
ON SPATIAL TRAJECTORY PLANNING & OPEN-LOOP CONTROL  

FOR UNDERACTUATED AUVs 
 
 

Filoktimon Repoulias and Evangelos Papadopoulos 
 
 

Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece 
{firepoul, egpapado}@central.ntua.gr 

 
 
 

 
Abstract: This paper considers the problem of spatial planning and open-loop control for 
underactuated AUVs. Given a smooth inertial 3D trajectory to be followed by some 
vehicle point, the developed algorithm uses the vehicle dynamic model, and computes the 
3D corresponding body-fixed linear and angular velocities as well as vehicle orientations, 
yielding a feasible 6 DOF trajectory. Tracking controllers are then facilitated by utilizing 
this trajectory which is consistent with AUV dynamics. The full 6 DOF computed 
trajectory is further used to compute the efforts for the three available control inputs and 
to result in an open-loop trajectory controller. Copyright © 2006 IFAC 
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1. INTRODUCTION1

 
In a great number of typical missions, Autonomous 
Underwater Vehicles (AUVs), see Fig. 1, are 
employed in tracking an inertial reference trajectory 
in 3D environments. Such missions include 
oceanographic observations, bathymetric surveys, 
ocean floor analysis, military applications, etc., (Yuh, 
2000). Besides their numerous practical applications, 
these vehicles present a challenging control problem 
since most of them are underactuated, i.e., they have 
fewer inputs than degrees of freedom (DOF). Such a 
control configurations impose nonintegrable 
acceleration constraints. In addition, AUVs’ 
kinematic and dynamic models are highly nonlinear 
and coupled, making control design a hard task. 
Underactuation rules out the use of trivial control 
schemes e.g. full state-feedback linearization, and the 
complex hydrodynamics excludes designs based on 
kinematic models only.  
 
Trajectory tracking requires the design of control 
laws that guide the vehicle to track an inertial 
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Fig. 1. The AUV with the controls and motion 
variables.  

 
trajectory, i.e., a 3D path on which a time law is 
specified. The performance of trajectory tracking 
controllers is greatly improved when trajectory 
planning has been designed previously. 
 
The goal of trajectory planning is to generate the 
reference inputs to the motion control system which 
ensures that the vehicle executes the planned 
trajectory. While several researchers have considered 

1 



the tracking control problem of an AUV (or generally 
a marine vehicle) in 2D, see (Pettersen and Nijmeijer, 
2001; Behal et. al., 2002) and few the tracking 
control problem in 3D, for example (Encarnacao and 
Pascoal, 2000; Aguiar and Hespanha), to the best of 
the authors’ knowledge, there is no known work that 
studied the trajectory planning for an underactuated 
AUV in 3D. A first result on this subject was 
presented in our previous work (Repoulias and 
Papadopoulos, 2005) where we studied the combined 
problem of trajectory planning and tracking control 
for an underactuated AUV moving on a horizontal 
plane. In that work, a trajectory tracking controller is 
designed in two steps: first, the trajectory planning 
algorithm computes the reference – consistent with 
vehicle dynamics – variables, and second, a closed-
loop backstepping controller, utilizing these 
reference variables and the open-loop actuation 
efforts achieves asymptotic tracking. 
 
In this paper, we present a trajectory planning 
algorithm and an open-loop feed-forward controller 
for underactuated AUVs moving in space. Given a 
smooth 3D trajectory in inertial coordinates, the 
developed algorithm uses the vehicle dynamic model, 
and computes 3D body-fixed linear and angular 
velocities as well as vehicle orientation, i.e., yielding 
a feasible 6 DOF trajectory. Tracking controllers are 
then facilitated by utilizing this trajectory which is 
consistent with AUV dynamics, resulting in 
improved performance. Exploiting the benefits 
mentioned, we use the three available control inputs 
to design an open-loop tracking controller. Finally, 
an application of the algorithm is presented along 
with simulation results.  
 
 

2. AUV KINEMATICS AND DYNAMICS 
 

In this section, the kinematic and dynamic equations 
of motion for an AUV moving in a 3D space are 
presented.  
 
