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Abstract— This paper considers the design of a novel closed-

loop trajectory tracking controller for an underactuated AUV 

having 6 degrees of freedom (DOF) and 3 controls, namely a 

thruster, a rudder and moving surfaces to control the forward, 

yaw and pitch motions respectively. A backstepping 

methodology is adopted as a design tool since it is suitable for 

the cascaded nature of the vehicle dynamics. It also offers 

flexibility and robustness against parametric uncertainties 

which are often encountered in hydrodynamic modeling. 

Indeed, in our simulations we assume a 10% error in 

hydrodynamic parameters and yet the controller performs the 

task of position, orientation and linear and angular velocity 

tracking successfully.  

Index Terms— Trajectory Tracking Control, Underactuated 

AUV. 

I. INTRODUCTION 

UTONOMOUS Underwater Vehicles (AUVs), such as 

the one shown in Fig. 1, have been playing a major role 

in exploration and exploitation of resources located in deep 

oceanic environments. They are employed in risky missions 

such as oceanic observations, bathymetric surveys, ocean 

floor analysis, military applications, etc., [1]. Apart from 

their numerous practical applications, these vehicles present 

a challenging control problem since most of them are 

underactuated, i.e., they have fewer inputs than DOF. Such 

control configurations impose non-integrable acceleration 

constraints. Furthermore, AUVs’ kinematic and dynamic 

models are highly non-linear and coupled making control 

design a difficult task, [2]. Underactuation rules out the use 

of customary control schemes e.g. full state-feedback 

linearization, [3], and the strong hydrodynamic effects 

exclude designs based solely on the kinematic model. When 

moving on a horizontal plane, AUVs present similar 

dynamic behavior to underactuated surface vessels, [2]. 

The stabilization problem, i.e. regulation to a point for 

surface vessels and AUVs has been studied in [4]-[6]. It is 

shown that such vehicles cannot be asymptotically stabilized 

by continuous time-invariant feedback control laws. 

During many missions, AUVs undertake the task of 

tracking an inertial trajectory (a space curve with a specified 
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Fig. 1.  The AUV with the body-fixed frame, the controls and motion 

variables. 

 

timing law). This requires the design of control laws that 

guide and keep the vehicle on the trajectory regardless of 

external disturbances, modeling errors etc.  

Tracking controller designs for underactuated marine 

vehicles currently in use follow classical approaches such as 

local linearization and decoupling of the multivariable 

model aiming at steering as many degrees of freedom as the 

available control inputs. This is done using linearization 

about trimming trajectories (trajectories with constant 

velocities) that lead to time invariant linear systems followed 

by such techniques as gain scheduling, [7]. In the same 

work, the authors design a parameterized family of linear 

controllers about trimming trajectories. They require 

accurate knowledge of the hydrodynamic model, while 

stability results at the switching points between different 

controllers and tracking performance of the velocity errors 

are not provided. The validity of these solutions is limited in 

a small neighborhood around the selected operating points. 

Stability and performance also suffer significantly when the 

vehicle executes maneuvers that amplify the action of its 

complex hydrodynamics and nonlinear coupling terms. 

Theoretical and experimental results on trajectory 

tracking for underactuated marine vehicles show that 

nonlinear Lyapunov-based techniques can overcome most of 

the limitations mentioned above. The authors in [8], present 

experimental tracking results for a model ship using 

Lyapunov-based controllers. In [9], two tracking solutions 

for a surface vessel were proposed, based on Lyapunov’s 

direct method and passivity approach. However, in the last 

three works, the yaw velocity was required to be nonzero. 

