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Abstract – In this paper we explore the mechanism 
of energy transfer between the single actuated DOF 
of a one-legged hopping robot and the remaining 
unactuated DOFs, during stable running. The 
concept of the energy transfer mechanism is laid 
out, after which follows an analytical study. Using 
this study, an initial controller is derived for the 
control of a simple SLIP model with friction in the 
leg and hip, using a single actuator at the hip. We 
show that while this controller is capable of stable 
motion for the SLIP model, it does not lead to stable 
locomotion for the full realistic robot model with 
pitching body, leg inertia and friction in hip and leg. 
This indicates that the SLIP model often used for 
controller design may be unsuitable for this 
purpose. The necessary modifications are then 
made to the controller to achieve stable locomotion 
for the full model, again with a single, easy-to-
implement actuator located at the hip. Finally, 
results are shown from applying the controller to 
the full model for a wide range of parameters 
leading to stable motions. 

Index Terms - one-legged hopping robot, control, 
underactuated. 

I. INTRODUCTION 
The research area of legged robots measures only a few 
decades of existence. The severe limitations of wheeled 
vehicles are obvious, when it comes to transversing the 
anomalous terrain that comprises large surfaces of our 
planet and others. Legged robots have the potential of 
being able to handle steep inclines and negotiate 
obstacles. The fact that legged robots do not come into 
contact with all the points of the ground they 
transverse, as in the case of wheeled vehicles, 
facilitates their motion over rough terrain. This has 
made legged robots an area of intensive research. 

A number of studies have been made on the 
passive motion of hopping or bounding robots [1], [2], 
[3] especially based on the SLIP (Spring Loaded 

Inverted Pendulum) model with a point mass as body 
and a massless leg [1]. It has been found that using the 
right initial conditions, the passive system may execute 
a cyclic motion using no input torque, given that the 
massless leg does not require torque to be brought 
forward during flight [1].  

Also, studies have been carried out that have led to 
control algorithms for passive one-legged systems [4], 
[5], [6], [7]. In these, either the leg angle at touchdown 
has been used as a control input or actuators have been 
added to the model. In some cases, stable control was 
achieved using only the leg touchdown angle as a 
control input [5], [7]. However, these models did not 
incorporate pitching of the body mass, neither, as they 
were passive, did they include the mechanisms of 
energy dissipation found in real robots. Other studies 
included pitching of the body mass, but also did not 
include losses and further required two actuators for 
control [4], [6]. 

Although stable motions can be achieved using the 
passive model, in the real-world problem of robot 
locomotion further complexities are added. Firstly, the 
pitching of the body mass, often overlooked in studies 
of passive systems and secondly, the inevitable viscous 
friction present in all the joints, both the revolute (hip) 
joint and the prismatic (leg) joint. Due to these reasons, 
it is important to investigate control methods for more 
realistic robots. 

Legged robots have been constructed and 
controllers designed that lead to stable locomotion [8], 
[9], [10], [11]. The first three involve controlling one 
or four legged robots with two actuators to each leg. In 
[9], the concepts of replenishing energy in the robot 
and of energy-based control are presented. In [11], the 
Scout II quadruped is controlled with only one actuator 
per leg, although the controller gains must be 
reconfigured depending on the desired speed. In [12], 
the energy transfer mechanism from forward to vertical 
via the leg angle has been described, and a leg angle 
controller to control velocity was employed. 

It is evident that there is a need for a controller, 
requiring the minimum possible number of actuators 
(i.e. one per leg), that will provide stable robot motion 
and in addition will not depend either on the robot 
initial conditions or the specific robot parameters, such 



 

as losses, spring stiffness, etc. For this controller to be 
implemented on a real robot with only one actuator, a 
mechanism must be devised for transferring energy 
from the actuated DOF to the unactuated DOFs. 

