
the periodic motion would not be sustainable. Hence, it is
therefore important to study the stability properties of the
fixed points found above and to identify robot physical
parameters that improve the robustness of the system against
perturbations. We characterize the stability of the fixed
points using the eigenvalues of the linearized return map. For
that, we assume that the apex height states are perturbed
from their steady-cycle values, by some small amount Ax.
The model that relates the deviations from steady state, i.e.
the incremental or small-signal model, is

:H _ OF(x ,u) Axn +8F(x ,u)
19). - ox

X=X

s

AXx Au_  (20)

n

with Ax' =x -X and Au" =u’ -4 .

For small perturbations, the apex height states at the next
stride can be calculated by (20), which is a linear difference
equation. If all the eigenvalues of the system matrix A,

A=0F(x u)/ox| Q1)

have magnitude less than one, then the periodic solution is
stable and disturbances decay in subsequent steps. If not,
disturbances grow and eventually repetitive motion is lost.
Fig. 4 shows the eigenvalues of matrix A for varying leg
relative stiffness. Note that the same pattern is observed for
different roll rates and apex heights. As it was expected, one
of the eigenvalues is always located at zero, representing the
fact that the system is conservative. Two of the eigenvalues
start on the rim of the unit circle, and as relative leg stiffness
increases they move towards each other, they meet on the
real axis and finally they move again towards the rim of the

unit circle. The third eigenvalue starts at a high value and
moves towards the unit circle and finally it gets into it, for
specific values of relative leg stiffness, while the other two
eigenvalues remain well behaved. Therefore, there is region
of parameters where the system is passively stable. This is a
very important result since it shows that the system can
tolerate small perturbations of the nominal conditions
without any control action taken! This fact could provide a
possible explanation to why existing experimental robots can
run, without the need of complex state feedback. It is
important to mention that this result is in agreement with
recent research from biomechanics, which shows that when
animals run at high speed, passive dynamic self-stabilization
from a feed-forward, tuned mechanical system can reject
rapid perturbations and simplify control, [19].
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Fig. 4. Root locus showing the paths of the four eigenvalues as leg relative
stiffness r increases.

VI. STABILITY AND DESIGN GUIDELINES

Using this systematic procedure for finding stable fixed
points described previously, conclusions on how the system
responds under a set of initial conditions and design
parameters can be drawn. The purpose of the analysis in this
section is to quantify the properties of passively generated
periodic rolling motion for quadruped robots and to search
for regions where the system can passively tolerate
departures from the fixed points.

To show how motion characteristics and design
parameters affect the stability of the motion, we present
figures that display isolines of the magnitude of the larger
eigenvalue of system matrix A. The largest eigenvalue norm
is interpreted as heights with respect to the x-y plane, where
x-y variables are either motion characteristics, i.e. the roll
rate, or the dimensionless combinations of robot physical
parameters defined in (13) and (14), e.g. leg relative stiffness
r and normalized half hip separation g. For certain values of
these variables the larger eigenvalue enters the unit circle,
while the other eigenvalues remain well behaved. This fact
shows that, for these parameter values, the system is self-
stabilized. In all figures, the grey hatched area corresponds
to unstable regions, i.e., regions where at least one
eigenvalue is located outside of the unit circle and the system

is not passively stable. The magnitude of the “non-
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participating” variables is shown in the title of each subplot.

To this end, isolines of the largest eigenvalue norm at
various pitch rates and values of dimensionless inertia are
displayed in Fig. 5. The contour plots are drawn for
dimensionless apex height A,,,=1.1, dimensionless body
inertia j=1, and varying roll rate. It can be seen that the lower
the relative leg stiffness is, the less unstable the system is,
especially at high roll rate; for those specific values of our
experiment the minimum relative leg stiffness is 14, i.e.,
r>14, for the system to be self-stable, that is stable without
the need of a closed loop controller. Also, lowering the
normalized body width g, mostly at high roll rate helps
expanding the range of leg relative stiffness, for which the
system is passively stable. Nonetheless, ¢ has only minor
effect to the stability of rolling motion.

Finding 5. Relative leg stiffness should be above a certain
threshold to stabilize rolling motion. At high roll rate, low
normalized body width prevents this threshold to increase.
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Fig. 5. Largest eigenvalue norm for varying roll rate, relative leg stiffness
and normalized body width.

In conjunction to [20], where results about the stability of
the passive dynamics of a quadruped robot running in the
sagittal plane with a pronking gait are presented, we
conclude that a quadruped robot with dimensional body
inertia (both longitudinal and traversal) j equal to one (j=1),
low length-to-hip height ratio p (0.3<p<0.5) and width-to-hip
height ratio g (0.4<¢<0.6) and moderate relative leg stiffness
(14<r<18) could be able to perform self-stable straight-
ahead level ground running behavior in significantly broader
ranges of forward speed.

VII. CONSCLUSION

he stability analysis of the passive dynamics of straight-
ahead level ground quadrupedal running was studied in a
dimensionless context. A simple bounding-in-place (BIP)
template as a candidate frontal plane model was introduced
and parametrically analyzed. It was shown that mechanical

design can provide self-stabilizing characteristics to the
quadruped robot against external perturbations and result to
dynamically stable rolling motion, with physically realistic
roll rate, for the two-beat gaits, such as the curvet, the amble,
the trot and the pronk. We anticipate that the proposed
guidelines will assist in the design of new, and modification
of existing quadruped robots. These can be summarized as:
(a) dimensionless body inertia should be larger than one to
enable passive rolling motion, and ideally equal to one to
confer passive stability of the rolling motion, (b) wide body
configurations reduce the effort required to maintain rolling
motion, and (c) relative leg stiffness contributes to the
stability of the open loop system and should be above a
certain threshold, which depends on specific parameters of
the system and roll rate.
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