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Abstract — In this paper we explore the mechanism
of energy transfer between the single actuated DOF
of a one-legged hopping robot and the remaining
unactuated DOFs, during stable running. The
concept of the energy transfer mechanism is laid
out, after which follows an analytical study. Using
this study, an initial controller is derived for the
control of a simple SLIP model with friction in the
leg and hip, using a single actuator at the hip. We
show that while this controller is capable of stable
motion for the SLIP model, it does not lead to stable
locomotion for the full realistic robot model with
pitching body, leg inertia and friction in hip and leg.
This indicates that the SLIP model often used for
controller design may be unsuitable for this
purpose. The necessary modifications are then
made to the controller to achieve stable locomotion
for the full model, again with a single, easy-to-
implement actuator located at the hip. Finally,
results are shown from applying the controller to
the full model for a wide range of parameters
leading to stable motions.

Index Terms - one-legged hopping robot, control,
underactuated.

|. INTRODUCTION

The research area of legged robots measures only a few
decades of existence. The severe limitations of wheeled
vehicles are obvious, when it comes to transversing the
anomalous terrain that comprises large surfaces of our
planet and others. Legged robots have the potential of
being able to handle steep inclines and negotiate
obstacles. The fact that legged robots do not come into
contact with all the points of the ground they
transverse, as in the case of wheeled vehicles,
facilitates their motion over rough terrain. This has
made legged robots an area of intensive research.

A number of studies have been made on the
passive motion of hopping or bounding robots [1], [2],
[3] especially based on the SLIP (Spring Loaded

Inverted Pendulum) model with a point mass as body
and a massless leg [1]. It has been found that using the
right initial conditions, the passive system may execute
a cyclic motion using no input torque, given that the
massless leg does not require torque to be brought
forward during flight [1].

Also, studies have been carried out that have led to
control algorithms for passive one-legged systems [4],
[5], [6], [7]. In these, either the leg angle at touchdown
has been used as a control input or actuators have been
added to the model. In some cases, stable control was
achieved using only the leg touchdown angle as a
control input [5], [7]. However, these models did not
incorporate pitching of the body mass, neither, as they
were passive, did they include the mechanisms of
energy dissipation found in real robots. Other studies
included pitching of the body mass, but also did not
include losses and further required two actuators for
control [4], [6].

Although stable motions can be achieved using the
passive model, in the real-world problem of robot
locomotion further complexities are added. Firstly, the
pitching of the body mass, often overlooked in studies
of passive systems and secondly, the inevitable viscous
friction present in all the joints, both the revolute (hip)
joint and the prismatic (leg) joint. Due to these reasons,
it is important to investigate control methods for more
realistic robots.

Legged robots have been constructed and
controllers designed that lead to stable locomotion [8],
[9], [10], [11]. The first three involve controlling one
or four legged robots with two actuators to each leg. In
[9], the concepts of replenishing energy in the robot
and of energy-based control are presented. In [11], the
Scout Il quadruped is controlled with only one actuator
per leg, although the controller gains must be
reconfigured depending on the desired speed. In [12],
the energy transfer mechanism from forward to vertical
via the leg angle has been described, and a leg angle
controller to control velocity was employed.

It is evident that there is a need for a controller,
requiring the minimum possible number of actuators
(i.e. one per leg), that will provide stable robot motion
and in addition will not depend either on the robot
initial conditions or the specific robot parameters, such



as losses, spring stiffness, etc. For this controller to be
implemented on a real robot with only one actuator, a
mechanism must be devised for transferring energy
from the actuated DOF to the unactuated DOFs.

The aim of this paper is to enhance our
understanding of the energy transfer mechanism that
exists between the single actuated DOF of a one-
legged hopping robot and the remaining unactuated
DOFs, during stable running. The concept of the
mechanism is laid out, followed by an analytical study.
Based on this study, an initial controller is derived for
the control of a simple SLIP model with friction in the
hip and leg, using a single actuator at the hip. While
the controller is shown to lead to stable motion for the
SLIP model, it does not do so for the full realistic robot
model with pitching body, leg inertia and friction in
hip and leg. This is a strong indication that the SLIP
model, often used for controller design, may actually
be unsuitable for this. The necessary modifications are
then made to the controller to achieve stable
locomotion for the full model, again with a single,
easy-to-implement actuator located at the hip. Finally,
results are shown from applying the controller to the
full model for a wide range of parameters leading to
stable motions. This paper may also contribute to the
control of other multilegged systems, as the one-legged
robot can be seen as part of a more complex system.
Finally, it is hoped that it may play a part in enhancing
the understanding of underactuated systems.

