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Abstract: This paper considers the problem of spatial planning and open-loop control for
underactuated AUVs. Given a smooth inertial 3D trajectory to be followed by some
vehicle point, the developed algorithm uses the vehicle dynamic model, and computes the
3D corresponding body-fixed linear and angular velocities as well as vehicle orientations,
yielding a feasible 6 DOF trajectory. Tracking controllers are then facilitated by utilizing
this trajectory which is consistent with AUV dynamics. The full 6 DOF computed
trajectory is further used to compute the efforts for the three available control inputs and
to result in an open-loop trajectory controller. Copyright © 2006 IFAC
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1. INTRODUCTION!

In a great number of typical missions, Autonomous
Underwater Vehicles (AUVs), see Fig. 1, are
employed in tracking an inertial reference trajectory
in 3D environments. Such missions include
oceanographic observations, bathymetric surveys,
ocean floor analysis, military applications, etc., (Yuh,
2000). Besides their numerous practical applications,
these vehicles present a challenging control problem
since most of them are underactuated, i.e., they have
fewer inputs than degrees of freedom (DOF). Such a
control  configurations impose  nonintegrable
acceleration constraints. In  addition, AUVS’
kinematic and dynamic models are highly nonlinear
and coupled, making control design a hard task.
Underactuation rules out the use of trivial control
schemes e.g. full state-feedback linearization, and the
complex hydrodynamics excludes designs based on
kinematic models only.

Trajectory tracking requires the design of control
laws that guide the vehicle to track an inertial
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Fig. 1. The AUV with the controls and motion
variables.

trajectory, i.e., a 3D path on which a time law is
specified. The performance of trajectory tracking
controllers is greatly improved when trajectory
planning has been designed previously.

The goal of trajectory planning is to generate the
reference inputs to the motion control system which
ensures that the vehicle executes the planned
trajectory. While several researchers have considered



the tracking control problem of an AUV (or generally
a marine vehicle) in 2D, see (Pettersen and Nijmeijer,
2001; Behal et. al., 2002) and few the tracking
control problem in 3D, for example (Encarnacao and
Pascoal, 2000; Aguiar and Hespanha), to the best of
the authors’ knowledge, there is no known work that
studied the trajectory planning for an underactuated
AUV in 3D. A first result on this subject was
presented in our previous work (Repoulias and
Papadopoulos, 2005) where we studied the combined
problem of trajectory planning and tracking control
for an underactuated AUV moving on a horizontal
plane. In that work, a trajectory tracking controller is
designed in two steps: first, the trajectory planning
algorithm computes the reference — consistent with
vehicle dynamics — variables, and second, a closed-
loop backstepping controller, utilizing these
reference variables and the open-loop actuation
efforts achieves asymptotic tracking.

In this paper, we present a trajectory planning
algorithm and an open-loop feed-forward controller
for underactuated AUVs moving in space. Given a
smooth 3D trajectory in inertial coordinates, the
developed algorithm uses the vehicle dynamic model,
and computes 3D body-fixed linear and angular
velocities as well as vehicle orientation, i.e., yielding
a feasible 6 DOF trajectory. Tracking controllers are
then facilitated by utilizing this trajectory which is
consistent with AUV dynamics, resulting in
improved performance. Exploiting the benefits
mentioned, we use the three available control inputs
to design an open-loop tracking controller. Finally,
an application of the algorithm is presented along
with simulation results.

2. AUV KINEMATICS AND DYNAMICS

In this section, the kinematic and dynamic equations
of motion for an AUV moving in a 3D space are
presented.

To describe the kinematics, two reference frames are
employed, the inertial reference frame {I} and a

body-fixed frame {B}, see Fig. 1. As shown, the
origin of {B} frame coincides with the AUV center

of mass (CM) while the center of buoyancy (CB) is
on the negative z body axis for static stability. Using
the standard notation of ocean engineering, the
general motion of an AUV in 6 DOF can be
described by the following vectors:

n=[; . ;1 w=[xy. 2" n,=[4.0.v];
v=[v],v;T'; v,=[u,ow]"; v,=[p,qr];

In (1), n, denotes the inertial position of the CM and
1, the orientation of {B} — in terms of Euler angles
— with respect to the {1} frame. Vector v, denotes
the linear velocity of the CM and v, the angular

velocity of {B} with respect to {I} frame, both
expressed in the body-fixed {B} frame.

