
 

  
Abstract— In this paper, a position tracking controller for a 

six-degree-of-freedom (dof) electrohydraulic Stewart plat-
form mechanism is developed that includes a fast inner 
model-based force tracking loop. A full rigid body model and 
an electrohydraulic actuator model, including friction and 
servovalve characteristics are employed and described by a 
set of integrated system equations. The control analysis is 
based on a nonlinear input-output linearization control 
approach. The developed control law also contains a PD part, 
responsible for the exponential convergence of the tracking 
error to zero. Simulations with typical desired trajectories are 
presented and a good tracking performance is obtained. 

I. INTRODUCTION 
he original six-Degree-of-Freedom (dof) Stewart- 
Gough platform was developed in 1954 [1], [2]. In 

1965, the prototype parallel mechanism was used as a 6-
dof motion platform for a flight simulator [3]. Since then, a 
number of studies of this mechanism and its variations 
have been published, see for example [4]. The mechanism 
can be driven electrically or electrohydraulically. The kine-
matics and dynamics of the Stewart platform have been 
studied by many researchers [5]–[8]. However, actuation 
dynamics have not been considered. Although electro-
hydraulic Stewart platforms have been used extensively, 
little published work on their full dynamics including 
actuation and control, exists. 

Hydraulics science combined with controls, has given a 
new thrust to hydraulics applications. The main reasons for 
which hydraulics are preferred to electromechanical drives 
in a number of industrial and mobile applications, include 
their ability to produce large forces at high speeds, their 
high durability and stiffness, and their rapid response [9], 
[10]. Hydraulic regimes differ from electromechanical 
ones, in that the force or torque output is not proportional 
to actuator current and therefore, hydraulic actuators cannot 
be modeled as force/ torque sources, but as controlled 
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impedances. As a result, robot or flight simulator 
controllers that require force sources, cannot be used here. 

Control techniques are used to compensate for the 
nonlinearities of electrohydraulic servosystems. Nonlinear 
adaptive control techniques for hydraulic servosystems 
have been proposed by researchers employing linear-
ization, [11], or backstepping, [12], approaches. A robust 
force controller design based on the nonlinear Quantitative 
Feedback Theory, has been implemented on an industrial 
hydraulic actuator, taking into account system and 
environmental uncertainties [13]. 

Most of the previous work associated with force/ 
pressure control has focused on electrohydraulic servo-
actuators and has been developed based on Lyapunov 
analysis [14]-[16]. A model based controller of hydraulic-
ally actuated manipulators has been studied, but the 
feedforward controller terms were calculated using desired 
and not actual positions, [17]. Early efforts on a model-
based force/ motion control analysis for a 1-dof system has 
been developed with satisfactory tracking response, [18]. 

In this paper, a model-based position tracking controller 
is developed for a 6 dof electrohydraulic Stewart platform 
with symmetric joint locations, using a fast inner force 
loop. Dynamic models are used that describe the rigid body 
motion of the Stewart platform and its hydraulic actuation 
system. In contrast to other approaches, here, servovalve 
models and friction are included in the model. The 
developed control scheme employs rigid body and 
actuation dynamics and yields the servovalve input current 
vector, in analytical form. A model-based force controller 
is developed, which is augmented by a PD part, responsible 
for the exponential convergence of the tracking error to 
zero. The performance of the developed controller is 
illustrated using typical trajectories. The proposed 
methodology can be extended to electrohydraulic serial or 
closed-chain manipulators and simulators. 

II. ELECTROHYDRAULIC STEWART PLATFORM MODELING 

A. Mechanical Dynamics 
In this section, the dynamic model of a 6-dof electrohy-
draulic Stewart platform servomechanism [3] is developed. 
This is a six dof closed kinematic chain mechanism 
consisting of a fixed base and a moving platform with six 

Model-Based Position Tracking Control for a   
6-dof Electrohydraulic Stewart Platform 

Ioannis Davliakos and Evangelos Papadopoulos, Senior Member, IEEE  

T 

Proceedings of the 15th Mediterranean Conference on
Control & Automation, July 27 - 29, 2007, Athens - Greece

T30-040



 

linear actuators supporting it. The mechanism is illustrated 
schematically in Fig. 1. 
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Fig. 1. Schematic view of a six-dof Stewart Platform. 