The aim of this paper is to enhance our 
understanding of the energy transfer mechanism that 
exists between the single actuated DOF of a one-
legged hopping robot and the remaining unactuated 
DOFs, during stable running. The concept of the 
mechanism is laid out, followed by an analytical study. 
Based on this study, an initial controller is derived for 
the control of a simple SLIP model with friction in the 
hip and leg, using a single actuator at the hip. While 
the controller is shown to lead to stable motion for the 
SLIP model, it does not do so for the full realistic robot 
model with pitching body, leg inertia and friction in 
hip and leg. This is a strong indication that the SLIP 
model, often used for controller design, may actually 
be unsuitable for this. The necessary modifications are 
then made to the controller to achieve stable 
locomotion for the full model, again with a single, 
easy-to-implement actuator located at the hip. Finally, 
results are shown from applying the controller to the 
full model for a wide range of parameters leading to 
stable motions. This paper may also contribute to the 
control of other multilegged systems, as the one-legged 
robot can be seen as part of a more complex system. 
Finally, it is hoped that it may play a part in enhancing 
the understanding of underactuated systems. 

II. ROBOT DYNAMICS 
In this paper, references are made to two distinct 
models. The first model developed corresponds to a 
realistic robot incorporating a pitching body, inertia in 
the leg, as well as friction both at the hip and the leg. 
This model is referred to as the full model. Further, the 
SLIP model, with a point mass as body, no body 
pitching and a massless leg is described. This model is 
often used for controller design. 

Full Model 
The full model of the robot is shown in Fig. 1. 

This includes the real-world characteristics of a 
pitching body and inertia in the leg, often neglected in 
other studies. The body of mass  m  is considered to 
have inertia  Ib , while the body’s center of mass (CM) 
is located at the hip joint. The robot leg is equipped 
with a spring of stiffness k and has a rest length of L . 

For the model to be closer to reality, the torque 
required to bring the leg forward during flight cannot 
be thought to be zero. However, the mass of a robot leg 
in comparison to the body mass is typically much 
smaller. For this reason, the leg is considered to have 
only inertia  Il  and no mass. The system also 
incorporates mechanisms of energy dissipation, due to 
viscous friction at the leg and at the hip. The viscous 
coefficients are bl  and bh  respectively. The robot is 
equipped with a single actuator capable of exerting 

torque τ  at the hip joint. The leg forms an angle θ  
with the vertical, while the length of the leg at any 
moment in time is l, see Fig. 1. The body forms a pitch 
angle ϕ  with the horizontal. For the configuration in 
Fig. 1, angle θ  is negative, while angle ϕ  is positive. 
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Fig. 1. The robot physical model at the beginning of 

the motion and at a typical stance 
configuration. 

When moving, the robot goes through a stance and 
a flight phase, see Fig. 2. During stance, the robot CM 
covers a distance of xs, and during flight a distance of 
xf, reaching an apex height of h. 

       touchdown  bottom   liftoff                           flight                         touchdown
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Fig. 2. Phases of the robot motion. 

Stance. The robot equations of motion during 
stance may be found using a Lagrangian approach: 
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where g is the acceleration of gravity. 
Flight. During flight, the only external force on 

the robot is gravity. The robot CM position may be 
determined by the horizontal position x and distance 
from the ground y (see Fig. 1). The hip actuator may 
exert a torque to modify the configuration of the 
system, determined by the anglesθ ,ϕ . Therefore, the 
equations of motion during flight are: 
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SLIP Model 
The SLIP model is essentially a simplification of the 
full model described above. The body is considered to 
be a point mass, while the leg is massless and has no 
inertia. Viscous friction is still incorporated in the hip 
and the leg. The equations of motion for this model are 
expressed in Eqs. (3), (4), for the stance phase and 
flight phase respectively. 
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III. CONCEPT OF MECHANISM OF ENERGY TRANSFER 
INTO AXIAL DOF 

Both robot models discussed above are equipped with 
a hip joint actuator. Having only this actuator is 
considerably easier to implement than having an 
actuator exerting axial forces on the leg. However, the 
system is underactuated and no method of transferring 
energy directly into the axial direction of the leg exists. 
Observing the second of Eqs. (1) governing the motion 
in the axial direction, it can be seen that, due to 
actuator location, this equation has no input force; 
hence it must be controlled indirectly. The concept of 
an energy transfer mechanism for the axial DOF has 
been laid out in [9], in the case of an actuated axial 
DOF. Expanding this concept, the transfer mechanism 
below allows for energy transfer when no axial 
actuation is available. 

