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Model-Based Position Tracking Control for a
6-dof Electrohydraulic Stewart Platform

loannis Davliakos and Evangelos Papadopoulos, Senior Member, IEEE

Abstract— In this paper, a position tracking controller for a
six-degree-of-freedom (dof) electrohydraulic Stewart plat-
form mechanism is developed that includes a fast inner
model-based force tracking loop. A full rigid body model and
an electrohydraulic actuator model, including friction and
servovalve characteristics are employed and described by a
set of integrated system equations. The control analysis is
based on a nonlinear input-output linearization control
approach. The developed control law also contains a PD part,
responsible for the exponential convergence of the tracking
error to zero. Simulations with typical desired trajectories are
presented and a good tracking performance is obtained.

1. INTRODUCTION

he original six-Degree-of-Freedom (dof) Stewart-

Gough platform was developed in 1954 [1], [2]. In
1965, the prototype parallel mechanism was used as a 6-
dof motion platform for a flight simulator [3]. Since then, a
number of studies of this mechanism and its variations
have been published, see for example [4]. The mechanism
can be driven electrically or electrohydraulically. The kine-
matics and dynamics of the Stewart platform have been
studied by many researchers [5]-[8]. However, actuation
dynamics have not been considered. Although electro-
hydraulic Stewart platforms have been used extensively,
little published work on their full dynamics including
actuation and control, exists.

Hydraulics science combined with controls, has given a
new thrust to hydraulics applications. The main reasons for
which hydraulics are preferred to electromechanical drives
in a number of industrial and mobile applications, include
their ability to produce large forces at high speeds, their
high durability and stiffness, and their rapid response [9],
[10]. Hydraulic regimes differ from electromechanical
ones, in that the force or torque output is not proportional
to actuator current and therefore, hydraulic actuators cannot
be modeled as force/ torque sources, but as controlled
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impedances. As a result, robot or flight simulator
controllers that require force sources, cannot be used here.

Control techniques are used to compensate for the
nonlinearities of electrohydraulic servosystems. Nonlinear
adaptive control techniques for hydraulic servosystems
have been proposed by researchers employing linear-
ization, [11], or backstepping, [12], approaches. A robust
force controller design based on the nonlinear Quantitative
Feedback Theory, has been implemented on an industrial
hydraulic actuator, taking into account system and
environmental uncertainties [13].

Most of the previous work associated with force/
pressure control has focused on electrohydraulic servo-
actuators and has been developed based on Lyapunov
analysis [14]-[16]. A model based controller of hydraulic-
ally actuated manipulators has been studied, but the
feedforward controller terms were calculated using desired
and not actual positions, [17]. Early efforts on a model-
based force/ motion control analysis for a 1-dof system has
been developed with satisfactory tracking response, [18].

In this paper, a model-based position tracking controller
is developed for a 6 dof electrohydraulic Stewart platform
with symmetric joint locations, using a fast inner force
loop. Dynamic models are used that describe the rigid body
motion of the Stewart platform and its hydraulic actuation
system. In contrast to other approaches, here, servovalve
models and friction are included in the model. The
developed control scheme employs rigid body and
actuation dynamics and yields the servovalve input current
vector, in analytical form. A model-based force controller
is developed, which is augmented by a PD part, responsible
for the exponential convergence of the tracking error to
zero. The performance of the developed controller is
illustrated wusing typical trajectories. The proposed
methodology can be extended to electrohydraulic serial or
closed-chain manipulators and simulators.

II. ELECTROHYDRAULIC STEWART PLATFORM MODELING

A. Mechanical Dynamics

In this section, the dynamic model of a 6-dof electrohy-
draulic Stewart platform servomechanism [3] is developed.
This is a six dof closed kinematic chain mechanism
consisting of a fixed base and a moving platform with six
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linear actuators supporting it. The mechanism is illustrated
schematically in Fig. 1.
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Fig. 1. Schematic view of a six-dof Stewart Platform.