The equation of motion for the Stewart mechanism is de-
rived applying a Lagrangian formulation and is written as, 

 ( ) ( , ) ( ) ( )fr+ + + =M q q V q q G q F q τ  (1) 

where ( )T
0 0 0= x , y , z , , ,α β γq  is the 6 1×  vector of the 

platform generalized coordinates, see Fig. 1, 0x , 0y , 0z , 
are the platform center of mass Cartesian coordinates, α , 
β , γ  are the platform Euler angles, ( )M q  is the 6 6×  
positive definite mass matrix of the system, the 6 1×  vector 

( , )V q q  represents forces/ torques arising from centrifugal 
and Coriolis forces, the 6 1×  vector ( )G q  represents 
torques due to gravity, ( )frF q  is the 6 1×  vector of the 
forces/ torques due to friction, and τ  is the 6 1×  vector of 
the generalized applied forces. 

Equation (1) can be further extended using the trans-
formation between mechanism actuator forces and the 
generalized applied forces, [4], which is given by, 
 T

p= J Fτ  (2) 

where J  is the Jacobian 6 6×  matrix of the system, and pF  
is a 6 1×  vector representing actuator forces given by, 

 ( )T
,1 ,2 ,6...p p p pF , F , , F=F  (3) 

where , , 1, 2,...,6p jF j =  are individual hydraulic forces 
acting on actuator pistons. 

Further, using mechanism differential kinematics the 
platform Cartesian motion described by (1) can be 
transformed in its joint space and written as, 

 ( ) ( , ) ( ) ( )fr p+ + + =* * * *M q V q q G q F F  (4) 

where ( )T
1 2 6= ..., , ,  is the 6 1×  vector of the 

mechanism actuator lengths, ( )*M q  is a 6 6×  positive 
definite mass matrix, ( , )*V q q  is a 6 1×  vector  that 
contains the centrifugal and Coriolis forces, ( )*G q  is a 
6 1×  gravity forces vector, and ( )fr

*F  is a 6 1×  vector that 
contains joint space frictional forces. The terms ( )*M q , 

( , )*V q q  and ( )*G q  are given, respectively by, 

      T -1 -1( ) [ ( ) ] ( ) ( )=*M q J q M q J q  (5a) 

      T -1( , ) [ ( ) ] [ ( , ) ( ) ( , ) ]= − ⋅*V q q J q V q q M q J q q q  (5b) 

      T -1( ) [ ( ) ] ( )=*G q J q G q  (5c) 

The friction vector ( )fr
*F  can be written as, 

 ( ) ( ) ( )fr v C s= + +* * * *F F F F  (6) 

where ( )v
*F , ( )C

*F  and s
*F  are the viscous, Coulomb and 

static friction vector respectively, with elements, 

 *
, 0, 1, 2,...,6

( )
0, 0, 1, 2,...,6

j j j
v, j j

j

b j
F

j

 ≠ == 
= =

 (7a) 

 
*

*
( ), 0, 1,2,...,6

( )
0, 0, 1, 2,...,6

C0, j j j
C, j j

j

F sign j
F

j

 ≠ == 
= =

 (7b) 

*

* * *

, , 0, 0, 1,..., 6

( ), , 0, 0, 1,..., 6

0, 0, 1,..., 6

ext, j ext, j s0, j j j

s, j s0, j ext, j ext, j s0, j j j

j

F F F j

F F sign F F F j

j

 < = = =
= > = ≠ =
 ≠ =

 (7c) 

where jb  is the jth parameter for viscous friction element, 
*

C0, jF  is the jth parameter for Coulomb friction element, 
ext, jF  is the jth external force element, *

s0, jF  is the jth 
breakaway force element. 
 