II. RoBoT DYNAMICS

In this paper, references are made to two distinct
models. The first model developed corresponds to a
realistic robot incorporating a pitching body, inertia in
the leg, as well as friction both at the hip and the leg.
This model is referred to as the full model. Further, the
SLIP model, with a point mass as body, no body
pitching and a massless leg is described. This model is
often used for controller design.

Full Model

The full model of the robot is shown in Fig. 1.
This includes the real-world characteristics of a
pitching body and inertia in the leg, often neglected in
other studies. The body of mass m is considered to
have inertia 1, while the body’s center of mass (CM)
is located at the hip joint. The robot leg is equipped
with a spring of stiffness k and has a rest length of L.

For the model to be closer to reality, the torque
required to bring the leg forward during flight cannot
be thought to be zero. However, the mass of a robot leg
in comparison to the body mass is typically much
smaller. For this reason, the leg is considered to have
only inertia I, and no mass. The system also
incorporates mechanisms of energy dissipation, due to
viscous friction at the leg and at the hip. The viscous
coefficients are by and b, respectively. The robot is
equipped with a single actuator capable of exerting

torque 7 at the hip joint. The leg forms an angle &
with the vertical, while the length of the leg at any
moment in time is |, see Fig. 1. The body forms a pitch
angle ¢ with the horizontal. For the configuration in
Fig. 1, angle @ is negative, while angle ¢ is positive.
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Fig. 1. The robot physical model at the beginning of
the motion and at a typical stance
configuration.

When moving, the robot goes through a stance and
a flight phase, see Fig. 2. During stance, the robot CM
covers a distance of xs, and during flight a distance of
Xs, reaching an apex height of h.

X, X,
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Fig. 2. Phases of the robot motion.

Stance. The robot equations of motion during
stance may be found using a Lagrangian approach:

(mI?+1,) 6+ 2mli 6-mgl sin 0+b, (6-p)=<
mi —ml & +k (1-L)+mg cos 6+b1 =0 (1)
Ibﬁ_bh (9_ ¢>:_T

where g is the acceleration of gravity.

Flight. During flight, the only external force on
the robot is gravity. The robot CM position may be
determined by the horizontal position x and distance
from the ground y (see Fig. 1). The hip actuator may
exert a torque to modify the configuration of the

system, determined by the angles @, ¢ . Therefore, the
equations of motion during flight are:

X=0 , 1,6+b (6-¢)=7

, . )
y=-9 , |b¢_bh<9_¢):_7

SLIP Model

The SLIP model is essentially a simplification of the
full model described above. The body is considered to
be a point mass, while the leg is massless and has no
inertia. Viscous friction is still incorporated in the hip
and the leg. The equations of motion for this model are
expressed in Egs. (3), (4), for the stance phase and
flight phase respectively.
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I11. CONCEPT OF MECHANISM OF ENERGY TRANSFER
INTO AXIAL DOF

Both robot models discussed above are equipped with
a hip joint actuator. Having only this actuator is
considerably easier to implement than having an
actuator exerting axial forces on the leg. However, the
system is underactuated and no method of transferring
energy directly into the axial direction of the leg exists.
Observing the second of Egs. (1) governing the motion
in the axial direction, it can be seen that, due to
actuator location, this equation has no input force;
hence it must be controlled indirectly. The concept of
an energy transfer mechanism for the axial DOF has
been laid out in [9], in the case of an actuated axial
DOF. Expanding this concept, the transfer mechanism
below allows for energy transfer when no axial
actuation is available.