Under this restriction, straight lines cannot be tracked. In 

[10], the error dynamics is transformed into a skew-

symmetric form and practical convergence is achieved. The 
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authors in [11] have designed a controller for vehicles 

moving in two or three dimensions that exponentially forces 

the position tracking error to a small neighborhood of the 

origin. However, the attitude of the vehicle is left 

uncontrolled, which may lead to trajectory tracking but with 

a wrong heading. In addition, the stability of the velocities 

was not investigated. In [12], the combined problem of 

trajectory planning and tracking control for an underactuated 

AUV moving on the horizontal plane was studied. The 

controller design was based on backstepping techniques and 

the position and orientation errors as well as linear and 

angular velocity errors asymptotically converged to zero. 

This is the first work in the control literature in which 

trajectory planning, based on the dynamic model, for 

underactuated marine vehicles was presented. In [13], the 

same planning and tracking control methodology was 

applied in the case of a nontrimming trajectory with time-

varying velocities F a sinusoidal path F where also 

parametric inaccuracies were considered. The results of 

trajectory planning were extended in [14] for underactuated 

AUVs moving in 3D, also a new result. The importance of 

trajectory planning lies in the consistency of the generated 

desired variables F position, orientation and linear and 

angular velocities F with vehicle dynamics. Incorporating 

these variables in a closed-loop tracking controller alleviates 

its efforts and leaves for the latter the task of error 

convergence and compensation of parametric inaccuracies 

only. 

In this paper, we present a novel closed-loop tracking 

controller for an underactuated AUV moving in 3D space 

and having 3 controls, namely a thruster to control surge 

motion, and a rudder and lateral moving surfaces to control 

yaw and pitch motion respectively. We adopt the 

backstepping design methodology, as this suits the cascaded 

nature of the vehicle dynamics, and gains from the inherent 

robustness of Lyapunov techniques. To demonstrate the 

efficiency of this controller we present simulations in which 

we assume errors in the hydrodynamic parameters of the 

order of 10%. The results show that the controller is 

successful in all cases. 

II. AUV KINEMATICS AND DYNAMICS 

A. Kinematics 

In this section, the kinematic and dynamic equations of 

motion for an AUV moving in a 3D space are presented.  

To describe the kinematics, two reference frames are 

employed, the inertial reference frame { }I  and a body-fixed 

frame { }B , see Fig. 1. As shown, the origin of the { }B  

frame coincides with the AUV center of mass (CM) while 

the center of buoyancy (CB) is on the negative z  body axis 

for static stability. Using the standard notation of ocean 

engineering, the general motion of an AUV in 6 DOF can be 

described by the following vectors: 
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In (1), 1�  denotes the inertial position of the CM and 2�  

the orientation of { }B  with respect to (wrt) the { }I  frame in 

terms of Euler angles. Vector 1v  denotes the linear velocity 

of the CM and 2v  the angular velocity of { }B  wrt the { }I  

frame, both expressed in the body-fixed { }B  frame.  

In guidance and control applications, for the 

representation of rotations, it is customary to use the xyz  

(roll-pitch-yaw) convention defined in terms of Euler angles, 

adopted in the present work, or quaternions. In this work, we 

use the first approach. Hence, the velocity transformation 

between the { }B  and the { }I  frames is expressed as 

 1 1 2 1( ) � J � v�  (2) 

where 

 1 2( )

c c s c c s s s s c c s

s c c c s s s c s s s c

s c s c c

\ T \ I \ T I \ I \ I T
\ T \ I I T \ \ I T \ I
T T I T I

� � �ª º
« » � � �
« »�¬ ¼

J �  (3) 

The body-fixed angular velocitiy, and the time rate of the 

Euler angles are related through 

 2 2 2 2( ) � J � v�  (4) 

where 

 2 2

1

( ) 0

0 / /

s t c t

c s

s c c c

I T I T
I I

I T I T

ª º
« » �« »
« »¬ ¼

J �  (5) 

where sin( )s�  � , cos( )c�  � , tan( )t�  � . 