It is obvious that compensating for the energy lost 
due to friction at the hip is simple since the hip joint is 
actuated. However, compensating for the energy lost in 
the leg is more complex. A first approach would 
suggest that the hip joint actuator might increase the 
total system energy by the amount lost in the leg and 
hip. But this is not adequate, since it would only lead to 
a continuous increase of energy in the hip DOF, while 
the energy in the leg would decrease with each cycle, 
leading to instability. 

Therefore, it is necessary to devise a mechanism of 
transferring energy from the actuated hip into the axial 
DOF of the leg. To this end, consider what takes place 
from an energy point of view at the time the robot leg 
touches down after the flight phase. At this point, as a 
result of its previous motion, the robot CM has a given 
velocity  v , see Fig. 3. The subscript td denotes the 
value of a quantity at touchdown. 

As seen in Fig. 3, the body velocity at touchdown 
can be analyzed into two components. The first 
component is that which corresponds to the rotating 
motion of the leg about the pivot point at the leg-
ground contact, while the second is in the axial 
direction of the leg. In Fig. 3, it can be seen that the 
resulting magnitude of each component, for the same 
robot velocity  v , is determined by the touchdown 
angle of the leg. This essentially means that, by 
regulating the touchdown angle, the distribution of the 
CM (linear) kinetic energy between the rotating and 
axial directions may be determined. It may be noted 
that as the magnitude of θtd  increases, there is also a 
small increase of the magnitude of  v , due to the fact 
that the leg will touch down a little later. However, this 

is considered to be negligible. 
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Fig. 3. The robot velocity at touchdown and its 

distribution for different touchdown angles 
Using this distribution mechanism, it is possible to 

choose to transfer an extra amount of kinetic energy 
into the axial direction, so as to complement the energy 
lost due to viscous friction. Of course, this leads to a 
decrease of the energy available to the rotating 
direction. However, this is easily compensated for, 
since the hip actuator actuates this DOF. It is evident 
from the coupling of the DOFs in the equations of 
motion, that some energy will be transferred between 
the rotating and axial direction during the stance phase. 
However, the dominant mechanism used for 
transferring energy in the controllers presented is the 
one described above. 

To conclude, by using this mechanism, energy can 
actually be transferred from the actuated hip joint DOF 
to the unactuated leg axial DOF. All the energy 
required for complementing system losses will be 
given by the hip actuator, and then distributed 
accordingly at touchdown. 

IV. MATHEMATICAL FORMULATION OF ENERGY 
TRANSFERRING MECHANISM 

In this section, the mechanism described above is 
mathematically formulated to allow its integration into 
the controller. This is achieved by relating the 
individual components of the touchdown velocity, 

tdx and tdy , to the leg angular and linear velocity: 
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Eq. (5) describes how the velocity is distributed 
between the rotation ( td Lθ ⋅ component) and the axial 
direction ( tdl component). 