In guidance and control applications, for the
representation of rotations, it is customary to use the
xyz (roll-pitch-yaw) convention defined in terms of

Euler angles adopted in the present work or
quaternions. Hence, the wvelocity transformation
between {B} and {I} frames is expressed as

n=J,(n,)v, 2
where
Cwcl —SyCop+CysOsg Sy S@+CyCphpsd

J.(m,)=| swch cycp+sgsdsy —cysg+sdsycd | (3)
—s6 cls¢ clco

The body-fixed angular velocities and the time rate
of the Euler angles are related through

1.lz :Jz("z)vz (4)
where
1 sgtd  cgto
J,(n,)=|0 c¢ —S¢ ®)

0 s¢g/cOd colco

where s-=sin(:), c-=cos(), t-=tan().

The dynamic model of the AUV used for the
illustration of the method is taken from (Encarnacao
and Pascoal, 2000; Fossen, 1994). It is a simplified
model developed for control design tasks, which
captures the main dynamical characteristics of a flat-
fish shaped AUV moving in 3D space, see Fig. 1.
The vehicle is underactuated, i.e., it has less control
inputs than the number of DOF. Specifically, in the
following equations of motion, the three controls are
T for surge propulsion, rudder angle &, for yaw
rotation and stern and bow plane angles &, =—¢, for

pitch rotation.
(m-r,X,)u =(r3XWq —m)wqg + (X, + mjor (63)
a
+LX UP+ X 07 +T
(M=1rY,)o = (rY, —mur +(r,Y,, + m)wp + r,Y,uv (6b)
(Mm-r,Z, )W=(Z,+m)ug+(r,Z,—mpop+r,Z,uw (6c)

(I, —K,) p =K, ar+r,K,up +z,cOs¢B (6d)
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A brief explanation of the various terms in (6)
follows: m is the vehicle’s massand 1, I, I, are

y!' 'z
the moments of inertia about the body x, vy, and z,
axes respectively. B is the buoyancy force acting on
the CB. 1z, is the z-coordinate of the CB.
r=(p/2)L, i=1..,5, where p is the water
density and L the AUV’s length. X,, Y,, Z, are
added mass and K,, M, N, are added moments of
Yoo Yoo Zgv Zpo Kgp
M, , and N, are added mass cross terms. X, ,
Xos Yoo Zys Koy My, My, My, My, N, N,
and N, are drag and body lift, force and moment

terms. Detailed description of the model parameters
can be found in (Fossen, 1994). The lack of control
actuation in sway v, heave w, and roll p motions

renders the system underactuated.

inertia terms. X X
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3. TRAJECTORY PLANNING

In this section, we describe the trajectory planning
methodology, i.e., the algorithm that maps an inertial
trajectory of the 3D space to body-fixed velocities
and orientation. The only restriction on the inertial
trajectory is that it must be sufficiently “smooth”,
i.e., three times differentiable with respect to time.

3.1 Inertial trajectory geometry

We choose the CM of the vehicle as the point of
interest. Let us assume that the trajectory which must
be tracked by this point is given as a time function of
the inertial variables x,, Vi, Z; and their time
derivatives up to the third order. The subscript “R”
indicates a reference variable. The position and the
magnitude of the velocity vector of a point P on the
trajectory are given by

Sp :[XR7yR’ZR]T (7)
Vo v, IHI$e lI= 56 + Vi + 22 8

Of great importance in the derivation is the concept
of an orientation frame associated with the curve
corresponding to the desired trajectory. To every
point of the above curve, we can associate an
orthonormal triad of vectors, i.e., a set of unit vectors
that are mutually orthogonal, namely, the tangent e,,

the normal e,, and the binormal e, , see Fig. 2.

Properly arranging these vectors in a 3x3 matrix,
we obtain a description of the curve orientation,
(Angeles, 1997). The corresponding reference frame
is the Frenet-Serret one. The unit vectors are then
defined as

e =8, /V, (9a)

€, = (SP Xgp)/”sp X§P ” (gb)

trajectory

Fig. 2. The inertial, the Frenet-Serret and the body
frame during tracking.

e, =6, xe, = (5, x8,) x5, /1|8, x5, 135, | (9¢)

According to the notation of rotational
transformations used in robotics literature (Sciavicco
and Siciliano, 1996), we can express the coordinates
of a vector given in the Frenet-Serret frame {F} to

the {I} frame with the matrix
R; =[e, e, e] (10)

Also, we shall use the fact that
R = (R)' (11)
In (aero)nautical applications it is more convenient to
express the various velocities in the current — body —

frame, (Baruh, 1999). Thus, the angular velocity of
the {F} frame with respect to the {I} frame

expressed in {F} frame is given by
QF =R[R; (12a)

where QF is a skew-symmetric matrix containing
the components of the angular velocity vector, and
defined as follows:

0 -of of
QF =| of 0 -of (12b)
-of o 0

From (12b), we collect the components in a vector:

o] =[af 0] ,0;]" =f . (traj., variables) (13)

where “f . (traj., variables) ” means a vector function

of the first, second, and third derivatives of the
trajectory variables X, Vg, Zg.

