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Three Dimensional Trajectory Control of Underactuated AUV

Filoktimon Repoulias and Evangelos Papadopoulos

Abstract— This paper considers the design of a novel closed-
loop trajectory tracking controller for an underactuated AUV
having 6 degrees of freedom (DOF) and 3 controls, namely a
thruster, a rudder and moving surfaces to control the forward,
yaw and pitch motions respectively. A backstepping
methodology is adopted as a design tool since it is suitable for
the cascaded nature of the vehicle dynamics. It also offers
flexibility and robustness against parametric uncertainties
which are often encountered in hydrodynamic modeling.
Indeed, in our simulations we assume a 10% error in
hydrodynamic parameters and yet the controller performs the
task of position, orientation and linear and angular velocity
tracking successfully.

Index Terms— Trajectory Tracking Control, Underactuated
AUV.

I. INTRODUCTION

UTONOMOUS Underwater Vehicles (AUVs), such as

the one shown in Fig. 1, have been playing a major role
in exploration and exploitation of resources located in deep
oceanic environments. They are employed in risky missions
such as oceanic observations, bathymetric surveys, ocean
floor analysis, military applications, etc., [1]. Apart from
their numerous practical applications, these vehicles present
a challenging control problem since most of them are
underactuated, i.e., they have fewer inputs than DOF. Such
control configurations impose non-integrable acceleration
constraints. Furthermore, AUVs’ kinematic and dynamic
models are highly non-linear and coupled making control
design a difficult task, [2]. Underactuation rules out the use
of customary control schemes e.g. full state-feedback
linearization, [3], and the strong hydrodynamic effects
exclude designs based solely on the kinematic model. When
moving on a horizontal plane, AUVs present similar
dynamic behavior to underactuated surface vessels, [2].

The stabilization problem, i.e. regulation to a point for
surface vessels and AUVs has been studied in [4]-[6]. It is
shown that such vehicles cannot be asymptotically stabilized
by continuous time-invariant feedback control laws.

During many missions, AUVs undertake the task of
tracking an inertial trajectory (a space curve with a specified
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variables.

The AUV with the body-fixed frame, the controls and motion

timing law). This requires the design of control laws that
guide and keep the vehicle on the trajectory regardless of
external disturbances, modeling errors etc.

Tracking controller designs for underactuated marine
vehicles currently in use follow classical approaches such as
local linearization and decoupling of the multivariable
model aiming at steering as many degrees of freedom as the
available control inputs. This is done using linearization
about trimming trajectories (trajectories with constant
velocities) that lead to time invariant linear systems followed
by such techniques as gain scheduling, [7]. In the same
work, the authors design a parameterized family of linear
controllers about trimming trajectories. They require
accurate knowledge of the hydrodynamic model, while
stability results at the switching points between different
controllers and tracking performance of the velocity errors
are not provided. The validity of these solutions is limited in
a small neighborhood around the selected operating points.
Stability and performance also suffer significantly when the
vehicle executes maneuvers that amplify the action of its
complex hydrodynamics and nonlinear coupling terms.

Theoretical and experimental results on trajectory
tracking for underactuated marine vehicles show that
nonlinear Lyapunov-based techniques can overcome most of
the limitations mentioned above. The authors in [8], present
experimental tracking results for a model ship using
Lyapunov-based controllers. In [9], two tracking solutions
for a surface vessel were proposed, based on Lyapunov’s
direct method and passivity approach. However, in the last
three works, the yaw velocity was required to be nonzero.
Under this restriction, straight lines cannot be tracked. In
[10], the error dynamics is transformed into a skew-
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authors in [11] have designed a controller for vehicles
moving in two or three dimensions that exponentially forces
the position tracking error to a small neighborhood of the
origin. However, the attitude of the vehicle is left
uncontrolled, which may lead to trajectory tracking but with
a wrong heading. In addition, the stability of the velocities
was not investigated. In [12], the combined problem of
trajectory planning and tracking control for an underactuated
AUV moving on the horizontal plane was studied. The
controller design was based on backstepping techniques and
the position and orientation errors as well as linear and
angular velocity errors asymptotically converged to zero.
This is the first work in the control literature in which
trajectory planning, based on the dynamic model, for
underactuated marine vehicles was presented. In [13], the
same planning and tracking control methodology was
applied in the case of a nontrimming trajectory with time-
varying velocities — a sinusoidal path — where also
parametric inaccuracies were considered. The results of
trajectory planning were extended in [14] for underactuated
AUVs moving in 3D, also a new result. The importance of
trajectory planning lies in the consistency of the generated
desired variables — position, orientation and linear and
angular velocities — with vehicle dynamics. Incorporating
these variables in a closed-loop tracking controller alleviates
its efforts and leaves for the latter the task of error
convergence and compensation of parametric inaccuracies
only.