B. Dynamics 

The dynamic model of the AUV presented in [2] is 

employed here. It is a simplified model developed for 

control design tasks, and captures the main dynamical 

characteristics of a flat-fish shaped AUV moving in 3D 

space, see Fig. 1. The vehicle is underactuated, i.e., it has 

less control inputs than the number of DOF. Specifically, in 

the following equations of motion, the three controls are 

surge propulsion T , rudder angle rG  for yaw rotation, and 

stern and bow plane angles s bG G �  for pitch rotation. The 

equations of motion are, 

 
3 3 3

2 2

2 2

( ) ( ) ( )u wq vr

uu vv

m r X u r X m wq r X m r

r X u r X T

X

X

�  � � �

� � �

�
�

 (6a) 

    3 3 3 2( ) ( ) ( )v r wp vm r Y r Y m ur r Y m wp r Y uX X�  � � � ��
�  (6b) 

     3 3 3 2( ) ( ) ( )w q vp wm r Z w r Z m uq r Z m p r Z uwX�  � � � ��
�  (6c) 

          5 5 4( )x p qr p CBI r K p r K qr r K up z c s BT I�  � ��
�  (6d) 

5 5 4 3

2

3

( ) ( )

( 2 )

y q pr z x uq uw

ds s db b CB

I r M q r M I I pr r M uq r M uw

r u M M z s BG G T

�  � � � �

� � �

�
�

 (6e) 
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A brief explanation of the various terms and the values of 

the main ones in (6) follows: 5454.54 kgm   is the 

vehicle’s mass, and 22038 NmsxI  , 213587 NmsyI  , 

and 213587 NmszI   are the moments of inertia about the 

body ,bx  ,by  and ,bz  axes respectively. The term B  is the 

buoyancy force acting on the CB. The term CBz  is the 

z � coordinate of the CB., 

 ( / 2)      1,...,5i

ir L iU   (7) 

where U  is the water density and 5.3 mL   the AUVs 

length. uX � , vY� , wZ �  are added mass terms and pK � , qM � , rN �  

are added moments of inertia terms. wqX , vrX , rY , wpY , qZ , 

vpZ , qrK , prM , and qpN  are added mass cross terms. uuX , 

vvX , vY , wZ , 
pK , 

uqM , uwM , dsM , dbM , vN , rN , and 

drN  are drag and body lift, force and moment terms. 

Detailed description and the values of the model parameters 

can be found in [2]. The lack of control actuation in sway X , 

heave w , and roll p  motions renders the system 

underactuated. 

III. TRAJECTORY TRACKING CONTROL DESIGN 

In this section, the trajectory tracking control design is 

presented. We assume bounded reference velocities and 

nonzero surge velocity. 

A. Reference Variables 

The reference 6 DOF trajectory to be tracked by the AUV is 

generated by a trajectory planning algorithm developed in 

[14]. In this subsection, we briefly describe this planning 

methodology.  

Let a smooth 3D trajectory to be followed by the CM of 

the AUV be given by its inertial coordinates Rx , Ry , and 

Rz . From now on, the subscript “R” denotes a reference 

(desired) variable. Associating the Frenet frame to every 

point of the curve, we can also derive the “orientation” of 

the trajectory. This orientation is not the reference one since 

the body-fixed frame, as the CM tracks the reference path, 

undergoes a further rotation wrt the Frenet frame due to the 

dynamics. This rotation is described by the angles of attack 

and sideslip which are functions of the body-fixed linear 

velocities. Hence, we also derive the reference Euler angles 

RI , RT , and R\ . The reference angular velocities Rp , Rq , 

and Rr  are then obtained by differentiation and the fact that 

the angular velocity of the body frame wrt the inertial frame 

is the sum of the angular velocity of the body frame wrt the 

Frenet frame and the angular velocity of the Frenet frame 

wrt the inertial frame. The linear, body-fixed velocities Ru , 

RX , and Rw  are obtained considering the equality of the 

total AUV velocity and the trajectory velocity, and the 

integration of the two unactuated dynamic equations (6b) 

and (6c).  