To describe the kinematics, two reference frames are 
employed, the inertial reference frame { }I  and a 
body-fixed frame { , see Fig. 1. As shown, the 
origin of {  frame coincides with the AUV center 
of mass (CM) while the center of buoyancy (CB) is 
on the negative  body axis for static stability. Using 
the standard notation of ocean engineering, the 
general motion of an AUV in 6 DOF can be 
described by the following vectors:  

}B
}B

z

 

  (1) 1 2 1 2

1 2 1 2

[ , ] ;    [ , , ] ;    [ , , ] ;
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T T T T T

T T T T T
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υ

= = =

= = =

η η η η η

v v v v v
 
In (1),  denotes the inertial position of the CM and 

 the orientation of {  – in terms of Euler angles 
– with respect to the {

1η

2η }B
}I  frame. Vector  denotes 

the linear velocity of the CM and  the angular 

velocity of {  with respect to {

1v

2v

}B }I  frame, both 
expressed in the body-fixed {  frame.  }B
In guidance and control applications, for the 
representation of rotations, it is customary to use the 
xyz  (roll-pitch-yaw) convention defined in terms of 
Euler angles adopted in the present work or 
quaternions. Hence, the velocity transformation 
between {  and {}B }I  frames is expressed as 
 

 1 1 2( ) 1=η J η v  (2) 
 
where 
 

1 2( )
c c s c c s s s s c c s
s c c c s s s c s s s c

s c s c c

ψ θ ψ φ ψ θ φ ψ φ ψ φ θ
ψ θ ψ φ φ θ ψ ψ φ θ ψ φ

θ θ φ θ φ

− + +⎡ ⎤
⎢ ⎥= + − +
⎢ ⎥−⎣ ⎦

J η  (3) 

 
The body-fixed angular velocities and the time rate 
of the Euler angles are related through 

 
 2 2 2( ) 2=η J η v  (4) 

where  
 

 2 2

1
( ) 0

0 / /

s t c t
c s

s c c c

φ θ φ θ
φ φ

φ θ φ θ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

J η  (5) 

 
where sin( )s⋅ = ⋅ , cos( )c⋅ = ⋅ , . tan( )t⋅ = ⋅
 
The dynamic model of the AUV used for the 
illustration of the method is taken from (Encarnacao 
and Pascoal, 2000; Fossen, 1994). It is a simplified 
model developed for control design tasks, which 
captures the main dynamical characteristics of a flat-
fish shaped AUV moving in 3D space, see Fig. 1. 
The vehicle is underactuated, i.e., it has less control 
inputs than the number of DOF. Specifically, in the 
following equations of motion, the three controls are 

 for surge propulsion, rudder angle T rδ  for yaw 
rotation and stern and bow plane angles s bδ δ= −  for 
pitch rotation. 
 

3 3 3

2 2
2 2

( ) ( ) (u wq vr

uu vv

m r X u r X m wq r X m r

r X u r X T

)υ

υ

− = − + +

+ + +
 (6a) 

 

3 3 3 2( ) ( ) ( )v r wp vm r Y r Y m ur r Y m wp r Y uυ υ− = − + + + (6b) 
 

3 3 3 2( ) ( ) ( )w q vp wm r Z w r Z m uq r Z m p r Z uwυ− = + + − +  (6c) 
 

5 5 4( )x p qr p CBI r K p r K qr r K up z c s Bθ φ− = + +  (6d) 
 

5 5 4

2
3 3

( ) ( )

( 2
y q pr z x uq

uw ds s db b

CB

I r M q r M I I pr r M uq

r M uw r u M M
z s B

)δ δ
θ

− = + − +

+ + +
+

 (6e) 

 

5 5 3

2
4 3

( ) ( )z r qp x y v

r dr r

I r N r r N I I pq r N u

r N ur r u N

υ

δ

− = + − +

+ +
 (6f) 
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A brief explanation of the various terms in (6) 
follows:  is the vehicle’s mass and m xI , yI , zI  are 
the moments of inertia about the body ,x   and ,y ,z  
axes respectively.  is the buoyancy force acting on 
the CB.  is the 

B
CBz z − coordinate of the CB. 
, , where ( / 2) i

ir Lρ= 1,...,5i = ρ  is the water 
density and L  the AUV’s length. uX , , vY wZ  are 
added mass and pK , qM ,  are added moments of 
inertia terms. , 

rN

wqX vrX , , , rY wpY qZ , vpZ , , qrK

prM , and  are added mass cross terms. qpN uuX , 

vvX , , vY wZ , pK , uqM , uwM , dsM , dbM , , , 
and  are drag and body lift, force and moment 
terms. Detailed description of the model parameters 
can be found in (Fossen, 1994). The lack of control 
actuation in sway 

vN rN

drN

υ , heave , and roll  motions 
renders the system underactuated.  

w p

 
 

3. TRAJECTORY PLANNING 
 

In this section, we describe the trajectory planning 
methodology, i.e., the algorithm that maps an inertial 
trajectory of the 3D space to body-fixed velocities 
and orientation. The only restriction on the inertial 
trajectory is that it must be sufficiently “smooth”, 
i.e., three times differentiable with respect to time. 
 