It is obvious that compensating for the energy lost
due to friction at the hip is simple since the hip joint is
actuated. However, compensating for the energy lost in
the leg is more complex. A first approach would
suggest that the hip joint actuator might increase the
total system energy by the amount lost in the leg and
hip. But this is not adequate, since it would only lead to
a continuous increase of energy in the hip DOF, while
the energy in the leg would decrease with each cycle,
leading to instability.

Therefore, it is necessary to devise a mechanism of
transferring energy from the actuated hip into the axial
DOF of the leg. To this end, consider what takes place
from an energy point of view at the time the robot leg
touches down after the flight phase. At this point, as a
result of its previous motion, the robot CM has a given
velocity v, see Fig. 3. The subscript td denotes the
value of a quantity at touchdown.

As seen in Fig. 3, the body velocity at touchdown
can be analyzed into two components. The first
component is that which corresponds to the rotating
motion of the leg about the pivot point at the leg-
ground contact, while the second is in the axial
direction of the leg. In Fig. 3, it can be seen that the
resulting magnitude of each component, for the same
robot velocity v, is determined by the touchdown
angle of the leg. This essentially means that, by
regulating the touchdown angle, the distribution of the
CM (linear) kinetic energy between the rotating and
axial directions may be determined. It may be noted
that as the magnitude of 6, increases, there is also a
small increase of the magnitude of v, due to the fact
that the leg will touch down a little later. However, this

is considered to be negligible.

Fig. 3. The robot velocity at touchdown and its
distribution for different touchdown angles

Using this distribution mechanism, it is possible to
choose to transfer an extra amount of kinetic energy
into the axial direction, so as to complement the energy
lost due to viscous friction. Of course, this leads to a
decrease of the energy available to the rotating
direction. However, this is easily compensated for,
since the hip actuator actuates this DOF. It is evident
from the coupling of the DOFs in the equations of
motion, that some energy will be transferred between
the rotating and axial direction during the stance phase.
However, the dominant mechanism wused for
transferring energy in the controllers presented is the
one described above.

To conclude, by using this mechanism, energy can
actually be transferred from the actuated hip joint DOF
to the unactuated leg axial DOF. All the energy
required for complementing system losses will be
given by the hip actuator, and then distributed
accordingly at touchdown.

IV. MATHEMATICAL FORMULATION OF ENERGY
TRANSFERRING MECHANISM

In this section, the mechanism described above is
mathematically formulated to allow its integration into
the controller. This is achieved by relating the
individual components of the touchdown velocity,
%q and Vi , to the leg angular and linear velocity:

étd L cos th —sin 0m Xm (5)
Im Sin th Ccos 6111 yld
Eq. (5) describes how the wvelocity is distributed
between the rotation ( & - L component) and the axial
direction ( Iy component).

Suppose that the robot is executing a steady state
motion, composed of a flight phase and a stance phase.
Each stance or flight phase is identical to the previous
one. Further, let E, be the energy dissipated at the leg
during one stance phase. This energy must be
replenished in order for the steady state motion to
continue. Using the mechanism described above, this
means that the leg angle at touchdown must be
regulated so that an amount of energy equal to the leg
friction losses of the current stance phase is added to
the axial leg direction. The slight difference in the
robot potential energy at touchdown, for different
values of 6, , is considered to be negligible. Hence,
the increase in energy in the leg axial direction must be



made in Kinetic energy. This may be expressed as:
%ml.nzi,i = %ml.li,i—l +E (6)
where the subscript lo denotes the value of a quantity
at liftoff, idenotes the stance phase about to begin,
i —1denotes the previous stance phase. From Eq. (6), it
follows that, for enough extra energy to be transferred
to the leg DOF to cover dissipation losses, the
necessary touchdown velocity in the axial direction is:
. . 2
i =4/l is +H E, (7
This velocity can be achieved by regulating the
touchdown angle as described above. Using Eq. (5),
the desired touchdown angle 6,4 necessary to
achieve the desired leg velocity ly; can be found. To
provide a simple expression for the desired touchdown
angle, 6y« is presumed to be small enough so that:

sin th,des = th,des
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cos gtd,des :l_%etzd,des ( )

Now, combining Eqgs. (5) and (8), 644 Can be
found to be:

Xig _\/thi +2¥y (_I.td,i + y{d)
Yo

Using the above touchdown angle, the leg
touchdown axial velocity is adequately increased in
comparison to the leg velocity at liftoff of the previous
stance phase. The difference in velocities leads to a
sufficient increase in the energy in the direction of the
leg to complement the dissipated energy in the leg E, .