3.2 Vehicle’s dynamics during tracking

Consider next the dynamics of the AUV when its CM
tracks accurately the motion of the point P, and let
Ug, Ug, Ws, Pr, Oz, Iy denote the reference body-



fixed velocities. The magnitude of the total linear
velocity vector of the CM is given by

Ve = Ve [HIUg, U We 7 [l=yJUg +07 + W (14)

As far as the reference orientation [¢,,6,,w,]" of
the body-fixed {B} frame with respect to the inertial
{I} frame is concerned, we have the following: Due
to the strong hydrodynamic effects, the vehicle {B}

frame does not coincide with the Frenet-Serret frame
{F}, but undergoes a further rotation with respect to

the latter, see Fig. 2, to eventually coincide with the
reference — desired — {R} frame that provides the

orientation consistent with the AUV dynamics.
Therefore, when the AUV CM tracks the curve, the
body {B} coincides with the reference frame {R}.

The rotation of {B} frame from {F} frame to {R}

frame can be expressed using customary aeronautical
notation by considering the sideslip angle S and

angle of attack « , (McCormic, 1994):

B=sin" (v, /vp) (15)

a =sin (W, /Ju +w?) (16)

The overall rotation is composed by a rotation about
body-z axis through the angle g, followed by a

rotation about body- y axis through the angle « and
is expressed by the matrix

R{ =R, (@)R, () (17)

where the matrix R} represents the rotation between
the {F} and the reference or desired frame {R}. The
angular velocity of the {R} frame with respect to the
{F} frame, expressed in {R}, is computed by

Qf = RER] (18)
The associated angular velocity vector is as before
of =[of o] 07T =f . (traj., body variables) ~ (19)

where “f . (traj., body variables) ” means a function

of the derivatives of X, Y, and z, up to the second
order as well as of velocities u,, vy, w; and their
first order derivatives.

Finally, the reference orientation between the inertial
{1} frame and the reference {R} frame is given by

Rf =RFR (20)

From (20), we can extract the reference angles using
the following , (Sciavicco and Siciliano, 1996)

@, = atan2(r,,, ry;) (21a)
0, = atan2(—r,, 12 +12) (21b)
W, =atan2(r,,r,) (21c)

where r; denotes the ij element of R .

During tracking, the magnitude of the tangent vector
to the trajectory v, equals the magnitude of the

vehicle’s velocity vector v, . From (8) and (14) it is:

.2 .2 22 2 2 2
Ve = Vg :>\/xR+yR+zR =\/UR+UR+WR (22)

From (22) and (8), the reference sway velocity is

2 .2 .2 2 2 2 2 2
Ug =J_r\/xR + Vi + 2z —Uy — Wy =i\/vp—uR—WR (23)

where “£” indicates that v, may be positive or

negative depending on the trajectory curvature.
Differentiating (23) with respect to time yields,

DR = i(VPVF’ _URUR _WRWR)/m (24)

where v, is given by a simple differentiation of (8).
In this way, we have also expressed v, and v, by
the trajectory variables and by u,, Uy, Wy, W;.

Now, the reference angular velocities are obtained by
the succession of the angular velocity of the {F}

frame with respect to the {I} frame and the angular
velocity of the reference orientation frame {R} with
respect to {F}, all expressed in {R}:

0)|R:0)E+RE‘”:: :[pR’qR’rR]T (25)

Substituting in (25), the quantities from (13), (17)
and (19) and taking into account (23) and (24), we
obtain to express the body-frame reference angular
velocities as functions of the trajectory variables as
well as of the body-fixed variables ug, U, , W, W;.

Considering now the two unactuated dynamical
equations (6b) and (6¢) during tracking, and
substituting in them the expressions (23), (24), and
(25) that give vy, Oy, Pr. U;,and r,, a system of

two coupled nonlinear time-varying differential
equations results:

UR = fu(XRV)'(RYX.R").(.R’yR’yR’yR’.y‘R7
ZR,Z'R,'Z'Ry'Z”R!uRIWR)’ (26)
uR,o :uR(tZO)

We = fw(XR’XR’X'R"X'RYyR!YR’leyR’
2o, 25,25, 25, Ug , W), 27
WR,o :WR (t :O)



Since the time-varying inputs X, Vs, Zg, and their
derivatives are known, numerical integration of (26)
and (27) yields the values of u, and wj as functions
of time.