In this paper, we present a novel closed-loop tracking
controller for an underactuated AUV moving in 3D space
and having 3 controls, namely a thruster to control surge
motion, and a rudder and lateral moving surfaces to control
yaw and pitch motion respectively. We adopt the
backstepping design methodology, as this suits the cascaded
nature of the vehicle dynamics, and gains from the inherent
robustness of Lyapunov techniques. To demonstrate the
efficiency of this controller we present simulations in which
we assume errors in the hydrodynamic parameters of the
order of 10%. The results show that the controller is
successful in all cases.

II. Auv KINEMATICS AND DYNAMICS

A. Kinematics

In this section, the kinematic and dynamic equations of
motion for an AUV moving in a 3D space are presented.

To describe the kinematics, two reference frames are
employed, the inertial reference frame {/} and a body-fixed

frame {B}, see Fig. 1. As shown, the origin of the {B}

frame coincides with the AUV center of mass (CM) while
the center of buoyancy (CB) is on the negative z body axis
for static stability. Using the standard notation of ocean
engineering, the general motion of an AUV in 6 DOF can be
described by the following vectors:
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n=n;, 1 n=lxy.z" n,=¢.0p]; )
v=lv . viTs vi=lw,o,w]’s v, =[p.q.r]';

In (1), m, denotes the inertial position of the CM and 7,
the orientation of {B} with respect to (wrt) the {/} frame in
terms of Euler angles. Vector v, denotes the linear velocity
of the CM and v, the angular velocity of {B} wrt the {/}
frame, both expressed in the body-fixed {B} frame.

In guidance and control applications, for the
representation of rotations, it is customary to use the xyz
(roll-pitch-yaw) convention defined in terms of Euler angles,
adopted in the present work, or quaternions. In this work, we
use the first approach. Hence, the velocity transformation
between the {B} and the {/} frames is expressed as

n,=J,(n,)v, (2)
where
cycld —sych+cysOsg  sys+cycdst

J ()= swcl cycp+sgsOsy  —cysg+sOsycd| (3)
—s6 cOs¢ clcg

The body-fixed angular velocitiy, and the time rate of the
Euler angles are related through

n,=J,(n,)v, “)
where
1 s¢t@  cgto
Lm)={0 cp s )
0 s¢/cO cp/cl

where s-=sin(), ¢-=cos(), ¢ =tan(-).

B. Dynamics
The dynamic model of the AUV presented in [2] is
employed here. It is a simplified model developed for
control design tasks, and captures the main dynamical
characteristics of a flat-fish shaped AUV moving in 3D
space, see Fig. 1. The vehicle is underactuated, i.c., it has
less control inputs than the number of DOF. Specifically, in
the following equations of motion, the three controls are
surge propulsion 7, rudder angle 8, for yaw rotation, and

stern and bow plane angles 6, = -0, for pitch rotation. The
equations of motion are,

(m—rX =X, —mwq+(rX, +muor

(6a)

+r2XWu2 + erWU2 +T
(m—nY)o=(nY, —mur+nY,, +m)wp+nYuo (6b)
(m—;ng)w:(ngq +m)uq+(ngvp —-m)Op+rZ uw (6¢)
(I, —rnK,)p=nrK, qr+rK, up+z.,c05¢B (6d)
(I, -rM;)g=rM, +1.-1)pr+nM, ug+r,M, uw 60)

+r3u2 (M, 0, +2M ,5,)+z.550B
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(I, =rsN,)F = (5N, + 1, =1 ) pq +1,N uv 66
+1,N ur +1r,u’N,S.