We conclude that this planning methodology provides the 

full, 6 DOF trajectory, consistent with AUV’s dynamics. 

Using this feasible trajectory, the design of closed-loop 

tracking controllers can be facilitated and result in improved 

performance since the controller has only to deal with the 

tracking error convergence and compensation of parametric 

inaccuracies.  

B. Error Dynamics Formulation 

Using the states of the vehicle and the reference variables, 

the tracking errors are defined as  

 

,  ,  ,

,  ,  ,

,  ,  ,

,  ,  

e R e R e R

e R e R e R

e R e R e R

e R e R e R

u u u w w w

p p p q q q r r r

x x x y y y z z z

X X X

I I I T T T \ \ \

 �  �  �

 �  �  �

 �  �  �

 �  �  �

 (8) 

From (2) and (4) it is  

 1 1 2 1( )R R R � J � v�  (9a) 

 2 2 2 2( )R R R � J � v�  (9b) 

Then, the kinematics tracking errors are written as 

 1 1 2 1 1 2 1( ) ( )e R R �� J � v J � v�  (10a) 

 2 2 2 2 2 2 2( ) ( )e R R �� J � v J � v�  (10b) 

Substituting in these 1 1 1e R �v v v , 2 2 2e R �v v v , yields 

 1 1 2 1 1( )e e �� J � v ��  (11a) 

 2 2 2 2 2( )e e �� J � v ��  (11b) 

where 

 1 1 2 1 2 1[ ( ) ( )]R R �� J � J � v  (12a) 

 2 2 2 2 2 2[ ( ) ( )]R R �� J � J � v  (12b) 

are both treated as bounded (for bounded reference 

velocities) time-varying disturbances. 

Considering the dynamics, assuming 0u z  (which is 

natural for tracking purposes), and setting  
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r dr y qp x v
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r u N I r N I pq r N u

r N ur I r N

G X
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 (15) 

we obtain the following partially linearized system: 

 e R uu u W � �� �  (16a) 

 3 3[( ) /( )]e r er Y m m r Y urX XX H � � ��
�  (16b) 

 
3 3[( )/( )]e q w e ww r Z m m r Z uq H � � ��

�  (16c) 
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 4 5 1[( ) /( )]e p x p e e pp r K I r K u p H � ��
�  (16d) 

 
e R qq q W � �� �  (16e) 

 e R rr r W � �� �  (16f) 

where uW , qW , and rW  are auxiliary controls and the H  terms 

are given by, 
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3

2 3
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( )( )( )
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w R q e R R R
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w r Z m u q u q

r Z m p p
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1 5
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( )
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p R qr e R e R
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CB e R e R x p

p r K q q r r

r K up p u

z c s B I r K
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� �
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�

 (17c) 

C. Error Dynamics Stabilization 

In the sequel, we proceed to the design of a control law for 

the underactuated system of (11a) and (11b), and (16a)-(16f) 

using the backstepping and nonlinear damping methodology  

Before proceeding to the design steps, we make a few 

observations: Firstly, considering (16), we note that the 

directly controlled variables are the velocities ,eu  ,eq  and 

er , using uW , qW , and rW  respectively. Secondly, in order to 

control the positioning (11a) and orientation (11b) 

subsystems we shall use in a first step, as virtual controls, 

the velocities eu , ,eX ,ew  and ,ep  ,eq  ,er  respectively. But 

,eX  ,ew  and ,ep  are not directly controlled; yet, we can 

exploit the coupling terms 3( )rr Y m ur� , 3( )qr Z m uq� , and 

4 pr K up  in the dynamic equations, and the nonzero surge 

velocity assumption to control these variables.  