Having now these functions, we can go back and
compute the rest of the reference variables: v; from

(23), pr. gz and r, from (25), and ¢, 6, and w,

from (21). Therefore, at this step, all feasible
trajectory variables are known.

4. OPEN-LOOP CONTROL AND SIMULATIONS

In this section, we design an open-loop controller in
order for the AUV to track a reference trajectory.
Then, simulation results are presented to illustrate the
way the above planning methodology applies.

4.1 Open-loop tracking control

Once the body-fixed variables, i.e., linear and angular
velocities and Euler angles, required for the AUV to
track the reference trajectory have been computed, it
is straightforward to construct the corresponding
open-loop controls using the dynamic model. Indeed,
from (6a), (6e), and (6f) it is respectively:

To =(M-r, X, )U; — (X, —M)W,q
R 3 R 3N wg rRYR (28a)
_(rSer + m)URrR - l‘2)(uuul§ - rZXWUé

Sq =@AIruZ(M, —2M )OI, =M )de
_(r5Mpr+|z_|x)pRrR_r4MuunqR (28b)
_r3MuquWR _ZCBSQR B]

é‘rR :(1/r3uF22 Ndr)[(lz —rst)r'R
—(r5Nqp +1, - Iy) PrUs — N U U, (28c)
_rANruRrR]

where, for (28b), we have used that 6 =—dg. In

the case of tracking with constant reference velocities
Us, Gg, and f, are zero; else, one must take surge

acceleration from (26), and differentiate g, and r,
from (25). Note that in order for the controls &, and
0., to be valid functions, the surge velocity u, must

be different from zero. This is a natural requirement
since for such kind of actuation to be functional the
vehicle must be in forward motion.

The presented trajectory planning algorithm and the
direct resulted open-loop controller may be
incorporated in a two-step, closed-loop, trajectory-
tracking controller design. Forward feeding the
actuators of an AUV with the above computed open-
loop controls, consistent with vehicle dynamics, one
can design a feedback controller to take care of the
small remaining errors. Such a controller will not
require high gains and, hence, will have an improved
performance. A further advantage of the method is

the ease of checking the possibility that the computed
controls result in actuator saturation; if this is the
case, the designer can replan the trajectory choosing
slower functions of time for the representation of the
inertial curve. Moreover, we observe that this
methodology can be applied to vehicles with similar
dynamic models and actuation, such as unmanned
aeroplanes and helicopters, moving in 3D space.

4.2 Simulation results

In this section, we present an example of trajectory
planning and open-loop controlled motion. The CM
inertial trajectory is a helix given by:

Xg (t) = 60c0s(0.01t) (29a)
yg (t) = 60sin(0.01t) (29b)
Z,(t)=0.1t (29c)

Differentiating (29) three times and following the
above designed trajectory planning procedure,
provides the reference variables which are depicted
in the following diagrams in dotted lines; the actual
variables are given in solid lines. Since there is no
error feedback in the open-loop controls, we must
start the simulation using the reference initial values
for the AUV dynamics in order for the application to
make sense.

In Fig. 3, the planned reference path is depicted. In
Fig. 4, the angles B and « , computed from (15)

and (16) are shown. In Fig. 5, the constant values of
the surge force and the angles of rotation of the
rudder as well as the bow and stern planes computed
from (28) are shown. In Fig. 6, we see the perfect
inertial path following of the reference position for
the CM of the AUV. As far as the reference
orientation concerns, negligible errors are only
present in the roll Euler angle. Such errors are
attributed to numerical errors and to inaccurate
setting the initial values for the simulation. Very
good tracking performance we observe in Fig. 7
where the linear and angular velocities, actual and
reference, are depicted.

100

=
0

y, [m] -100 -100 x, [m]

Fig. 3. The actual and the reference 3D space path.
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Fig. 6. Inertial position variables of the CM and the
Euler angles.
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Fig. 7. Body-fixed linear and angular velocities.

3. CONCLUSIONS

In this paper, we considered the problem of spatial
planning and open-loop control for underactuated
AUVs. Given a smooth inertial 3D trajectory to be
followed by the CM of the vehicle, the developed
algorithm used the vehicle dynamic model, and
computed the 3D corresponding body-fixed linear
and angular velocities as well as vehicle orientations,
yielded a feasible 6 DOF trajectory. Utilizing the
consistent with AUV’s dynamics variables, the
design of tracking controllers is assisted best. The
full 6 DOF computed trajectory is further used to
compute the efforts for the three available control
inputs and to result in an open-loop trajectory
controller.

As a future work, we consider the design of a robust
closed-loop controller in order to counteract
parametric  uncertainties and  environmental
disturbances. Also, in order to avoid rotational
kinematics singularities, representation of kinematics
by means of quaternions will be considered.
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