B. Hydraulic Dynamics 
The electrohydraulic actuation Stewart servosystem consists 
of pistons, servovalves, controllers, sensors and a hydraulic 
power supply. Next, hydraulic models of electrohydraulic 
servosystem major components are introduced. 

The hydraulic supply includes a pump that is usually 
constant pressure piston pump, driven by an induction 
electric motor. Therefore, the pump is modelled as a 
constant pressure source. Further, it may include 
accumulators for filtering pressure pulsations from the 
pump, but also for allowing the use of smaller rating pumps 
by providing additional flow when needed. Such an 
accumulator is modelled as a hydraulic capacitor, [19]. 

A single rod hydraulic servocylinder is illustrated 
schematically in Fig. 2. The equations relating mechanical 
to hydraulic variables are described by, 

 1 1 1 1 , 1 2( )p inQ A C p G p p= + + −  (8a) 

 2 2 2 2 , 1 2( )p inQ A C p G p p= − + −  (8b) 

 1 1 2 2 pA p A p F− =  (8c) 

 ,net p fr pF F F= −  (8d) 

where 1Q , 2Q  are the flows through the two cylinder 
chamber ports, 1p , 2p  are the chamber pressures, 1A  is the 
piston side area, 2A  is the rod side area, 1C , 2C  are the 
fluid capacitances of the cylinder chambers, ,p inG  
represents the cylinder internal leakage conductance,  is 
shown in Fig. 2, pF  is the hydraulic force, ,fr pF  is the 
actuator friction force, and netF  is the net actuator output 
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force. In the case of a hydraulic cylinder with a double rod, 
the two areas 1A  and 2A  are equal and therefore, (8) are 
simplified. 
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Fig. 2. Schematic model of a hydraulic servoactuator. 

Control of a hydraulic system is achieved through the 
use of servovalves, see Fig. 3(a). Only the resistive effect 
of a valve is considered here, since their natural frequency 
is much higher than that of the mechanical load. It is also 
assumed that the geometry of the valve is ideal, e.g. the 
valve has sharp edges and zero cross leakage, [20], [21]. 
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Fig. 3. (a) A drawing of a real servovalve, (b) Schematic model of servo-
valve. 

A typical hydraulic servovalve consists of four 
symmetric and matched servovalve orifices making up 
flow paths through four nonlinear resistors, modulated by 
the input voltage, see Fig. 3(a). Thereby, the servovalve is 
modeled as the hydraulic equivalent of a Wheatstone 
bridge, see Fig. 3(b). When the servovalve input current is 
positive, 0i > , flow passes through the orifices 1 and 3 
(path P A B T− − − ), and flow leakages exist in the valve 
orifices 2 and 4. Similarly, when the servovalve input 
current is negative, 0i < , flow passes through the path 
P A B T− − − , and flow leakages exist in the valve orifices 
1 and 3. This model is described by, 

 11 1 , 1 , 1( , , )v d v in G v inQ f i C p p C p pρ= − ≡ −  (9a) 

 22 2 , 2 , 2( , , )v d v in G v inQ f i C p p C p pρ= − ≡ −  (9b) 

 33 1 2 , 2 ,( , , )v d v out G v outQ g i C p p C p pρ= − ≡ −  (9c) 

 44 2 1 , 1 ,( , , )v d v out G v outQ g i C p p C p pρ= − ≡ −  (9d) 

where 1vQ , 2vQ , 3vQ  and 4vQ  are the servovalve flows 
through the orifices 1, 2, 3 and 4, respectively, ,v inp  and 

,v outp  are the input and output servovalve pressure of the 
servosystem, correspondingly, i  is the servovalve motor 
current (control command), and 1( , , )df i C ρ , 2 ( , , )df i C ρ , 