.Step 1. Considering the subsystem (11b), we take as 

virtual controls the vector 2
[ , , ]T

e e e e
p q r v  and for now we 

ignore the term 2� . Then, the first part of the desired 

expressions for the virtual controls is chosen as 

 1

2 , 2 2 3 2 2 1 1( ) [ , , ]T

e des e p q rD D D� � �  
v

v J K K � .�  (18) 

where 2 2 2 2( , , )diag k k kK �  and 3 3 3 3( , , )diag k k kK �  are 

positive definite gain matrices. The inversion of 2J  results 

in the singular point / 2T S r ; this is not a problem if the 

vehicle is not going to operate near this point. The 

component pD  is the desired value for the velocity ep , but 

since this is not a real control, we introduce the error 

variable p e pz p D � . Then, from (16d) it is 

 4 5[( ) /( )]p p x p e e pz r K I r K u p H � ��
�  (19a) 

where 

 1p p pH H D � �  (19b) 

to be treated in a later step. Also, the variables 1qD  and 1rD  

are the parts of ,e desq  and ,e desr  respectively used to control 

the rotational kinematics. Selecting eu  as a virtual control in 

(19a), and since the term 4 5[( ) /( )]p x pr K I r K� �  is negative, 

our choice is  

 , ,tanh( )e pdes e p p u pu p c z D �  (20) 

which is the part of ,e desu  that controls pz . In (20), we used 

the hyperbolic tangent function because it is smooth and it 

compromises the signs as needed. Considering the 

subsystem (11a), we take as virtual controls the vector 

1 [ , , ]T

e e e eu wX v  and set 

 1 , 1 1 1 1 , 1( ) [ , , ]T T

e des e u wK XD D D � �  v J K K � .�  (21) 

where ( , , )diag k k kK�  and 
1 1 1 1

( , , )diag k k kK �  are positive 

definite gain matrices. The component 
, 1 ,u e desuK KD �  is the 

part of the velocity 
,e desu  that controls inertial velocities and  

 
, , 1u u p u KD D D �  (22) 

Returning to (11a), and (19a), and the controls (20) and 

(22), we note that the components of the vector 

1
[ , , ]T

u wXD D D
v
. �  are not true controls. Hence, we introduce 

appropriate error variables: 

 [ , , ] [ , , ]T T

u u w e u e e w
z z z u wX XD X D D � � �z �  (23) 

Then, the controlled subsystem so far is: 

 1 1 1 1[ ]e u � �
v

� J . z ��  (24) 

 4 5 ,[( ) /( )]p p x p e u p pz r K I r K p fD � ��
�  (25a) 

with 

 , 1( , )p p u pf f KD H  (25b) 

This function will be bounded when the complete system 

controller is designed at the final step. 

The task now is to stabilize the inertial position 1e�  and 

the error variables pz  and uz . In this step, uz  is stabilized 

using uW . Choosing  

 2 2

1 1 1( ) / 2T

e e p uV z z � �� �  (26) 

its time derivative becomes 

   

1 1 1 1 1 1

4
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5 4 5

( ) tanh( )(

) [ ( )

( )] [ (

) ( )] [( ) /(
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T T

e e e p p e e

e e w e e

e e e

e p p x

p e e p p p x p

V c z p x c c

y c s z s z z c c y c s s c s

x s s c c s z z c s y s s s

c c x c s s c s c r K I

r K p p z z r K I r K

X

\ T

T \ T I T I \ T \ I

I \ I \ T T I I \ T

I \ \ I T I \
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� � � �

� � � �

� �

� K K � � �

� �

�

, 1

4 5

]

[

[( ) /( )] ]

u e

p p u u R u e e

e p p x p e

p

z f z u x c c y c s

z s z r K I r K p

KD

W D \ T T \

T
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��

 (27) 

Using Young’s inequality [3], nonlinear damping [15], and 
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1 3

4 5[( ) /( )] ]

u R zu u zu u u e e

e p p x p e

u c z c z x c c y c s

z s z r K I r K p

W D \ T T \

T
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��
 (28) 

and after some algebraic manipulations, (27) becomes 

 