Suppose that the robot is executing a steady state 
motion, composed of a flight phase and a stance phase. 
Each stance or flight phase is identical to the previous 
one. Further, let El  be the energy dissipated at the leg 
during one stance phase. This energy must be 
replenished in order for the steady state motion to 
continue. Using the mechanism described above, this 
means that the leg angle at touchdown must be 
regulated so that an amount of energy equal to the leg 
friction losses of the current stance phase is added to 
the axial leg direction. The slight difference in the 
robot potential energy at touchdown, for different 
values of θtd , is considered to be negligible. Hence, 
the increase in energy in the leg axial direction must be 



 

made in kinetic energy. This may be expressed as: 

 2 2
, , 1

1 1
2 2td i lo i lml ml E−= +  (6) 

where the subscript  lo  denotes the value of a quantity 
at liftoff,  i denotes the stance phase about to begin, 
  i −1 denotes the previous stance phase. From Eq. (6), it 
follows that, for enough extra energy to be transferred 
to the leg DOF to cover dissipation losses, the 
necessary touchdown velocity in the axial direction is: 

 2
, , 1

2
td i lo i ll l E

m−= +  (7) 

This velocity can be achieved by regulating the 
touchdown angle as described above. Using Eq. (5), 
the desired touchdown angle   θtd ,des  necessary to 
achieve the desired leg velocity ,td il  can be found. To 
provide a simple expression for the desired touchdown 
angle,   θtd ,des is presumed to be small enough so that: 

 
, ,

2
, ,

sin
1cos 1
2

td des td des

td des td des

θ θ

θ θ−
 (8) 

Now, combining Eqs. (5) and (8),   θtd ,des  can be 
found to be: 
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Using the above touchdown angle, the leg 
touchdown axial velocity is adequately increased in 
comparison to the leg velocity at liftoff of the previous 
stance phase. The difference in velocities leads to a 
sufficient increase in the energy in the direction of the 
leg to complement the dissipated energy in the leg El . 

In Eq. (9), the expression for the desired 
touchdown angle is a function of the desired axial 
velocity at touchdown tdl . From Eq. (7), tdl  is seen to 
depend on the energy dissipated in the leg El . Since 
this cannot be measured easily, an analytical 
approximation is used. In [13] an analytical 
approximation has been found for the energy dissipated 
during the stance phase in a leg with viscous friction: 
 l lE b p=  (10) 

where  p  was found to be: 
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where  Ts  is the duration of the stance phase and all 
other parameters have been defined previously. 

V. SLIP MODEL CONTROLLER 
In this section a controller, for the SLIP robot model 
described in Section II, will be derived based on the 
energy transfer mechanism laid out in the previous 
section. This controller will be referred to as SL-C. 

The desired touchdown angle of the robot for each 
hop is determined by Eq. (9). This ensures that 
adequate energy is transferred to the unactuated leg. 
Since the SLIP model has a massless leg, no torque is 
required to bring the leg forward during flight. If the 
robot starts its motion in the flight phase (i.e. with a 
throw), then for the first touchdown angle, Eq. (9) 
cannot be used. Therefore for the first touchdown only, 
the desired touchdown angle is chosen according to the 
neutral point control method established in [8]: 

 , arcsin
2
s td

td des
T x

L
θ ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
 (12) 

This angle represents half the angle the leg would 
cover during stance if the horizontal velocity of the 
body were constant.  

However, even though energy will be transferred 
to the axial DOF, the total robot energy will diminish 
unless energy is provided from some external source to 
the mechanical system. Using the hip actuator, it is 
possible to provide energy to the rotating direction, 
thus increasing the total system energy. The energy 
input by the actuator is then distributed as necessary 
between the rotating and axial direction, according to 
the mechanism described above. 

To keep the total system energy constant, the 
actuator applies the necessary torque during the stance 
phase. After touchdown and until the leg reaches the 
vertical position, the torque applied is constant and 
equal to the energy dissipated in the leg during the 
stance phase, over the touchdown angle of the leg. 
When the leg has passed the vertical position, the 
torque has the form of a proportional controller with 
the system energy as feedback. Such a proportional 
energy controller has been used in [9] as part of a 
control scheme that resulted in stable locomotion for a 
real robot. In each case an extra term is added to the 
controller that compensates for the viscous friction at 
the hip. Therefore the actuator torque during stance is: 
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where Esys,d  is the desired system energy, Esys the 
current system energy, k1 the P controller gain. The 
desired system energy is equal to the system energy at 
the beginning of the motion. The expression of the 
system energy at each moment is: 

 ( )22 21 1 1
2 2 2sysE mx my mgy k l L= + + + −  (14) 

As will be seen in the results presented in Section 



 

VII, the SLIP response to this controller is typically a 
transient period of about four cycles, followed by 
stable locomotion. 