The equation of motion for the Stewart mechanism is de-
rived applying a Lagrangian formulation and is written as,

M(q)q+V(q,q)+G(q)+F,(q) =1 (1)

where q = (X, Yo, 2o, @, B, 7/)T is the 6x1 vector of the
platform generalized coordinates, see Fig. 1, x,, ¥, 2,
are the platform center of mass Cartesian coordinates, « ,
B, vy are the platform Euler angles, M(q) is the 6x6
positive definite mass matrix of the system, the 6x1 vector
V(q,q) represents forces/ torques arising from centrifugal
and Coriolis forces, the 6x1 vector G(q) represents
torques due to gravity, F;(q) is the 6x1 vector of the
forces/ torques due to friction, and T is the 6x1 vector of
the generalized applied forces.

Equation (1) can be further extended using the trans-
formation between mechanism actuator forces and the
generalized applied forces, [4], which is given by,

1=JF, )

where J is the Jacobian 6x6 matrix of the system, and F,
isa 6x1 vector representing actuator forces given by,

F) (3)

where F,;, j=1,2,..,6 are individual hydraulic forces
acting on actuator pistons.

Further, using mechanism differential kinematics the
platform Cartesian motion described by (1) can be
transformed in its joint space and written as,

M’(q)£+V'(q.9)+G"(q)+F; (¢) =F, 4)

F, =(F,.. F,

pls L p2seees

where ¢ =({,, Zz,...,!ﬁb)T is the 6x1 vector of the
mechanism actuator lengths, M"(q) is a 6x6 positive
definite mass matrix, V*(q,q) is a 6x1 vector that
contains the centrifugal and Coriolis forces, G'(q) is a
6x1 gravity forces vector, and F, (¢) isa 6x1 vector that
contains joint space frictional forces. The terms M'(q),
V*(q,q) and G*(q) are given, respectively by,

M™(q)=[J(q)" ' M(q) J(q)"

V(a.9)=[J (@' [V(e,4)-M(q) J(q,9)-d]

(5a)

(5b)
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G (@) =[J(@)'"G(q) (5¢)
The friction vector F}.(¢) can be written as,
F,()=F @)+F(0)+F 6)

where F;(£), F.(¢) and F; are the viscous, Coulomb and
static friction vector respectively, with elements,

i) {b,k,, 7, #0, j=1,2,..6 70
vi\tj)= . . a
0, /¢,=0, j=12,.,6
Fo ()= Foosign(l)), ¢, #0, j=12,..,6 7b)

7 o, 7,=0, j=12,..6
E’xt,ja E’xt,j <F:;),j5kj205 pjzob j=15"'56

F:jz F.:;),jSign(E’xt,j): F;xt,j >F;;),j5 kao, p/ ;&05 j=15"'56 (7C)
0, 0,20, j=1,..,6

where b; is the jth parameter for viscous friction element,
Fy; is the jth parameter for Coulomb friction element,
F,,, is the j" external force element, F,, is the j"
breakaway force element.

B. Hydraulic Dynamics

The electrohydraulic actuation Stewart servosystem consists
of pistons, servovalves, controllers, sensors and a hydraulic
power supply. Next, hydraulic models of electrohydraulic
servosystem major components are introduced.

The hydraulic supply includes a pump that is usually
constant pressure piston pump, driven by an induction
electric motor. Therefore, the pump is modelled as a
constant pressure source. Further, it may include
accumulators for filtering pressure pulsations from the
pump, but also for allowing the use of smaller rating pumps
by providing additional flow when needed. Such an
accumulator is modelled as a hydraulic capacitor, [19].