2

1 1 1 1 1 1

2

4 5

2 2 2 4

1 3

( ) [|| || / 4 ]

[( ) /( )] tanh( )

[( ) / 4 ] [ (1/ 4 )]

T

e e

p p x p e e p

w zu u zu u

V k

c r K I r K p p z

z z c z c zX

J

O O
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� �

� � � �

� K � � �

�

�

 (29a) 

where ( , , )diag O O O��  is a positive definite gain matrix, 

k O! , and 1zuc , 3zuc  are positive constants with 

1 1/ 4zuc O! . Also, 1J  is a smooth function with undefined 

sign yet: 

 1 1 , 1( , , , , , )p e e e u ez x y z pKJ J D  (29b) 

Step 2. We now consider the stabilization of the 

subsystems that are controlled by the assumed virtual 

controls er  and eq , i.e., the rotational kinematics and the 

errors zX  and wz  the dynamics of which are written as 

 3 3[( ) /( )]r ez r Y m m r Y urX X X XH D � � � ��
��  (30) 

 3 3[( )/( )]w q w e w wz r Z m m r Z uq H D � � � ��
��  (31) 

Here, we choose  

 
, 3 3 2[( ) /( )]e wdes q q w w qq c r Z m m r Z uz D � � � � �  (32) 

 , 3 3 2[( ) /( )]e des r r rr c r Y m m r Y uzX X X D � � � � �  (33) 

where qc  and rc  are positive constants. Then, taking into 

account (18) it is  

 1 2r r rD D D �  (34) 

 1 2q q qD D D �  (35) 

So far, the controlled subsystem of the rotational kinematics 

and the errors zX  and wz  is transformed as 

 2 2

3 3[( ) /( )]r rz c r Y m m r Y u z fX X X X � � � ��
�  (36) 

 2 2

3 3[( )/( )]w q q w w wz c r Z m m r Z u z f � � � ��
�  (37) 

 2 2 3 2 2 2( )e e K � � � �� K K � � f�  (38) 

with  

 ( , , , )e ef fX X X XH D T \ �  (39a) 

 ( , , , )w w w w e ef f H D T \ �  (39b) 

 2 2 ( , )wz zK K X f f  (39c) 

In order to stabilize the above subsystem, we choose  

 2 2 2 2

2 1 1 2 2( ) / 2T T

e e e e p u wV z z z zX � � � � �� � � �  (40) 

Taking into account (29a), and using nonlinear damping, its 

time derivative becomes  
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2 3 2 1 3
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[ / 4 ] [ (1/ 4 )]
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where  

 
2 2 1 2( , , , )wf fX KJ J J f  (41b) 

and will be discussed later. 

Step 3. The variables ep , eq  and er  are not true controls. 

Thus, we introduce the errors p e pz p D�� , q e qz q D��  and 

r e rz r D��  in (36)-(38) yielding: 
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 2 2 3 2 2 2 2( ) [ , , ]T

e e p q rz z z K � � � � �� K K � J � f�  (44) 

We choose  

 2 2 2 2 2 2

3 1 1 2 2( ) / 2T T

e e e e p u w q rV z z z z z zX � � � � � � �� � � �  (45) 

and taking its time derivative we have 
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where 3J  is a smooth function of the states. We now set the 

controls qW  and rW  as follows: 
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where 1zqc , 3zqc , 1zrc , 3zrc  are positive constants. Then, (46) 

becomes 
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Before proceeding, we make the following assumptions 

concerning positive terms like 1|| ||� , and terms with 

undefined sign, like the terms contained in 3J .  

Assumptions: 1) Each of the time-varying terms (that stem 

from the reference trajectory variables) has a constant upper 

bound (for example ,max0 || ||R Rr r� d ). This can be set during 

trajectory planning. 