1( , , )dg i C ρ  and 2 ( , , )dg i C ρ  are nonlinear functions in the 
servovalve motor current, the discharge coefficient dC  and 
the mass density of the fluid, ρ . In general, the discharge 
coefficient is a function of the Reynolds number and valve 
geometry. However, fluid density and Reynolds dependen-
cies are weak for turbulent flow and therefore only the 
current dependency is significant here, [9]; therefore, the 
functions 1 2 1 2( , , ), ( , , ), ( , , ), ( , , )d d d df i C f i C g i C g i Cρ ρ ρ ρ  
are reduced to 1( )f i , 2 ( )f i , 1( )g i , 2 ( )g i , correspondingly. 
Because of servovalve symmetry, the current functions are 
described by the following statements, 

- If 0i > , the main flow path passes through the 
orifices 1 and 3, see Fig. 3(b), and the servovalve functions 
are given by, 
     1 1 2 2( ) ( ) ( ) , ( ) ( ) ( )sv,main sv,leakG Gf i g i C i f i g i C i= ≡ = ≡  (10) 

- If 0i < , the main flow path passes through the 
orifices 2 and 4, see Fig. 3(b), and the servovalve functions 
are given by, 
    2 2 1 1( ) ( ) ( ) , ( ) ( ) ( )sv,main sv,leakG Gf i g i C i f i g i C i= ≡ − = ≡ −  (11) 

where sv,mainGC  and sv,leakGC  represent current functions with 
respect to the main and leakage flow of the servovalve, 
respectively. A good approximation of these functions is as 
follows, 

   1, 0, 0,

2, 1, 0 0,

,
( )

,sv,main

main main main
G

main main main

K i K i i
C i

k i i k i k i i
 + >=  + + <

 (12a) 

   0, 0,

3
3, 2, 1, 0 0,

,
( )

,sv,leak

leak leak
G

leak leak leak leak

K i i
C i

k i k i i k i k i i
 >= + + + <

(12b) 

where the coefficients 1,mainK , 0,mainK  and 0,leakK  are positive 
constants parameters, the coefficients 1,maink , 2,maink , 1,leakk , 

2,leakk , 3,leakk  and 0k  are constants parameters, and 0,maini , 
0,leaki  are characteristic values of the servovalve current, 

which correspond to the main and leakage valve path, 
respectively. 

If leakage flows and cylinder chamber compressibility 
are neglected, the flows through the orifices of the servo-
valve described by (9a,c) are equal to the flows through 
cylinder chamber ports, see (8a,b), and are written as, 

 1 1 1 1 1 , 1 2( )v p inQ Q A C p G p p= = + + −  (13a) 

 3 2 2 2 2 , 1 2( )v p inQ Q A C p G p p= = − + −  (13b) 

Hydraulic hoses of the 6-dof electrohydraulic servo-
system are modeled as compressible hydraulic lines, [19]. 
The equations that describe the hose dynamics are given by, 
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 , , ,l in l m l inp p R Q− =  (14a) 

 1
, , ,( )l out l m l outQ p p I −= − ⋅  (14b) 

 1
, , ,( )l m l in l outp Q Q C−= − ⋅  (14c) 

where ,l inp , ,l outp , and ,l mp  are hose pressures at its input, 
output and a middle point respectively, ,l inQ , ,l outQ  are the 
flows through the hose at its input and output 
correspondingly. The parameters R , I , C  correspond to 
hose resistance, inertance and capacitance, respectively. 
 

C. Integrated System Equations 
The hydraulic and load dynamic response can be described 
by a set of integrated system equations derived using a 
systems approach, such as the Linear Graph [20] or Bond 
Graph methods [22]. To this end, one needs to provide 
expressions transforming pressure differences to forces, see 
(9c), and velocities to flows, see (8a,b). 