In Eq. (9), the expression for the desired
touchdown angle is a function of the desired axial
velocity at touchdown |y . From Eq. (7), lq is seen to
depend on the energy dissipated in the leg E, . Since
this cannot be measured easily, an analytical
approximation is used. In [13] an analytical
approximation has been found for the energy dissipated
during the stance phase in a leg with viscous friction:

E =bp (10)
where p was found to be:

%
1(m k . k
p:Z(?j {2 /Egl,ovi_1 {1—005[2‘%1}}
+[—gz +5|',§,i_1jsin(2 /ﬁTSJ 11)
m m
+2./£Ts [92 e ilﬂ
m m

where T, is the duration of the stance phase and all
other parameters have been defined previously.

9td,des -

9)

V. SLIP MODEL CONTROLLER

In this section a controller, for the SLIP robot model
described in Section 11, will be derived based on the
energy transfer mechanism laid out in the previous
section. This controller will be referred to as SL-C.

The desired touchdown angle of the robot for each
hop is determined by Eq. (9). This ensures that
adequate energy is transferred to the unactuated leg.
Since the SLIP model has a massless leg, no torque is
required to bring the leg forward during flight. If the
robot starts its motion in the flight phase (i.e. with a
throw), then for the first touchdown angle, Eq. (9)
cannot be used. Therefore for the first touchdown only,
the desired touchdown angle is chosen according to the
neutral point control method established in [8]:

. TXy
0, = —arcsin| =—* 12
td,des ( 2|_ j ( )

This angle represents half the angle the leg would
cover during stance if the horizontal velocity of the
body were constant.

However, even though energy will be transferred
to the axial DOF, the total robot energy will diminish
unless energy is provided from some external source to
the mechanical system. Using the hip actuator, it is
possible to provide energy to the rotating direction,
thus increasing the total system energy. The energy
input by the actuator is then distributed as necessary
between the rotating and axial direction, according to
the mechanism described above.

To keep the total system energy constant, the
actuator applies the necessary torque during the stance
phase. After touchdown and until the leg reaches the
vertical position, the torque applied is constant and
equal to the energy dissipated in the leg during the
stance phase, over the touchdown angle of the leg.
When the leg has passed the vertical position, the
torque has the form of a proportional controller with
the system energy as feedback. Such a proportional
energy controller has been used in [9] as part of a
control scheme that resulted in stable locomotion for a
real robot. In each case an extra term is added to the
controller that compensates for the viscous friction at
the hip. Therefore the actuator torque during stance is:

_ El/gtd_bh(g_¢) 6<0
kl(Esys,d _Esys)_bh(g_ q)), 0>0

where E, is the desired system energy, E,the
current system energy, k,the P controller gain. The
desired system energy is equal to the system energy at
the beginning of the motion. The expression of the
system energy at each moment is:

(13)

E. = ! mx? +%my2 +mgy+%k(l —L)2 (14)

sys E

As will be seen in the results presented in Section



VII, the SLIP response to this controller is typically a
transient period of about four cycles, followed by
stable locomotion.

VI. FuLL RoBOT CONTROLLER

If the derived SLIP controller was to be applied to the
case of the full robot model, it would be immediately
clear that a steady state motion could not be
accomplished using the controller as is. Specifically,
gradual instability arises in the body pitching motion,
while the total gait is not sustainable. An example of
this is shown in Section VII. As mentioned earlier, this
result is a strong indication that a more complete robot
model than the SLIP is required for controller design,
due to the basic qualitative differences in the behavior
of the SLIP and the full model.

It is evident that modifications are required to the
initial controller presented. The aim of the controller
developed here is to be able to start the robot with a
wide range of initial conditions without changing the
controller gains. It is expected, in accordance with the
trial on the SLIP model, that there will be a transitional
phase of about four cycles before the steady state
motion. The full controller for the original robot will
now be presented in three components: (a) the stance
phase control, (b) the leg touchdown angle command
and (c) the flight phase control. This controller will be
referred to as FL-C.