A single rod hydraulic servocylinder is illustrated
schematically in Fig. 2. The equations relating mechanical
to hydraulic variables are described by,

0= A1.€+ Cpi+G,u(p—p2) (8a)
0,= Azk_ Cpy+G,.(p—p2) (8b)
Aip—A,p, =F, (8c)

Erez = Fp _Ffr,p (8d)

where Q,, O, are the flows through the two cylinder
chamber ports, p,, p, are the chamber pressures, 4, is the
piston side area, A, is the rod side area, C,, C, are the
fluid capacitances of the cylinder chambers, G,
represents the cylinder internal leakage conductance, ¢ is
shown in Fig. 2, F, is the hydraulic force, F , is the
actuator friction force, and F,,, is the net actuator output
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force. In the case of a hydraulic cylinder with a double rod,
the two areas 4, and 4, are equal and therefore, (8) are
simplified.
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Fig. 2. Schematic model of a hydraulic servoactuator.

Control of a hydraulic system is achieved through the
use of servovalves, see Fig. 3(a). Only the resistive effect
of a valve is considered here, since their natural frequency
is much higher than that of the mechanical load. It is also
assumed that the geometry of the valve is ideal, e.g. the
valve has sharp edges and zero cross leakage, [20], [21].
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Fig. 3. (a) A drawing of a real servovalve, (b) Schematic model of servo-
valve.

A typical hydraulic servovalve consists of four
symmetric and matched servovalve orifices making up
flow paths through four nonlinear resistors, modulated by
the input voltage, see Fig. 3(a). Thereby, the servovalve is
modeled as the hydraulic equivalent of a Wheatstone
bridge, see Fig. 3(b). When the servovalve input current is
positive, i >0, flow passes through the orifices 1 and 3
(path P-A-B-T), and flow leakages exist in the valve
orifices 2 and 4. Similarly, when the servovalve input
current is negative, i <0, flow passes through the path
P-A-B-T, and flow leakages exist in the valve orifices
1 and 3. This model is described by,

O = £iG.Coo pWPei =1 =CoJPo — 1 (%2)
0.2 = £,i.Co.pNPvin =12 =CoiA[Pos—p:  (9b)
Qi = 8G.Coo P2 = Pros =Cos[P2—Prv (90
0.4 = 2:G.Co PP = Do =Co D1 = Do (9d)

where QO,,, O,,, O, and Q,, are the servovalve flows
through the orifices 1, 2, 3 and 4, respectively, p,, and
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Dv.ou are the input and output servovalve pressure of the
servosystem, correspondingly, i is the servovalve motor
current (control command), and f(i,C,, p), f,(i,Cy,p),
2.G,C,,p) and g,(i,C,, p) are nonlinear functions in the
servovalve motor current, the discharge coefficient C, and
the mass density of the fluid, p . In general, the discharge
coefficient is a function of the Reynolds number and valve
geometry. However, fluid density and Reynolds dependen-
cies are weak for turbulent flow and therefore only the
current dependency is significant here, [9]; therefore, the
functions f,(i,C,, p), /2(i,Cy, p), £1(i,Cy, p), £.(,Cy, P)
are reduced to f(i), f>2(), &), g (i), correspondingly.
Because of servovalve symmetry, the current functions are
described by the following statements,

- If i>0, the main flow path passes through the
orifices 1 and 3, see Fig. 3(b), and the servovalve functions
are given by,

fi(D=8()=C,,,, O, LD=g:)=C,,, ()

- If i<0, the main flow path passes through the
orifices 2 and 4, see Fig. 3(b), and the servovalve functions
are given by,

f0=g.0)=C,,,,, (D, L= O=C,, () (A1)

where C;, . and Cg;, ,, represent current functions with
respect to the main and leakage flow of the servovalve,
respectively. A good approximation of these functions is as
follows,

(10)

CGMM’” (l) — Kl,ma[n l + KO,ma[n b} ‘ | l| > Z:O,ma[n (12a)
kZ,ma[n 11 | + kl,ma[n 1+ kO b | l | < lO,ma[n
K i|>i
Constim) Ko e gy
k},leak l +k2,leak l | l |+k1,leak l+k0 ) | l |<10,leak

where the coefficients K .4, » Ko main a0d Ky . are positive
constants parameters, the coefficients & > K2omain> Kiteat »
Ky eak » k3. and k, are constants parameters, and iy, ,
io.a are characteristic values of the servovalve current,
which correspond to the main and leakage valve path,
respectively.