Here, the Linear Graph method is used. The application 
of continuity and compatibility laws, along with individual 
elements equations, leads in a set of forty-two non-linear 
first order differential equations, as follows, 

 
1, , 1 2 4

1
, 1 2 1 1

[ ( ) ( )

( ) ] , 1, 2,...,6
j I v v

p in j

p Q Q i Q i

G p p A v C j−

= − − −

⋅ − − ⋅ =
    (15a) 

 
2, 2 4 , 2

1
, 1 2 2 2

[ ( ) ( )

( ) ] , 1, 2,...,6
j v v I

p in j

p Q i Q i Q

G p p A v C j−

= + − +

⋅ − + ⋅ =
    (15b) 

 1 1
, 1, , 1 1 , 1 1[( ) ] , 1,2,...,6C j s C I j

p p p R Q C j− −= − − ⋅ =     (15c) 

 1 1
, 2, , 2 , 2 2 2[ ( ) ] , 1, 2,...,6C j I C T j

p Q p p R C j− −= − − ⋅ =   (15d) 

 1
1

, 1, , 1 1 1[ ( )] , 1,2,...,6I j C G j
Q p p p i I j−= − − ∆ ⋅ =       (15e) 

 3
1

, 2, 2 , 2 2[ ( )] , 1, 2,...,6I j C G j
Q p p p i I j−= − − ∆ ⋅ =      (15f) 

 * * * *[ ] ( ), 1,2,...,6j p frj
v j−= ⋅ − − − =m F V G F                  (15g) 

where , 1,I jQ , , 2,I jQ  are the jth flows in the jth hydraulic 
pressure and return line correspondingly, sp , Tp  are the 
power supply and return pressure of the servosystem, 
respectively, , 1,C jp , , 2,C jp  are correspondingly the jth 
pressures of jth hydraulic power and return line regarding 
with the lines’ capacitances, 1, jI , 1, jR , 1, jC  are the jth 
inertance, resistance and capacitance of jth hydraulic power 
line respectively, 2, jI , 2, jR , 2, jC  are the jth inertance, 
resistance and capacitance of jth hydraulic return line 
respectively, j jv =  is the velocity of the jth piston, which 
is obtained by (4), *[ ]

j−m  is a 1×6  row-matrix which 
corresponds to the jth line of the matrix * 1( )−M . The terms 

1 ( )G j
p i∆ , 3 ( )G j

p i∆  are the jth pressure drops of the jth 
servovalve orifices 1 and 3 respectively, which are 

determined using the flow continuity laws, along with 
actuator and servovalve elements equations, and given by, 

 
1 1 2 1 2

1 2

2 2 1
, 1

2 2 2 2
, 1 1 2

( ) {[ ( ) ( )] [ ( ) ( )

[ ( ) ( )] ( )]} , 1, 2,..., 6

G G G I G Gj

I G G
j

p i C i C i Q C i C i

Q C i C i p p j

−∆ = − ⋅ − ⋅

+ − ⋅ − =
 (16a) 

 
3 3 4 3 4

3 4

2 2 1
, 2

2 2 2 2
, 2 1 2

( ) {[ ( ) ( )] [ ( ) ( )

[ ( ) ( )] ( ) ]} , 1,2,..., 6

G G G I G Gj

I G G
j

p i C i C i Q C i C i

Q C i C i p p j

−∆ = − ⋅ − ⋅

+ − ⋅ − =
 (16b) 

where 
1 ( )G j

C i , 
2 ( )G j

C i , 
3 ( )G j

C i , 
4 ( )G j

C i  were defined in 
(9)–(12). 

Further, using the flow continuity laws, along with 
hydraulic lines and servovalve elements equations, the 
flows 2, ( )v jQ i  and 4, ( )v jQ i  in (15a,b), are determined by, 

 1 12, , 1( ) [ ( ) ( )] , 1,2,...,6v j I G G
j

Q i Q C i p i j= − ∆ =  (17a) 

 3 34, , 2( ) [ ( ) ( )] , 1, 2,...,6v j I G G
j

Q i Q C i p i j= − ∆ =  (17b) 

III. CONTROLLER DESIGN 
In this section, a model-based nested position tracking 
controller using a fast inner force loop is developed, which 
is augmented by a PD part, responsible for the exponential 
convergence of the tracking error to zero. 