 
3.1 Inertial trajectory geometry  
 
We choose the CM of the vehicle as the point of 
interest. Let us assume that the trajectory which must 
be tracked by this point is given as a time function of 
the inertial variables Rx , Ry , Rz  and their time 
derivatives up to the third order. The subscript “R” 
indicates a reference variable. The position and the 
magnitude of the velocity vector of a point P  on the 
trajectory are given by  
 

 [ , , ]T
P R R Rx y z=s  (7) 

 

 2 2 2|| || || ||p p P R Rv x= = = + +v s Ry z

P

|b P P P P= × ×e s s s s

 (8) 
 

Of great importance in the derivation is the concept 
of an orientation frame associated with the curve 
corresponding to the desired trajectory. To every 
point of the above curve, we can associate an 
orthonormal triad of vectors, i.e., a set of unit vectors 
that are mutually orthogonal, namely, the tangent , 
the normal , and the binormal , see Fig. 2. 
Properly arranging these vectors in a 3  matrix, 
we obtain a description of the curve orientation, 
(Angeles, 1997). The corresponding reference frame 
is the Frenet-Serret one. The unit vectors are then 
defined as 

te

ne be
3×

 
  (9a) /t P v=e s

 
 |  (9b) ( ) / ||
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Fig. 2. The inertial, the Frenet-Serret and the body 
frame during tracking. 

 
 ( ) / || |||| ||n b t P P P P P P= × = × × ×e e e s s s s s s  (9c) 

 
According to the notation of rotational 
transformations used in robotics literature (Sciavicco 
and Siciliano, 1996), we can express the coordinates 
of a vector given in the Frenet-Serret frame { }F  to 
the { }I  frame with the matrix 
 

 [I ]F t n b=R e e e  (10) 
 
Also, we shall use the fact that 
 

 ( )F I T
I F=R R  (11) 

 
In (aero)nautical applications it is more convenient to 
express the various velocities in the current – body – 
frame, (Baruh, 1999). Thus, the angular velocity of 
the { }F  frame with respect to the { }I  frame 
expressed in { }F  frame is given by 
 

 F F I
I F=Ω R R  (12a) 

 
where FΩ  is a skew-symmetric matrix containing 
the components of the angular velocity vector, and 
defined as follows: 
 

 
3 2

3

2 1

0
0

0

F F

F F

F F

ω ω

1
Fω ω

ω ω

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

Ω  (12b) 

 
From (12b), we collect the components in a vector: 
 
  (13) 1 2 3[ , , ] (traj., variables)F

F F F F T
I ω

ω ω ω= =ω f
 
where “ ” means a vector function 
of the first, second, and third derivatives of the 
trajectory variables 

(traj., variables)Fω
f

Rx , Ry , Rz . 
 
 
3.2 Vehicle’s dynamics during tracking 
 
Consider next the dynamics of the AUV when its CM 
tracks accurately the motion of the point P , and let 

Ru , Rυ , Rw , Rp , Rq , Rr  denote the reference body-
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fixed velocities. The magnitude of the total linear 
velocity vector of the CM is given by 
 

 2 2 2|| || || [ , , ] ||T
R R R R R R Rv u w uυ υ= = = + +v Rw  (14) 

 
As far as the reference orientation [ ,  of 
the body-fixed {  frame with respect to the inertial 

, ]T
R R Rφ θ ψ

}B
{ }I  frame is concerned, we have the following: Due 
to the strong hydrodynamic effects, the vehicle {  
frame does not coincide with the Frenet-Serret frame 

}B

{ }F , but undergoes a further rotation with respect to 
the latter, see Fig. 2, to eventually coincide with the 
reference – desired – {  frame that provides the 
orientation consistent with the AUV dynamics. 
Therefore, when the AUV CM tracks the curve, the 
body {  coincides with the reference frame { .  