VI. FULL ROBOT CONTROLLER 
If the derived SLIP controller was to be applied to the 
case of the full robot model, it would be immediately 
clear that a steady state motion could not be 
accomplished using the controller as is. Specifically, 
gradual instability arises in the body pitching motion, 
while the total gait is not sustainable. An example of 
this is shown in Section VII. As mentioned earlier, this 
result is a strong indication that a more complete robot 
model than the SLIP is required for controller design, 
due to the basic qualitative differences in the behavior 
of the SLIP and the full model. 

It is evident that modifications are required to the 
initial controller presented. The aim of the controller 
developed here is to be able to start the robot with a 
wide range of initial conditions without changing the 
controller gains. It is expected, in accordance with the 
trial on the SLIP model, that there will be a transitional 
phase of about four cycles before the steady state 
motion. The full controller for the original robot will 
now be presented in three components: (a) the stance 
phase control, (b) the leg touchdown angle command 
and (c) the flight phase control. This controller will be 
referred to as FL-C. 

(a) Stance phase control 
As mentioned, using the controller as is on the original 
robot leads to gradual instability in the body pitching 
motion. To bound the pitching motion of the body, an 
inverse dynamics controller is used for the body to 
follow a desired pitching trajectory. During what is 
estimated to be the transient response period, i.e. the 
first four hops, the desired trajectory has the form of a 
sinusoidal counter-oscillation to the oscillation of the 
leg. The form of this trajectory is based on the analysis 
of [6]. The desired trajectory is 
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where  Tf  is the flight duration, computed in Eq. (24), 
Ts  the stance duration. The stance duration is 
considered to be equal to the stance duration of the 
previous stance phase, while for the first cycle it is 
roughly approximated as: 

 s
mT
k

π=  (16) 

After the transient period, the desired trajectory 

becomes a third order polynomial, enforced by inverse 
dynamics control. The desired final pitch angle ϕtd ,des  
and pitch velocity ,td desϕ  are set equal to the pitch 
angle and velocity at liftoff of the last transient stance 
phase ϕ lo,lt , ,lo ltϕ . The trajectory is, 
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Since the first part of the response is expected to be of 
a purely transient character, it is evident why Eq. (17) 
cannot be used from the start of the motion. Also, Eq. 
(15) cannot be continued after the transitional phase, as 
it was not found to lead to a stable motion. 

For both the transient and steady state desired 
trajectories, the inverse dynamics controller enforcing 
them in each case is the same: 
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(b) Leg touchdown angle command 
The stance phase control presented above controls the 
body pitching motion, but replaces the control set out 
in Section V for keeping the system energy steady, Eq. 
(13). Therefore, an alternative method must be found 
to retain the system energy level steady. 

To this end, a proportional controller term for the 
system energy is added to the expression for the 
desired leg touchdown angle. This term becomes active 
only after the first four transient cycles. The new 
expression for the desired touchdown angle, based on 
Eq. (9), becomes: 
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where k2  is the proportional controller gain. The 
desired system energy is equal to the value of the 
system energy after the fourth cycle. The expression 
for the system energy at each moment is now, 
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It has been observed that the controller performs 
significantly better when the last two terms, 
representing the kinetic energy of the leg and body due 
to inertia, are omitted from the energy calculation. For 
the first cycle, the desired touchdown angle is chosen 
as in Eq. (12). 