(a) Stance phase control

As mentioned, using the controller as is on the original
robot leads to gradual instability in the body pitching
motion. To bound the pitching motion of the body, an
inverse dynamics controller is used for the body to
follow a desired pitching trajectory. During what is
estimated to be the transient response period, i.e. the
first four hops, the desired trajectory has the form of a
sinusoidal counter-oscillation to the oscillation of the
leg. The form of this trajectory is based on the analysis
of [6]. The desired trajectory is

(2T,
th des SIN| —72
I ' T, +T,
(15)

do=—"
d Ih - Tf
sin| =
T, +T,

where T; is the flight duration, computed in Eq. (24),
T, the stance duration. The stance duration is
considered to be equal to the stance duration of the
previous stance phase, while for the first cycle it is
roughly approximated as:

T, = ﬂ\/% (16)

After the transient period, the desired trajectory

becomes a third order polynomial, enforced by inverse
dynamics control. The desired final pitch angle @y 4
and pitch velocity g4 are set equal to the pitch
angle and velocity at liftoff of the last transient stance
phase @1, P - The trajectory is,

gy (t)=a, +at+at’ +a,t’° 17
where
a4 = ¢td,des
aS = ¢td,des
a= _2¢|o,lt + ¢|o,lt 'Ts + 2¢td,des (18)
TS3
_ ¢Io,lt - ¢1d,des _3'T52a7
a;=
2-T,

Since the first part of the response is expected to be of
a purely transient character, it is evident why Eq. (17)
cannot be used from the start of the motion. Also, Eq.
(15) cannot be continued after the transitional phase, as
it was not found to lead to a stable motion.

For both the transient and steady state desired
trajectories, the inverse dynamics controller enforcing
them in each case is the same:

T:_( 1y +Ks <¢d _¢)+kp (4s—9)

b, (6-9) “9’

(b) Leg touchdown angle command

The stance phase control presented above controls the
body pitching motion, but replaces the control set out
in Section V for keeping the system energy steady, Eq.
(13). Therefore, an alternative method must be found
to retain the system energy level steady.

To this end, a proportional controller term for the
system energy is added to the expression for the
desired leg touchdown angle. This term becomes active
only after the first four transient cycles. The new
expression for the desired touchdown angle, based on
Eq. (9), becomes:

X _\/thd + ZYm <_I.td,i + Y )
Y (20)
+k2 (_Esys + Esys,d )

etd,des -

where k, is the proportional controller gain. The
desired system energy is equal to the value of the
system energy after the fourth cycle. The expression
for the system energy at each moment is now,
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It has been observed that the controller performs
significantly better when the last two terms,
representing the kinetic energy of the leg and body due
to inertia, are omitted from the energy calculation. For
the first cycle, the desired touchdown angle is chosen
asin Eq. (12).

The stabilizing effect of the added term in Eq. (20)
on the total system energy is explained as follows.
When the system energy is greater than desired, the leg
is set further forward for touchdown during the flight
phase. Therefore, the resulting velocity in the axial
direction of the leg at the beginning of stance is
increased, according to Section IV. This results in
greater losses in the leg due to viscous friction,
according to Egs. (10), (11). This way the system
energy is decreased. Similarly, if the system energy is
smaller than the desired energy, then the new term
results in an increase of the system energy.

(c) Flight phase control

To complete the controller, the leg must be
brought forward to the desired touchdown angle during
flight. Since the robot leg has inertia, the common
assumption that the leg may be brought forward with
zero torque is not valid. To bring the leg to the desired
position, an inverse dynamics controller is adopted for
the leg to follow a desired trajectory, ending at the
desired touchdown angle. The desired trajectory 6, is
a third order polynomial:

0, =a,+at+at’ +at’ (22)

The parameters of the trajectory are chosen so that the
leg has reached the desired angle before the time of
touchdown. The parameters are:

aozelo
8=,
_thd,des + '9|0 Ong +2€I0

- (09T, )’ (23)

-4,-3(09T, ) a,
- 2(09T))

2
The duration of the flight phase T,
approximated as:

1/. }
T, :5(y|0+\/y,i—ZgL(cos@d,des—COS 610)) (24)

is easily

To implement the controller, the applied torque during
flight is:

=10, +k, (6, - 0)+k, (6, 0)
+b, (6- )
where k, , k, are the controller gains.