If leakage flows and cylinder chamber compressibility
are neglected, the flows through the orifices of the servo-
valve described by (9a,c) are equal to the flows through
cylinder chamber ports, see (8a,b), and are written as,

0.,=0,= A1Z+C1}-’1 +G,u(pi—p2)

0,=0,= Azz_czpz +G, (P —p2)

Hydraulic hoses of the 6-dof electrohydraulic servo-
system are modeled as compressible hydraulic lines, [19].
The equations that describe the hose dynamics are given by,

(13a)
(13b)
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pl,[n _pl,m = RQI,[n (143)
Ql,nuz :(pl,m _pl,(ml)'lil (14b)
ﬁl,m = (Ql,[n _Ql,nul ) : C71 (140)

where p;.., Pr..,and p;, are hose pressures at its input,
output and a middle point respectively, O, , Q... are the
flows through the hose at its input and output
correspondingly. The parameters R , /, C correspond to
hose resistance, inertance and capacitance, respectively.

C. Integrated System Equations
The hydraulic and load dynamic response can be described
by a set of integrated system equations derived using a
systems approach, such as the Linear Graph [20] or Bond
Graph methods [22]. To this end, one needs to provide
expressions transforming pressure differences to forces, see
(9¢), and velocities to flows, see (8a,b).

Here, the Linear Graph method is used. The application
of continuity and compatibility laws, along with individual
elements equations, leads in a set of forty-two non-linear
first order differential equations, as follows,

pl,j :[Qul _sz (i)_Qv4 (i)_

. 15a
G/J,[n (pl _pZ)_Alv]'CflL s lez 2:"':6 ( )

pz,/ :[sz (i)+Qv4 (i)_QI,iz +

. 15b
G/J,[n (pl _P2)+A2V]'Cfl|j s les 25"'56 ( )

Pen;=l(ps _Pc,m)Rﬁl _QI,zl]'Cﬁl|j , J=12,..,6 (15c)

Pcin,; =[O0 —(pc.ia _PT)szl]'CﬁlL , J=1,2,..,6 (15d)

Q.I,f'l,j =[pc.n—p1 —Apg, (i)]'[ﬁl|ja j=12,..,6 (15¢)
Q.I,IZ,j =[p:> = pc.ro —Apg, (l.)]'[;21|j5 j=12,..,6 (15%)
v=m']| (F,~V'-G"-F},), j=12,..,6 (152)

where Q;,1;, O, are the j" flows in the j" hydraulic
pressure and return line correspondingly, p,, pr are the
power supply and return pressure of the servosystem,
respectively, pc;, Pcr,; are correspondingly the j"
pressures of j™ hydraulic power and return line regarding
with the lines’ capacitances, /,;, R, ;, C, ; are the jth
inertance, resistance and capacitance of jth hydraulic power
line respectively, 1,,;, Ry ;, Ci; are the jth inertance,
resistance and capacitance of j" hydraulic return line
respectively, v; =/ ; is the velocity of the j™ piston, which
is obtained by (4), [m'] is a 1x6 row-matrix which
corresponds to the j™ line (j)f the matrix (M")™'. The terms
Apq, (i)|j, Apq, (z')|j are the j™ pressure drops of the j™
servovalve orifices 1 and 3 respectively, which are
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determined using the flow continuity laws, along with
actuator and servovalve elements equations, and given by,

Apg, (l')‘j ={[Ca, ()=Ca, ()] 101 1 Ce, ()—Ce, (i)
(16a)
L J=l2,6

JO 1 +CE ()~Ce (N (p—p2) 1}

Ape, (0], ={[CE&, ()-C3, (DT 01.2Co, ()—Ca, (i)

(16b)
JO 2 HCE, ()-C2, (DM (p—p2)]¥

, j=12,...6
J

where Cg, (i)
9)-(12).
Further, using the flow continuity laws, along with
hydraulic lines and servovalve elements equations, the
flows O,,; (i) and Q,, (i) in (15a,b), are determined by,

Qi) =[011 ~Co, 0Aps, (D] . j=12.06  (172)

Co.(D)|,» Ca ()], Co (i), were defined in

.9
J

0.1 ()=1012 = Co. (NBp6, (D] . j=1.2.6  (17H)

III. CONTROLLER DESIGN

In this section, a model-based nested position tracking
controller using a fast inner force loop is developed, which
is augmented by a PD part, responsible for the exponential
convergence of the tracking error to zero.