In electromechanical systems, the force acting on 
moving masses is proportional to actuator current. This 
simplifies their control laws and allows one to achieve 
second order error dynamics converging exponentially to 
zero. However, a simple relationship between force and 
current does not exist in electrohydraulic systems. Despite 
of this, we are interested in studying whether such a system 
can be described by error dynamics such as, 

 v p+ + =e K e K e 0  (18) 

where pK  and vK  are 6×6  diagonal matrices, which 
represent the control gains of the system, and des= −e  
is the 6×1  position error vector. 

Since Eq. (18) is a second-order differential equation, 
matrix factors pK  and vK  can be written in terms of the 
closed-loop natural frequency jω  and damping jζ , 

1, 2, ..., 6j= , for all six linear actuators, as, 

    2 2
1 6 1 1 6 6diag{ ,..., }, diag{2 ,..., 2 }p vω ω ζ ω ζ ω= =K K  (19) 

Employing a pole placement technique, one can guarantee 
system stability as well as its transient response. Therefore, 
system closed-loop natural frequency and damping can be 
selected so that the poles lie in a desirable area of the left 
half complex plane. Equation (19) yields then the neces-
sary feedback loop gains. 

For control purposes, determination of the six forces 
acting on the platform is considered next. These are the net 
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platform actuation forces that can be measured via force 
sensors, e.g. [23], or computed by, 

 ( ) ( , ) ( )net pl pl pl= + +F M q V q q G q  (20) 

where plM  is the 6 6×  positive definite mass matrix of the 
platform, plV  represents forces/ torques arising from cent-
rifugal and Coriolis forces on the platform, and plG  repre-
sents platform torques due to gravity. 

Assuming that (18) have been achieved, this equation is 
solved for  which is then substituted in (20). The result is 
a force that must be applied by the pistons, so that the error 
of the load motion is governed by (18). Therefore, the 
desired actuator forces are given by, 

   
( ) [ ( )]

( , ) ( )
net,des pl des v des p des

pl pl

+ += ⋅ − − +
+

F M q K ( ) K
V q q G q

 (21) 

To generate a relationship between force and current, 
(21) is differentiated up to the point that the input does not 
explicitly appear. Differentiating once, (21) yields, 

 ( , , , )net net=F F v v  (22) 

where =v  is the 6×1  linear velocity piston vector. 
Differentiating the piston acceleration, (15g), yields, 

 1 2( , , , )=v v p p  (23) 

where 1p  and 2p  are the 6×1  chamber pressure vectors of 
the servoactuators. 

Taking into account (15a-g), (22) takes the form, 

 1 2( , , , )net net=F F p p  (24) 

Further, substituting (9)-(12) into (24), yields, 

11 1 2 10 1 2

0, ,

22 1 2 21 1 2

20 1 2 0, ,

( , , , ) ( , , , ) ,
, =1,...,6

( , , , ) diag{ } ( , , , )

( , , , ) , , =1,...,6

j main j

net

j

j main j

i i j

i

i i j


⋅ +

 >=
 ⋅ ⋅ + ⋅
 + <

p p i p p

F
p p i p p i

p p

(25) 

where i  is the 6×1  servovalve current vector, 11 , 22 , 
21 , and 10 , 20  are respectively 6×6  diagonal non-

linear matrices and 6×1  vector functions with elements the 
system state variables. 