A brief explanation of the various terms and the values of

the main ones in (6) follows: m=5454.54kg is the

vehicle’s mass, and 7 =2038 Nms®, / =13587 Nms’,

and 1. =13587 Nms’ are the moments of inertia about the
body x,, »,, and z,, axes respectively. The term B is the
buoyancy force acting on the CB. The term z., is the
z — coordinate of the CB.,

r=(p/2)L i=1,..,5 (7)
where p is the water density and L =53 m the AUVs
length. X, Y,, Z, are added mass terms and K,, M, , N,
Y.,Y,, Z,,

ro fwpo

are added moments of inertia terms. X, X

wq 2 vr 2

Z,,K,, M, and N_ are added mass cross terms. X,
va’ Y; > Zw’ Kp’ Muq > Muw’ Mds > Mdb’ Nv’ Nr’ and
N, are drag and body lift, force and moment terms.

Detailed description and the values of the model parameters
can be found in [2]. The lack of control actuation in sway v,
heave w, and roll p motions renders the system

underactuated.

III. TRAJECTORY TRACKING CONTROL DESIGN

In this section, the trajectory tracking control design is
presented. We assume bounded reference velocities and
nonzero surge velocity.

A. Reference Variables

The reference 6 DOF trajectory to be tracked by the AUV is
generated by a trajectory planning algorithm developed in
[14]. In this subsection, we briefly describe this planning
methodology.

Let a smooth 3D trajectory to be followed by the CM of
the AUV be given by its inertial coordinates x,, y,, and

z,. From now on, the subscript “R” denotes a reference

(desired) variable. Associating the Frenet frame to every
point of the curve, we can also derive the “orientation” of
the trajectory. This orientation is not the reference one since
the body-fixed frame, as the CM tracks the reference path,
undergoes a further rotation wrt the Frenet frame due to the
dynamics. This rotation is described by the angles of attack
and sideslip which are functions of the body-fixed linear
velocities. Hence, we also derive the reference Euler angles
¢, 0, and v, . The reference angular velocities p,, g,,

and r, are then obtained by differentiation and the fact that

the angular velocity of the body frame wrt the inertial frame
is the sum of the angular velocity of the body frame wrt the
Frenet frame and the angular velocity of the Frenet frame
wrt the inertial frame. The linear, body-fixed velocities u,,

1%

., and w, are obtained considering the equality of the
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total AUV velocity and the trajectory velocity, and the
integration of the two unactuated dynamic equations (6b)
and (6c¢).

We conclude that this planning methodology provides the
full, 6 DOF trajectory, consistent with AUV’s dynamics.
Using this feasible trajectory, the design of closed-loop
tracking controllers can be facilitated and result in improved
performance since the controller has only to deal with the
tracking error convergence and compensation of parametric
inaccuracies.

B. Error Dynamics Formulation

Using the states of the vehicle and the reference variables,

the tracking errors are defined as
U, =U—Uy, U, =D—Uy, W, =W—W,,

e e

pe :p_pk$ qe :q_qu 7; :r_r]p

(3)
xH:x_xR’yG:y_yR’ ZL’:Z_ZR’
¢e = ¢_¢R7 He = 6_9[?7 l//e :l//_l//R
From (2) and (4) it is
fllR :Jl(an)VlR (9a)
Nor =J,(Myp ) Vo (9b)
Then, the kinematics tracking errors are written as
M, =, (M) V=, (M) Vi (10a)
My =, M)V, =, (M5 ) Vg (10b)
Substituting in these v,=v, +v,,, V,=V, +V,,, yields
N =J,(,)Vv,, +n, (11a)
Ny =3, (M) v, +1, (11b)
where
B :[Jl (le)—J1 (ﬂzk)]Vm (12a)
w, =[J, ()=, ()], (12b)

are both treated as bounded (for bounded reference
velocities) time-varying disturbances.