In electromechanical systems, the force acting on
moving masses is proportional to actuator current. This
simplifies their control laws and allows one to achieve
second order error dynamics converging exponentially to
zero. However, a simple relationship between force and
current does not exist in electrohydraulic systems. Despite
of this, we are interested in studying whether such a system
can be described by error dynamics such as,

e+tKe+tKe=0

(18)

where K, and K are 6x6 diagonal matrices, which
represent the control gains of the system, and e = /¢, —/
is the 6x1 position error vector.

Since Eq. (18) is a second-order differential equation,
matrix factors K, and K, can be written in terms of the
closed-loop natural frequency «; and damping (),
j=1,2,...,6, for all six linear actuators, as,

K, =diag{w/,..., 0}, K, =diag{2{,®,,...,2{ 0.} (19)

Employing a pole placement technique, one can guarantee
system stability as well as its transient response. Therefore,
system closed-loop natural frequency and damping can be
selected so that the poles lie in a desirable area of the left
half complex plane. Equation (19) yields then the neces-
sary feedback loop gains.

For control purposes, determination of the six forces
acting on the platform is considered next. These are the net
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platform actuation forces that can be measured via force
sensors, e.g. [23], or computed by,

Fnez :Mpl(q)z—i—vpl(qaq)—i—cpl(q)

where M, is the 6x6 positive definite mass matrix of the
platform, V, represents forces/ torques arising from cent-
rifugal and Coriolis forces on the platform, and G, repre-
sents platform torques due to gravity.

Assuming that (18) have been achieved, this equation is
solved for # which is then substituted in (20). The result is
a force that must be applied by the pistons, so that the error
of the load motion is governed by (18). Therefore, the
desired actuator forces are given by,

Fnez,des = Mpl (q) [Edes + Kv (Zdes - [) + Kp (edes - ‘8)] + (2 1)
V. (q,9) +G i (q)
To generate a relationship between force and current,

(21) is differentiated up to the point that the input does not
explicitly appear. Differentiating once, (21) yields,

Fnez = Fnel (f, Za ‘.’5 V)

(20)

(22)

where v=2¢ isthe 6x1 linear velocity piston vector.
Differentiating the piston acceleration, (15g), yields,

V:V(ga [5p15p2) (23)

where p, and p, are the 6x1 chamber pressure vectors of
the servoactuators.
Taking into account (15a-g), (22) takes the form,

Fnez :Fnel (f, ZaplapZ) (24)
Further, substituting (9)-(12) into (24), yields,
hll (’es ’és pl: p2)'i+h10 (fs Z: pl: p2)5
. |ij|>i0,nza[n,j5 J:1556
F..= (25)

ny (4, f, P, pz)'diag{|ij|}'i+h21 (£, Z: pi, P2)-i
+h20 (’es ’és pl: p2)5 |ij|<i0,nza[n,j5 J:1556

where i is the 6x1 servovalve current vector, #,,, #,,,
h, , and h,,, h, are respectively 6x6 diagonal non-
linear matrices and 6x1 vector functions with elements the
system state variables.

Equation (25) shows that one can find a relationship
between the current and the derivative of the force and not
the force itself, as in electric actuators. Also, (25) suggests
that one can design a controller that will allow the output
force to converge to the desired one according to the
following first order error equation,

e, +K.e, =0 (26)

where the 6x6 diagonal matrix K, is the force gain and
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—F

e, =F, . —F, isthe 6x1 force error vector.