2) The uncontrolled velocity errors have upper bounds, 

,max|| ||e eX Xd , ,max|| ||e ew wd , and ,max|| ||e ep pd , where ,maxeX , 

,maxew , and ,maxep  are positive constants. We can think of 

these bounds as the maximum admissible operating limits 

(“flight envelope”) beyond which a guidance law is needed. 

3) The surge velocity has lower and upper bounds, 

max|| ||u ud , where maxu  is a positive constant, and 0uz  as 

already has been stated. 

After tedious but straightforward algebraic manipulations 

of the various terms in (49), and taking into account the 

above assumptions, we end up with the following form of 

the derivative of 3V : 
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 (50) 

where 1 1 1 1( , , )diag S S S� �  and 2 2 2 2( , , )diag S S S� �  are 

positive definite gain matrices. The gain 1( )ec p  is positive 

as long as 0ep z . The gains 3 ( )c u  and 4 ( )c u  are positive 

when 0uz , and 2 ,c  5 ,c  and 6c  are positive constants. Also, 

oc  is a positive constant, which can be made very small 

using an appropriate combination of the values of the 

various gains. Now, if we define  

 
1 2[ , , , , , , , ]T T T

e e u w p q rz z z z z zXz � ��  (51) 

(45) can be written as, 

 
2

32V  z  (52) 

Taking 1 2 1 2 3 4 5 6min{ , , , , , , , }c c c c c c[ S S , then 

 3 32 oV V c[d� ��  (53) 

which, by employing the Comparison Lemma [3], yields 

 2

3 3( ) (0) ( / 2 )t

oV t V e c[ [�d �  (54) 

for [0, )finalt t� . Doing the algebra, we conclude that 

 ( ) (0) / ,      [0, )t

o finalt e c t t[ [�d � �z z  (55) 

Eq. (55) means that the states of the error dynamics remain 

in a bounded set around zero, which can be reduced using an 

appropriate combination of the controller gains. At this 

result we arrived using (13), (14), and (15), along with (28), 

(47), and (48). 

IV. SIMULATION RESULTS 

A large number of simulation results showed that the above 

designed controls perform very well in terms of quick 

convergence of the tracking errors to zero, smooth transient 

response, low control effort, and robustness, even in the case 

of large modeling inaccuracies. To illustrate the performance 

of the designed trajectory tracking controller, typical 

simulations are presented. 

The reference 6 DOF trajectory is described by the 

following equations: the reference inertial position for the 

CM of the vehicle is given by the helix, 

 70cos(0.02 )  mRx t  (56a) 

 70sin(0.02 )  mRy t  (56b) 

 0.3   mRz t  (56c) 

Then, following the methodology developed in [14], we 

compute the reference orientation given by the Euler angles  

 36.71 10   radRI
� � u  (56d) 

 0.211  radRT  �  (56e) 

 0.02   radR t\   (56f) 

and linear and angular body-fixed velocities  

 1.431  m/sRu   (56g) 

 0.0448  m/sRX  �  (56h) 

 30.436 10   m/s
R

w � u  (56i) 

 34.19 10   rad/sRp � u  (56j) 

 30.131 10   rad/s
R

q � � u  (56k) 

 0.0196  rad/sRr   (56l) 

The initial errors for the simulations are set as || || 0.3ex   

m, || || 0.3ey   m, || || 0.2ez   m, || ||eI  || ||eT  || || 2e\   deg, 

|| || 0.1eu   m/s, || || 0.01eX   m/s, 3|| || 10ew �  m/s, and 

|| ||ep  || ||eq  || || 0er   rad/s. 

The dynamic model used is that of (6). However, in order 

to investigate the robustness of the controller we introduced 

errors of the order of 10% in all of the hydrodynamic 

parameters used in the control law.  

The following simulations were obtained with controller 

gains chosen as: k  1k  1 3zuc  , 2k  3k  1 2zqc  , 

3zuc  1zrc  3zrc  3 1zqc  , pc  0.05rc  , and 0.1qc  , all 

in appropriate SI units . We also impose limits on the angles 

of rotation of the control surfaces to be || || 30G d  deg.  