Considering the dynamics, assuming u =0 (which is
natural for tracking purposes), and setting

T = _[(}BXWQ - m)wq + (]/’3XW‘ + m)ur +

s ) (13)

nX, u +nX v l+(m-rnX,)r,
8, =[1/ru* (M, =2M I, — 1M, 1) pr - (14)

M, uq—rM, uw—z.,s0B]+(, —r,M )z, ]
8, =W N, =Ny ~L)pg=rNauw o
_r;lNrur] + ([z - rSN[‘ )Tr ]
we obtain the following partially linearized system:

U, =—U, +7, (16a)
O, =[(nY —m)/(m—nY )ur, +¢, (16b)
W, =[(5Z,+m)[(m=nZ,)lug, +¢, (16¢)
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P =K )/, =K ) p, +é, (16d)
4, =—qz +7, (16e)
Fo=—Ty +7, (161)

where 7z,, 7., and 7, are auxiliary controls and the & terms
are given by,

&, = —Up +[(5Y, —m)(u,ry +uyry) +

(Y, +m)(w, +we)(p, + pp) +

nY, (u, +ug )L, +vg)/(m—rY;)

(17a)

&, =Wy +[(1nZ, +m)(u,qy +uupqy )+

(rstp —m)(V, +0 (P, +Pp)+
KZ, (u,+u, ) w,+w,)/(m-nZ,)

(17b)

&, ==Pp+IrK, (g, + 9, + 1) +
r4Kp(upR +pug)+
2e5¢(0, +6,)s(8, + ¢, )Bl/(1, _’%Kp)

(17¢)

C. Error Dynamics Stabilization

In the sequel, we proceed to the design of a control law for
the underactuated system of (11a) and (11b), and (16a)-(16f)
using the backstepping and nonlinear damping methodology

Before proceeding to the design steps, we make a few
observations: Firstly, considering (16), we note that the
directly controlled variables are the velocities u,, ¢,, and

r,,using 7,, 7,, and 7, respectively. Secondly, in order to

control the positioning (lla) and orientation (11b)
subsystems we shall use in a first step, as virtual controls,
the velocities u,, v,, w,, and p,, g,, r,, respectively. But

e’

v, w

e e’

and p,, are not directly controlled; yet, we can
exploit the coupling terms (Y, —m)ur, (nZ,+muq, and
K ,up in the dynamic equations, and the nonzero surge

velocity assumption to control these variables.
Step 1. Considering the subsystem (11b), we take as

virtual controls the vector v,,=[p,.q,,%,]" and for now we
ignore the term p,. Then, the first part of the desired

expressions for the virtual controls is chosen as
(18)
where K, =diag(k,,k,,k,) and K,=Zdiag(k,,k, k,) are

positive definite gain matrices. The inversion of J, results

_1 A T
V2€,des :_JZ (KZ +K3 )n2€ :av2 :[ap b aql b arl]

in the singular point € =2z /2 ; this is not a problem if the
vehicle is not going to operate near this point. The
component «, is the desired value for the velocity p,, but
since this is not a real control, we introduce the error
variable z, = p, —«a, . Then, from (16d) it is
Z’p :[(r4Kp)/(Ix_’%Kp)]uepe—i_gp (193)

where
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&,=¢,-0a, (19b)

to be treated in a later step. Also, the variables &, and «,,

are the parts of ¢, ,, and r,

e,des

respectively used to control
the rotational kinematics. Selecting u, as a virtual control in
(192), and since the term [(r,K,)/(I, —r;K,)] is negative,
our choice is

U, g = tanh(p)c,z, £, (20)
which is the part of u, , that controls z,. In (20), we used

the hyperbolic tangent function because it is smooth and it
compromises the signs as needed. Considering the
subsystem (11a), we take as virtual controls the vector

v, =[u,,v,,w,]" and set
Vle,des =_J1T (K+K1)nle éal =[a (21)
where K=diag(k,k,k) and K, =diag(k,,k,,k,) are positive

is the

T
u,nl ’au’aw]

definite gain matrices. The component «, ,ﬂéu

e,ndes

part of the velocity u, ,, that controls inertial velocities and
(22)

Returning to (11a), and (19a), and the controls (20) and
(22), we note that the components of the vector