For the complete controller to work on a physical
robot, it is necessary to have onboard sensing. The
robot velocity and configuration must be known for the
calculation of 6, ., and the feedback of the flight and

stance control, as well as for the computation of the
system energy in Eqg. (20).

(25)

VII. RESULTS
In this section, the response of the SLIP model and the
full robot model to the derived controllers will be
presented.

SLIP model

SL-C is applied to the SLIP model. A typical
response is shown in Fig. 4, for m=10 kg, k=5000 N/m.
The losses are set to b, =0.5 N-s/m for the hip and
b =1 N's/m for the leg. The robot was started with an
initial horizontal velocity of %, =2.2 m/s from a height
of h=0.7 m. The controller gain is k, =0.2.

X (mis) X (mls)
25| 25

2 2
6 (c 6 (deg)

: mm VT

T(Nm)

T(Nm
2 2
0 -
5 10 1
)

05 1 15 2 25 3 35
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(@) (b)
Fig. 4. Response of the SLIP model to SL-C. (a) The
response over 15 s. (b) The transient phase over
about 3's.

As can be seen in Fig. 4, there is a short transient phase
during which the robot states at a characteristic cycle
point (i.e. apex) vary considerably. This lasts for the
first four or five hops, after which the robot settles into
a steady state behavior.

Full model

Here, the response of the full robot is examined.
Initially, SL-C is applied to the full model. The
resulting response is then compared to the response of
the SLIP model under the same controller, shown in
Fig. 4. This way, the differences in qualitative behavior
can be investigated, between the full model and the
SLIP model, often used for controller design.

For the application of SL-C to the full model, the
same model parameters and initial conditions are used
as in the previous example for the SLIP model (Fig. 4).
The only difference in the controller is that a torque is
now necessary to bring the leg forward during flight.
Also, the remaining full model parameters are 1,=0.5
kg'm?, 1,=0.05 kgm?. The response is shown in Fig. 5.



As can be seen, although the exact same controller
configuration worked perfectly on the SLIP, it is not
adequate for the full model.

6 (deg) ¢ (deg)
100
20
10 50
0
0
-10
7200 2 4 6 8 7500 2 4 6 8
t(s) t(s)
X (m/s) T (Nm)

30

20

10

0.5 0 [/}/MWWJM

% 2 4 6 8 105 2 4 6 8
(e t(s

Fig. 5. Response of full model to SL-C.

The pitch angle quickly tends to instability, while the
leg angle behavior has the form of a gradual decay. It is
evident that the motion is not sustainable. This is a
display of the fundamental differences between the
properties of the SLIP and the realistic full model and
shows that a controller designed using the SLIP model
fails in a realistic case. Therefore, it indicates that the
SLIP model is not complete enough for dependable
robot controller design and that future controllers
should be designed using a more complete model. This
conclusion is also verified by the form of the equations
of motion, see Eq. (1). Itis clear that, other than for the
friction term, there is no coupling between the pitching
motion and the leg angle or leg length. Therefore, a
controller designed using the SLIP model cannot have
a stabilizing effect on the pitching motion of a real
robot. The rest of system destabilizes due to the leg
inertia, not accounted for in SLIP based controllers.
Because the leg inertia is not large, the system
destabilizes more gradually.

Next, FL-C is applied to the full model, using the
same robot parameters as in the previous case. It is
desired to examine whether the modifications made to
the initial controller now lead to a stable motion for the
full model. The gains used in the full model controller
are k;=0.2, k;=5, k,=10. The response is shown in
Fig. 6. As can be immediately seen, FL-C is successful
in stabilizing the motion of the full model. There is a
transient phase during which each cycle differs
considerably from the previous one. This lasts for
about 5 s, after which the system enters a steady state
motion.

FL-C is now tested for various values of robot
parameters, as well as for a range of initial conditions,
to verify its generality. Note that all results presented
below are for the same set of controller gain values
used in the previous example.
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Fig. 6. Full robot model response to FL-C.