}R

}B }R
 
The rotation of {  frame from {}B }F  frame to {  
frame can be expressed using customary aeronautical 
notation by considering the sideslip angle 

}R

β  and 
angle of attack α , (McCormic, 1994): 
 

 1sin ( / )R Pvβ υ−=  (15) 
 

 1 2sin ( / )R R Rw u wα −= 2+  (16) 
 
The overall rotation is composed by a rotation about 
body-  axis through the angle z β , followed by a 
rotation about body-  axis through the angle y α  and 
is expressed by the matrix 
 

 ( ) ( )R
F y zα β=R R R  (17) 

 
where the matrix R

FR  represents the rotation between 
the { }F  and the reference or desired frame { . The 
angular velocity of the {  frame with respect to the 

}R
}R

{ }F  frame, expressed in { , is computed by  }R
 

 R R F
F R=Ω R R  (18) 

 
The associated angular velocity vector is as before 
 

1 2 3[ , , ] (traj., body variables)R
R R R R T
F ω

ω ω ω= =ω f  (19) 
 
where “ ” means a function 

of the derivatives of 

(traj., body variables)Rω
f

Rx , Ry , and Rz  up to the second 
order as well as of velocities Ru , Rυ , Rw  and their 
first order derivatives.  
 
Finally, the reference orientation between the inertial 
{ }I  frame and the reference {  frame is given by  }R
 

 R R F
I F I=R R R  (20) 

 
From (20), we can extract the reference angles using 
the following , (Sciavicco and Siciliano, 1996)  
 

 23 33atan2( , )R r rφ =  (21a) 
 

 2 2
13 23 33atan2( , )R r r rθ = − +  (21b) 

 
 12 11atan2( , )R r rψ =  (21c) 

 
where  denotes the ij  element of ijr R

IR .  
 
During tracking, the magnitude of the tangent vector 
to the trajectory Pv  equals the magnitude of the 
vehicle’s velocity vector Rv . From (8) and (14) it is: 
 

 2 2 2 2 2 2
P R R R R R Rv v x y z u wυ= ⇒ + + = + + R  (22) 

 
From (22) and (8), the reference sway velocity is  
 

 2 2 2 2 2 2 2 2
R R R R R R P R Rx y z u w v u wυ = ± + + − − = ± − − (23) 

 
where “ ± ” indicates that Rυ  may be positive or 
negative depending on the trajectory curvature. 
Differentiating (23) with respect to time yields,  
 

2 2 2( ) /R P P R R R R P R Rv v u u w w v u wυ = ± − − − −  (24) 
 
where Pv  is given by a simple differentiation of (8). 
In this way, we have also expressed Rυ  and Rυ  by 
the trajectory variables and by Ru , Ru , Rw , Rw .  
 
Now, the reference angular velocities are obtained by 
the succession of the angular velocity of the { }F  
frame with respect to the { }I  frame and the angular 
velocity of the reference orientation frame {  with 
respect to {

}R
}F , all expressed in { : }R

 
 [ , , ]R R R F

I F F I R R Rp q r= + =ω ω R ω T  (25) 
 
Substituting in (25), the quantities from (13), (17) 
and (19) and taking into account (23) and (24), we 
obtain to express the body-frame reference angular 
velocities as functions of the trajectory variables as 
well as of the body-fixed variables Ru , Ru , Rw , Rw .  
 
Considering now the two unactuated dynamical 
equations (6b) and (6c) during tracking, and 
substituting in them the expressions (23), (24), and 
(25) that give Rυ , Rυ , Rp , Rq , and Rr , a system of 
two coupled nonlinear time-varying differential 
equations results: 
 

 

,

( , , , , , , , ,
, , , , , ),

( 0)

R u R R R R R R R R

R R R R R R

R o R

u f x x x x y y y y
z z z z u w

u u t

=

= =

 (26) 

 

 

,

( , , , , , , , ,
, , , , , ),

( 0)

R w R R R R R R R R

R R R R R R

R o R

w f x x x x y y y y
z z z z u w

w w t

=

= =

 (27) 
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Since the time-varying inputs Rx , Ry , Rz , and their 
derivatives are known, numerical integration of (26) 
and (27) yields the values of Ru  and Rw  as functions 
of time.  
 
Having now these functions, we can go back and 
compute the rest of the reference variables: Rυ  from 
(23), Rp , Rq  and Rr  from (25), and Rφ , Rθ , and Rψ  
from (21). Therefore, at this step, all feasible 
trajectory variables are known. 
 
 
4. OPEN-LOOP CONTROL AND SIMULATIONS 

 
In this section, we design an open-loop controller in 
order for the AUV to track a reference trajectory. 
Then, simulation results are presented to illustrate the 
way the above planning methodology applies.  
 