A
uvl :[

au = au,p + au,r]l

a,,a,,a,] arenot true controls. Hence, we introduce

appropriate error variables:

z,=[z,,z,,2,] 2u,-a,0,-a,w -a,] (23)
Then, the controlled subsystem so far is:
0, =J,[a, +z,]+n, (24)
z, =[(nK ), -rK)lp.a, ,+f, (25a)
with
Sy =1 @ 8,) (25b)

This function will be bounded when the complete system
controller is designed at the final step.
The task now is to stabilize the inertial position n,, and

is stabilized

u

the error variables z, and z, . In this step, z
using 7, . Choosing
V=, +z,+2,)/2 (26)
its time derivative becomes
Vi=—ni, (K+K n, +ni, +c, 2, tanh(p, )(x,cycd+
y,cO0sy—z,50)+z [z,chcO+y,(chsy sO—cy sg)+
X, (sgsy +chpcy sO)+z, [z,cO0sp+y, (spsy sO+
cpey)+x,(cy spsO—cpsy))+c,[(n,K,) /1, -
K )tanh(p,)p.z,+2,[(nK ) (I, ~1.K )le, P,
+z,f,+z,[7,—ty—a, +x,cpcO+y,cOsy —
z,50+2,[(r,K,) (I, —1:K,)]p,]

@n

Using Young’s inequality [3], nonlinear damping [15], and
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setting
T, =, —C. 2, —C. 70 +0, —X,cycO—y,cOsy 28)
+2,80-2 [(nK,)/(I,-1K)]p,]
and after some algebraic manipulations, (27) becomes
Vsl (K=Aym, +Iw |/ 4k 17+
¢, [(nK ) (I, 1K )tanh(p,) p,z, + (292)

[(z2+22)/ 4A]-[c,,,—(1/ 4A)]z} —c. 520

zul
where AZ=diag(1,A,A) is a positive definite gain matrix,
k>4, with

c,,>1/44 . Also, y, is a smooth function with undefined

and ¢ c are positive constants

zul > zu3

sign yet:
7/1:7/](Zp9'xy’ye’ze’azt,n]’pe) (29b)

Step 2. We now consider the stabilization of the
subsystems that are controlled by the assumed virtual
controls r, and ¢, , i.e., the rotational kinematics and the

errors z, and z, the dynamics of which are written as

2, =[(5Y, ~m) =1, ur, +¢, -, (30)
z,=[(hZ,+m)(m—1,Z ) ug,+¢&,—a, (31)

Here, we choose
Qosies ==C, (B Z, +m) (m=1,Z luz, 2, (32)
Fowtes =€, [(5Y, =m) (m=1Y Yuz, 2, (33)

where ¢, and ¢, are positive constants. Then, taking into
account (18) it is

ar :arl +ar2 (34)
a,=a,+a, (35)
So far, the controlled subsystem of the rotational kinematics

and the errors z, and z, is transformed as

i, == [(5Y,—m) (m-rY)Pilz,+f,  (36)
z, :—cq[(;ng +m)/(m-rZ, )]zuzzw-i-fw (37)
hze:_(Kz +K3 )n2e+”2 +f,72 (38)
with

fo=1(8,,0,,0,,p,) (39a)
j‘w =fw (gw > dw ’ 9{:‘ > l//e) (39b)
f,=f,(@,z2) (39¢)

In order to stabilize the above subsystem, we choose
V=M Mo Mo, +2, 42,42, +2,) /2 (40)

Taking into account (29a), and using nonlinear damping, its
time derivative becomes
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Vy <, (K= A)m,, —p Komy, +{], | /4%,

+c,[(nK,) (I,~rK)]tanh(p,)p,z, (41a)
s [/ 4k 17, e =1/ 42010 =, 2
where
7=V (1o s o 82) (41b)

and will be discussed later.
Step 3. The variables p,, ¢, and r, are not true controls.