This means that there is no need to adjust the
controller, despite the changes in robot parameters and
initial conditions used. As the stable time response
always has the general form of Fig. 6, the test results
are collected in tables.

Table 1 gives some sets of robot parameters and
initial conditions %,, Y, that lead to stable motions, as
well as the resulting leg touchdown angle 6, and
maximum torque 7., Of a random cycle, after the
system has entered the steady state. The following
robot parameters are kept the same: m=10 kg, 1,=0.5
kgm? 1=0.05 kgm? L=0.5 m, b,=0.5 N's/m. The
same typical initial velocity %, =2 m/s is used, so as
not to vary too many parameters.

Table 1. Robot parameters and initial conditions, and
resulting stable gait characteristics.

K h XO Yo gld S5 Trmaxss
(N/m) (N s/m) (m/s) (m) (deg) (N'm)
5000 1 20 | 0.6 | -135 8.7
5000 1 20 | 0.7 | -15.8 4.8
9000 3 20 | 0.6 | -12.0 7.2
9000 3 20 | 0.7 | -13.2 | 11.0
12000 4 20 | 0.6 | -10.5 8.8
12000 4 20 | 0.7 | -115 9.6

It can be seen that FL-C results in steady motions for
the full model, for a large range of the leg stiffness, as
well as in the case of significant energy dissipation in
the leg.

In Table 2, further examples of stable motions are
given. In this table, various values of body inertia and
mass are used to further demonstrate the controller’s
applicable range, still using the same gains as the first
example of Fig. 6. Again, the initial conditions %,, Y,
are given, as well as the resulting leg touchdown angle
B4 and maximum torque 7., Of a steady state
cycle. The following robot parameters are kept steady:
k=9000 N/m, 1,=0.05 kgm? L=0.5 m, b, =0.5 N's/m.



Table 2. Robot parameters and initial conditions, and
resulting stable gait characteristics.

m I b bI XO yO ‘9td S8 z-max,ss
(kg) [(kgm?)| (N's/m) | (m/s) (m) (N'm)
(deg)
8 | 06 3 2.0 06 |-11.3|131
8 | 06 3 2.0 0.7 |-13.0| 43
15| 0.8 2 2.0 06 |-144] 3.9
15| 0.8 2 2.0 0.7 |-165]11.0
20| 15 1 2.0 06 |-155]| 3.8
20| 15 1 2.0 0.7 |-17.0] 6.2

Accomplishing steady motions using such a wide
range of parameters and the same controller gains is
made possible by the systematic exploration of the
energy transfer mechanism. Because of this, the
desired leg angle at touchdown is an analytical
expression of the robot parameters, as seen in Section
IV. As a result, once a set of reasonable gains is found
for the controller, it is extremely accommodating to
changes in both initial conditions and robot parameters.
This makes the controller novel, as previous attempts
to use the leg touchdown angle as a control input on
realistic robots have relied on trial and error [11]. Also
a number of previous controllers, such as [6], used
special initial conditions so that the robot was already
close to the steady state cycle at the beginning of its
motion. It is evident that our controller, requiring only
knowledge of the initial conditions, is capable of
overcoming significant transient effects and still
leading to stable locomotion. Finally, the controller can
be implemented using only one actuator, situated at the
hip, providing a real advantage in construction over the
two-actuator implementation.

VI1I1. CONCLUSIONS

In this paper the mechanism of energy transfer was
studied, between the single actuated DOF of a one-
legged hopping robot and the remaining unactuated
DOFs, during stable locomotion. The concept of the
energy transfer mechanism was analyzed, followed by
an analytical study of the mechanism. Using this
analysis, an initial controller for the simple SLIP model
was found. The model incorporated friction in the leg
and hip, and used a single actuator at the hip. Although
this controller was successful for the SLIP model, it
did not lead to stability for the full robot model. This
result provides a strong indication that the SLIP model,
often used for controller design, may be unsuitable for
this purpose. Modifications were then made to the
initial controller that resulted in stabilizing the full
model for a wide range of parameters, using only a
single actuator.
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