 
4.1 Open-loop tracking control 
 
Once the body-fixed variables, i.e., linear and angular 
velocities and Euler angles, required for the AUV to 
track the reference trajectory have been computed, it 
is straightforward to construct the corresponding 
open-loop controls using the dynamic model. Indeed, 
from (6a), (6e), and (6f) it is respectively: 
 

3 3

2
3 2

( ) ( )

( )
R u R wq R

vr R R uu R vv R

T m r X u r X m w q

r X m r r X u r X 2
2

R

υ υ

= − − −

− + − −
 (28a) 

 
2

3 5

5 4

3

(1/ ( 2 ))[( )

( )

]

sR R ds db y q R

pr z x R R uq R R

uw R R CB R

r u M M I r M q

r M I I p r r M u q

r M u w z s B

δ

θ

= − −

− + − −

− −

 (28b) 

 
2

3 5

5

4

(1/ )[( )
( )

]

rR R dr z r R

qp x y R R v R R

r R R

r u N I r N r
r N I I p q r N u

r N u r

δ

3 υ
= −
− + − −

−

 (28c) 

 
where, for (28b), we have used that bR sRδ δ= − . In 
the case of tracking with constant reference velocities 

Ru , Rq , and Rr  are zero; else, one must take surge 
acceleration from (26), and differentiate Rq  and Rr  
from (25). Note that in order for the controls sRδ  and 

rRδ  to be valid functions, the surge velocity Ru  must 
be different from zero. This is a natural requirement 
since for such kind of actuation to be functional the 
vehicle must be in forward motion.  
 
The presented trajectory planning algorithm and the 
direct resulted open-loop controller may be 
incorporated in a two-step, closed-loop, trajectory-
tracking controller design. Forward feeding the 
actuators of an AUV with the above computed open-
loop controls, consistent with vehicle dynamics, one 
can design a feedback controller to take care of the 
small remaining errors. Such a controller will not 
require high gains and, hence, will have an improved 
performance. A further advantage of the method is 

the ease of checking the possibility that the computed 
controls result in actuator saturation; if this is the 
case, the designer can replan the trajectory choosing 
slower functions of time for the representation of the 
inertial curve. Moreover, we observe that this 
methodology can be applied to vehicles with similar 
dynamic models and actuation, such as unmanned 
aeroplanes and helicopters, moving in 3D space. 
 
 
4.2 Simulation results 
 
In this section, we present an example of trajectory 
planning and open-loop controlled motion. The CM 
inertial trajectory is a helix given by: 
 

 ( ) 60cos(0.01 )Rx t t=  (29a) 
 

 ( ) 60sin(0.01 )Ry t t=  (29b) 
 

 ( ) 0.1Rz t t=  (29c) 
 
Differentiating (29) three times and following the 
above designed trajectory planning procedure, 
provides the reference variables which are depicted 
in the following diagrams in dotted lines; the actual 
variables are given in solid lines. Since there is no 
error feedback in the open-loop controls, we must 
start the simulation using the reference initial values 
for the AUV dynamics in order for the application to 
make sense.  
 
In Fig. 3, the planned reference path is depicted. In 
Fig. 4, the angles β  and α , computed from (15) 
and (16) are shown. In Fig. 5, the constant values of 
the surge force and the angles of rotation of the 
rudder as well as the bow and stern planes computed 
from (28) are shown. In Fig. 6, we see the perfect 
inertial path following of the reference position for 
the CM of the AUV. As far as the reference 
orientation concerns, negligible errors are only 
present in the roll Euler angle. Such errors are 
attributed to numerical errors and to inaccurate 
setting the initial values for the simulation. Very 
good tracking performance we observe in Fig. 7 
where the linear and angular velocities, actual and 
reference, are depicted. 
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Fig. 3. The actual and the reference 3D space path. 
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Fig. 4. The angles β  and α . 
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Fig. 5. Open-loop control inputs. 
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Fig. 6. Inertial position variables of the CM and the 
Euler angles. 
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Fig. 7. Body-fixed linear and angular velocities. 
 
 
 

3. CONCLUSIONS 
 

In this paper, we considered the problem of spatial 
planning and open-loop control for underactuated 
AUVs. Given a smooth inertial 3D trajectory to be 
followed by the CM of the vehicle, the developed 
algorithm used the vehicle dynamic model, and 
computed the 3D corresponding body-fixed linear 
and angular velocities as well as vehicle orientations, 
yielded a feasible 6 DOF trajectory. Utilizing the 
consistent with AUV’s dynamics variables, the 
design of tracking controllers is assisted best. The 
full 6 DOF computed trajectory is further used to 
compute the efforts for the three available control 
inputs and to result in an open-loop trajectory 
controller. 
 
As a future work, we consider the design of a robust 
closed-loop controller in order to counteract 
parametric uncertainties and environmental 
disturbances. Also, in order to avoid rotational 
kinematics singularities, representation of kinematics 
by means of quaternions will be considered.  
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