Thus, we introduce the errors z,£p —a,, z,2¢9,~a, and
z,2r,—a, in (36)-(38) yielding:

2, ==, [(RY, ~m) (=1, )Fu’z,

H(Y, —m) (m=rY)]uz, + 1, )
z =—c [(nZ +m)/(m—1.Z T u’z.
Tz
M =—(K, +K ), +J,[z,.2,,2, 1 +p,+f,,  (44)
We choose
Vy=( My A Mo My + 2, + 2, 42y + 2042, +20) /2 (49)
and taking its time derivative we have
V< (K=Apm, i, Ko, +w /4%,
+c,[(n,K,) (I, —1;K )]tanh(p,) p,z,
ol /451 -en, =1/ 40z~
¢, [(RY, —m) (m—r,Y, P’z
-, [(nZ,+m) (m-rZ ) u’z. (46)

+z [z, —Fy—a, H(n,Y. —m) /(m—nY,)]uz,
+y,(cd/ c0)—0, 59+ chtd]
+z,[7,—qr—a,+(nZ, +m) (m—rZ )uz,
+0,céd+y, (s / cO)+¢,sdtd)+y,
where y, is a smooth function of the states. We now set the
controls 7, and 7, as follows:
7, =4y +a,—(nZ,+m)/[(m-rZ )luz, —6,cd
Y. (s¢/cO)-4.5t01-c.,z, .,
z—r :I}R +dr _[(FSYI _m) /(m_rSYU )]uzu
~w,(ch/ cO)+0,sp—@ chtO—c,,z, —c. .z

Cc

(47

(48)

where ¢ c,,, c,, are positive constants. Then, (46)

zql > “zq3

becomes
V<, (K=Am, ) Kom,, +7;+w, [ /4k]
|/ 4k, J+e, 10K, (I, 1K )] tanh(p, ) p, 2
_czq3Z:; —[c. _(1/41)]25 _czu3zj _czrlzf _szj
—c[(1nY,—m) ((m=rY,) u’z,

-, [(nZ,+m) (m-rZ ) u’z. —cquzj

(49)
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Before proceeding, we make the following assumptions
concerning positive terms like ||p,||, and terms with

undefined sign, like the terms contained in y, .

Assumptions: 1) Each of the time-varying terms (that stem
from the reference trajectory variables) has a constant upper
bound (for example 0<||r,||<7; ... ). This can be set during

trajectory planning.
2) The uncontrolled velocity errors have upper bounds,
o [I<v, W [[<We i » a0 | P [I< P, oy » Where

e,max 2 e, e,max ?

w and p,, .. are positive constants. We can think of

these bounds as the maximum admissible operating limits
(“flight envelope”) beyond which a guidance law is needed.
3) The surge velocity has lower and upper bounds,

||u||<u where u_,_ is a positive constant, and u#0 as

already has been stated.

After tedious but straightforward algebraic manipulations
of the various terms in (49), and taking into account the
above assumptions, we end up with the following form of

the derivative of V;:

V.; S_‘nlrel-[lnle _'];Hﬂbe _cl (pé’ )212’

2 2 2 2 2
—c,z, —¢;,(u)z, —c, (u)z, —c;z, —CeZ, *C,

(50)

where T, =diag(n,,7,,7,) and T,=diag(rx,,n,,7,) are
positive definite gain matrices. The gain ¢ (p,) is positive
as long as p,#0. The gains c,(u#) and c,(u) are positive
when ##0, and ¢,, ¢, and ¢, are positive constants. Also,
¢, is a positive constant, which can be made very small
using an appropriate combination of the values of the
various gains. Now, if we define

L T RN R (51)
(45) can be written as,
2V, =|e| (52)
Taking £=min{r,,7,,c,c,,c;5,¢,,C5,¢ ), then
V,<=2&V, +c, (53)

which, by employing the Comparison Lemma [3], yields

Vi (O)<V;(0)e ™ +(c, /28) (54)
for ¢€[0,¢,,,) - Doing the algebra, we conclude that
lz@)||z) e * +\fc, /&, tel0,t,,,) (55)

Eq. (55) means that the states of the error dynamics remain
in a bounded set around zero, which can be reduced using an
appropriate combination of the controller gains. At this
result we arrived using (13), (14), and (15), along with (28),
(47), and (48).

IV. SIMULATION RESULTS

A large number of simulation results showed that the above
designed controls perform very well in terms of quick
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convergence of the tracking errors to zero, smooth transient
response, low control effort, and robustness, even in the case
of large modeling inaccuracies. To illustrate the performance
of the designed trajectory tracking controller, typical
simulations are presented.