Equation (25) shows that one can find a relationship 
between the current and the derivative of the force and not 
the force itself, as in electric actuators. Also, (25) suggests 
that one can design a controller that will allow the output 
force to converge to the desired one according to the 
following first order error equation, 
 f f f+ =e K e 0  (26) 

where the 6×6  diagonal matrix fK  is the force gain and 

f net,des net=e F F−  is the 6×1  force error vector. 
Assuming that (26) have been achieved, this equation is 

solved for netF , which is then substituted in (25). Next, 
solving (25) for the servovalve current vector i , the control 
law is obtained as, 

 1 2( , , , , , , , , )net net,des net,des=i i q q p p F F F  (27) 

Note that this control law requires feedback of both the 
position and velocity errors, as well as of the force applied 
to the platform. The terms q  and q  are determined using 
the direct kinematics. A detailed look shows that the 
controller is made of two nested loops, a faster internal 
force loop and a slower external position loop. An 
advantage is that it does not require an estimate of the 
piston acceleration or of the derivative of the force, netF , 
which are problematic in the presence of noise. The 
schematic view of the full model-based force controller 
diagram for the servomechanism is depicted in Fig. 4. 
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Fig. 4. Schematic view of the full model-based force controller diagram 
for the 6-dof electrohydraulic Stewart mechanism. 

IV. SIMULATION RESULTS 

The tracking performance of the controller is evaluated 
next. The system parameters include the platform mass 

150 kgm = , the moments of inertia about the platform 
center of mass 225kgmxx yyI I= = , 250kgmzzI = , and fri-
ction parameters, 400 Ns/mjb = , *

0, 50 NC jF =  and *
0,s jF =  

200 N , which were experimentally computed at a single 
dof servomechanism [23]. The Stewart mechanism is 
considered as a 6-6 symmetric mechanism. The joints of 
the movable platform and fixed base lie at equal peripheral 
distances and at radii 0.5 m  and 1.0 m , respectively, and 
the joint distances at the movable platform and fixed base 
are 0.2 m  and 0.3m , respectively. To compute the matrix 
control gains, we first require that all dofs are critically 
damped. Hence, =1jζ , 1, ..., 6j = . Next, we require a set-
tling time of about 1s , yielding 2 rad sjω π /= , 1, ..., 6j = . 
Further, the valve parameters have been experimentally 
computed [23] as, 5 7/2 1/2

1, 1.5 10 m /(A kg )mainK −= × , 0,mainK =  
9 7 1/25 10 (m / kg)−× , 9 7 1/2

0, 3.5 10 (m / kg)leakK −= × , 1, 0maink = , 
3 7/2 2 1/2

2, 6.8 10 m /(A kg ),maink −= × 5 7/2
1, 1.32 10 m /(Aleakk −=− ×  

1/2kg ), 3 7/2 2 1/2 7/2 3
2, 3,6 10 m /(A kg ), 0.84m /(Aleak leakk k−= × =−  

1/2 8 7 1/2
0kg ), 1.3 10 (m / kg)k −= × , 0, 1mAmaini = , and 0,leaki =  

1.5mA.  All these constants were experimentally computed 
for a two-land-four-way spool MOOG G761-3004 Series 
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high-performance servovalve. Further, the hydraulic hose 
para-meters were experimentally computed [23] as, 3.8I = ×  

7 4 8 5 12 510 kg / m , 6.57 10 Ns / m , 1.072 10 m / N.R C −= × = ×  Simulati-
ons runs were obtained using a number of desired trajecto-
ries. As an example, Fig. 5 shows typical results, in which 
the desired trajectory is given by, 
 0 1( ) sin(2 )c cz t z z π f t= +  (28) 

where 0.5Hzf = , 0.1mcz =  and 1 1.34 mcz = . 
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Fig. 5. Simulation results. (a) Platform displacement response, (b) an actu-
ator position, (c) platform position error, (d) control input, (e) actuation 
force error, and (f), chamber pressure histories of the same actuator. 

V. CONCLUSIONS 
In this paper, a position tracking controller for a six dof 
electrohydraulic Stewart platform mechanism using a fast 
model-based inner force tracking loop was developed. The 
rigid body equations of motion and the hydraulic dynamics 
were integrated to form the system dynamics. Friction and 
leakage of hydraulic elements were included in the full 
electrohydraulic model. The control analysis was based on 
a nonlinear input-output linearization control approach. 
The control law includes a PD part driving the tracking 
error to zero exponentially. The approach can be further 
extended to hydraulic manipulator and simulator control. 
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