Assuming that (26) have been achieved, this equation is
solved for F,,, which is then substituted in (25). Next,
solving (25) for the servovalve current vector i, the control

law is obtained as,

i: i(’es ’és q: q: pl: p25 Fnez: Fnez,des: Fnez,des) (27)

Note that this control law requires feedback of both the
position and velocity errors, as well as of the force applied
to the platform. The terms q and q are determined using
the direct kinematics. A detailed look shows that the
controller is made of two nested loops, a faster internal
force loop and a slower external position loop. An
advantage is that it does not require an estimate of the
piston acceleration or of the derivative of the force, Fm ,
which are problematic in the presence of noise. The
schematic view of the full model-based force controller
diagram for the servomechanism is depicted in Fig. 4.

G FL

Lo ; i ‘

= Desired| ¥ ciaes - Freraes Control | x| Valve Load } outputs
= i”| Dynamics Dynamics |;

Force
Dynamic Modelf
T P, T p, T

Desired
Trajectory C
[

inputs T Ll

Fig. 4. Schematic view of the full model-based force controller diagram
for the 6-dof electrohydraulic Stewart mechanism.

IV. SIMULATION RESULTS

The tracking performance of the controller is evaluated
next. The system parameters include the platform mass
m =150kg, the moments of inertia about the platform
center of mass [, =1, =25 kgm®, I_=50kgm’, and fri-
ction parameters, b; =400 Ns/m, F,; =50N and Fj ;=
200 N, which were experimentally computed at a single
dof servomechanism [23]. The Stewart mechanism is
considered as a 6-6 symmetric mechanism. The joints of
the movable platform and fixed base lie at equal peripheral
distances and at radii 0.5m and 1.0m, respectively, and
the joint distances at the movable platform and fixed base
are 0.2m and 0.3m, respectively. To compute the matrix
control gains, we first require that all dofs are critically
damped. Hence, ¢, =1, j=1,...,6. Next, we require a set-
tling time of about 1s, yielding w, =2z rad/s, j=1,...,6.
Further, the valve parameters have been experimentally
computed [23] as, K =1.5%10" m™/(Akg"), Kg ain =
5x107 (m7/ kg)"?, Ko jear =3-5%107° (m"/kg)"? , kyppain =0,
Ky main =6.8x10 2 m7?/(A%kg"?), ki jear =—1.32X107° m™/(A
kg'?), ke =6x10°m 7%/ (A2 kg'?), k3 o =—0.84 m 2/ (A®
kg'?), ko=1.3x10"* (m"/kg)"?, igpmun =1mA, and ig e =
1.5mA. All these constants were experimentally computed
for a two-land-four-way spool MOOG G761-3004 Series
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high-performance servovalve. Further, the hydraulic hose
para-meters were experimentally computed [23] as, 7=3.8x
10'kg/m*, R=6.57x10* Ns/m®, C=1.072x10"2m’ / N. Simulati-
ons runs were obtained using a number of desired trajecto-
ries. As an example, Fig. 5 shows typical results, in which

the desired trajectory is given by,
zo (H)=z, +z, sin(2x [ t) (28)

where f=0.5Hz, z, =0.1m and z, =1.34m.
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Fig. 5. Simulation results. (a) Platform displacement response, (b) an actu-
ator position, (c) platform position error, (d) control input, (e) actuation
force error, and (f), chamber pressure histories of the same actuator.

V. CONCLUSIONS

In this paper, a position tracking controller for a six dof
electrohydraulic Stewart platform mechanism using a fast
model-based inner force tracking loop was developed. The
rigid body equations of motion and the hydraulic dynamics
were integrated to form the system dynamics. Friction and
leakage of hydraulic elements were included in the full
electrohydraulic model. The control analysis was based on
a nonlinear input-output linearization control approach.
The control law includes a PD part driving the tracking
error to zero exponentially. The approach can be further
extended to hydraulic manipulator and simulator control.
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