The reference 6 DOF trajectory is described by the
following equations: the reference inertial position for the
CM of the vehicle is given by the helix,

X, =70c0s(0.02¢) m (56a)
Yz =70sin(0.02¢) m (56b)
z,=0.3¢t m (56¢)

Then, following the methodology developed in [14], we
compute the reference orientation given by the Euler angles

¢, =—6.71x10" rad (56d)
6, =—0.211 rad (56e)
,=0.02¢ rad (56f)
and linear and angular body-fixed velocities
u,=1.431 m/s (562)
U, =—0.0448 nvs (56h)
W, =0.436x10" m/s (561)
pr=4.19x10" rad/s (56))
4, =—0.131x10" rad/s (56k)
1, =0.0196 rad/s (561)

The initial errors for the simulations are set as ||x,||=0.3
m, [y [=0.3 m, [|z[=0.2 m, [|4|I=[6,]I= ||y, =2 deg,
llu,|=0.1 m/s, |, [=0.01 m/s, [w,|=10" mys,
Il p.|I= llg.]1= ll7,[=0 rad/s.

and

The dynamic model used is that of (6). However, in order
to investigate the robustness of the controller we introduced
errors of the order of 10% in all of the hydrodynamic
parameters used in the control law.

The following simulations were obtained with controller
gains chosen as: k=k=c, =3, k=k=c,=2,

Coy = Coy=Cpy=0C,n=1,¢,=¢,=005,and ¢, =0.1, all

3 T
in appropriate SI units . We also impose limits on the angles
of rotation of the control surfaces to be || J||< 30 deg.

In Fig. 2, the reference and the resulting trajectory of the
CM of the AUV in the inertial X — Y —-Z space are
displayed. Fig. 3 shows the control force 7, and the rotation
of the control surfaces J,, o,, and 6, needed for tracking.

Bow and stern control surfaces converge smoothly to their
steady state values after 5 s, see Fig. 3(b,d). In Fig. 3(f), the
rudder reaches the limit of rotation before it converges. The
errors in linear velocities are depicted in Fig. 4(a, b, c, d, e,
and f). After a short period of time they converge smoothly
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to a very small neighborhood of zero. The error u

directly controlled, converges faster, in about 10 s, while
the errors v, and w, need 20 s. In Fig. 5(a, b, c, d, e, and
f), the tracking errors in the angular velocities are shown.
They smoothly converge to zero after 20 s. In Fig. 6(a, b, c,
d, e, and f), we can see that the inertial position errors
converge in about 15 s, in a small neighborhood of zero, of
the order of 5 mm, and slowly oscillate within. Finally, in
Fig. 7(a, b, ¢, d, e, and f), we see the errors of the Euler
angles to converge smoothly to their steady state value of

the order of 0.3 deg, in about 15 s.

y, [m] -100 100 X, [m]

Fig. 2. The actual and the reference 3D space path.
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(e) Rudder deflection. (g) Control force. (b), (d), (f), (h) First 20 s.
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Fig. 5. (a), (¢), (e) Angular velocities tracking errors. (b), (d), (f) First 20 s.
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V. CONCLUSIONS

In this paper, we presented a novel closed-loop tracking
controller for an underactuated AUV, in 3D space, having
only 3 control inputs. We adopted backstepping as our
design methodology, as it offers flexibility and robustness in
parametric uncertainties, which is inherent in Lyapunov
techniques. To the best of the authors’ knowledge, this is a
first work in the control literature where successful tracking
results are presented in position, orientation and linear and
angular velocities, i.e., in full 6 DOF. Moreover, these
results were obtained with significant hydrodynamic
parameters’ errors of 10%, in the structure of the controller
which is the case in such environments.

For future work, we intend to present results of the
application of the developed tracking controller in the case
of trajectories with time-varying velocities. We currently
study the derivation of an analytical expression between the
gains and the initial tracking errors as well as between the
gains and the maximum errors of the unactuated variables.
Finally, to avoid Euler angle representational singularities,
the representation of kinematics by means of quaternions
will be considered.
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