In Fig. 2, the reference and the resulting trajectory of the 

CM of the AUV in the inertial X � Y �Z space are 

displayed. Fig. 3 shows the control force T , and the rotation 

of the control surfaces sG , bG , and rG  needed for tracking. 

Bow and stern control surfaces converge smoothly to their 

steady state values after 5  s, see Fig. 3(b,d). In Fig. 3(f), the 

rudder reaches the limit of rotation before it converges. The 

errors in linear velocities are depicted in Fig. 4(a, b, c, d, e, 

and f). After a short period of time they converge smoothly 
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to a very small neighborhood of zero. The error eu , as is 

directly controlled, converges faster, in about 10  s, while 

the errors eX  and ew  need 20  s. In Fig. 5(a, b, c, d, e, and 

f), the tracking errors in the angular velocities are shown. 

They smoothly converge to zero after 20  s. In Fig. 6(a, b, c, 

d, e, and f), we can see that the inertial position errors 

converge in about 15  s, in a small neighborhood of zero, of 

the order of 5  mm, and slowly oscillate within. Finally, in 

Fig. 7(a, b, c, d, e, and f), we see the errors of the Euler 

angles to converge smoothly to their steady state value of 

the order of 0.3  deg, in about 15  s. 
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Fig. 2.  The actual and the reference 3D space path. 
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Fig. 3.  (a) Stern control surface and, (c) Bow control surface deflections. 

(e) Rudder deflection. (g) Control force. (b), (d), (f), (h) First 20 s. 
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Fig. 4.  (a), (c), (e) Linear velocities tracking errors. (b), (d), (f) First 20 s. 

0 100 200 300 400 500

-0.01

0

0.01

t, [s]

p
  
, 
[r

ad
/s

]

0 5 10 15 20

-0.01

0

0.01

t, [s]

p
  
, 
[r

ad
/s

]

0 100 200 300 400 500
-0.02

0

0.02

t, [s]

q
  
, 
[r

ad
/s

]

0 5 10 15 20
-0.02

0

0.02

t, [s]

q
  
, 
[r

ad
/s

]

0 100 200 300 400 500
-0.1

0

0.1

t, [s]

r 
 ,
 [

ra
d
/s

]

0 5 10 15 20
-0.1

0

0.1

t, [s]

r 
 ,
 [

ra
d
/s

]

e e

e e

e e

��� ���

��� ���

��� �	�

 

Fig. 5.  (a), (c), (e) Angular velocities tracking errors. (b), (d), (f) First 20 s. 
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Fig. 6.  (a), (c), (e) Inertial positions tracking errors. (b), (d), (f) First 20 s. 
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Fig. 7.  (a), (c), (e) Euler angles tracking errors. (b), (d), (f) First 20 s. 

V. CONCLUSIONS 

In this paper, we presented a novel closed-loop tracking 

controller for an underactuated AUV, in 3D space, having 

only 3 control inputs. We adopted backstepping as our 

design methodology, as it offers flexibility and robustness in 

parametric uncertainties, which is inherent in Lyapunov 

techniques. To the best of the authors’ knowledge, this is a 

first work in the control literature where successful tracking 

results are presented in position, orientation and linear and 

angular velocities, i.e., in full 6 DOF. Moreover, these 

results were obtained with significant hydrodynamic 

parameters’ errors of 10%, in the structure of the controller 

which is the case in such environments.  

For future work, we intend to present results of the 

application of the developed tracking controller in the case 

of trajectories with time-varying velocities. We currently 

study the derivation of an analytical expression between the 

gains and the initial tracking errors as well as between the 

gains and the maximum errors of the unactuated variables. 

Finally, to avoid Euler angle representational singularities, 

the representation of kinematics by means of quaternions 

will be considered. 
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