The stabilizing effect of the added term in Eq. (20) 
on the total system energy is explained as follows. 
When the system energy is greater than desired, the leg 
is set further forward for touchdown during the flight 
phase. Therefore, the resulting velocity in the axial 
direction of the leg at the beginning of stance is 
increased, according to Section IV. This results in 
greater losses in the leg due to viscous friction, 
according to Eqs. (10), (11). This way the system 
energy is decreased. Similarly, if the system energy is 
smaller than the desired energy, then the new term 
results in an increase of the system energy. 

(c) Flight phase control 
To complete the controller, the leg must be 

brought forward to the desired touchdown angle during 
flight. Since the robot leg has inertia, the common 
assumption that the leg may be brought forward with 
zero torque is not valid. To bring the leg to the desired 
position, an inverse dynamics controller is adopted for 
the leg to follow a desired trajectory, ending at the 
desired touchdown angle. The desired trajectory θd  is 
a third order polynomial: 

   θd = a0 + a1t + a2t
2 + a3t

3  (22) 

The parameters of the trajectory are chosen so that the 
leg has reached the desired angle before the time of 
touchdown. The parameters are: 
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The duration of the flight phase  Tf  is easily 
approximated as: 

 ( )( )2
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To implement the controller, the applied torque during 
flight is: 
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where kp , kd  are the controller gains. 
For the complete controller to work on a physical 

robot, it is necessary to have onboard sensing. The 
robot velocity and configuration must be known for the 
calculation of θtd ,des  and the feedback of the flight and 
stance control, as well as for the computation of the 
system energy in Eq. (20). 

VII. RESULTS 
In this section, the response of the SLIP model and the 
full robot model to the derived controllers will be 
presented. 

SLIP model 
SL-C is applied to the SLIP model. A typical 

response is shown in Fig. 4, for m=10 kg, k=5000 N/m. 
The losses are set to bh = 0.5  N.s/m for the hip and 
bl = 1  N.s/m for the leg. The robot was started with an 
initial horizontal velocity of 0x =2.2 m/s from a height 
of h=0.7 m. The controller gain is   k1 =0.2. 

-20

0

20

1.5

2

2.5

0 5 10 15

0

2

θ (deg)

x (m/s)
�

τ (Nm)

t (s)  
(a) 

-20

0

20

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

θ (deg)

x (m/s)
�

τ (Nm)

t (s)  
(b) 

Fig. 4. Response of the SLIP model to SL-C. (a) The 
response over 15 s. (b) The transient phase over 
about 3 s. 

As can be seen in Fig. 4, there is a short transient phase 
during which the robot states at a characteristic cycle 
point (i.e. apex) vary considerably. This lasts for the 
first four or five hops, after which the robot settles into 
a steady state behavior. 

Full model 
Here, the response of the full robot is examined. 
Initially, SL-C is applied to the full model. The 
resulting response is then compared to the response of 
the SLIP model under the same controller, shown in 
Fig. 4. This way, the differences in qualitative behavior 
can be investigated, between the full model and the 
SLIP model, often used for controller design.  

For the application of SL-C to the full model, the 
same model parameters and initial conditions are used 
as in the previous example for the SLIP model (Fig. 4). 
The only difference in the controller is that a torque is 
now necessary to bring the leg forward during flight. 
Also, the remaining full model parameters are Ib=0.5 
kg.m2, Il=0.05 kg.m2. The response is shown in Fig. 5. 



 

As can be seen, although the exact same controller 
configuration worked perfectly on the SLIP, it is not 
adequate for the full model. 
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Fig. 5. Response of full model to SL-C. 

The pitch angle quickly tends to instability, while the 
leg angle behavior has the form of a gradual decay. It is 
evident that the motion is not sustainable. This is a 
display of the fundamental differences between the 
properties of the SLIP and the realistic full model and 
shows that a controller designed using the SLIP model 
fails in a realistic case. Therefore, it indicates that the 
SLIP model is not complete enough for dependable 
robot controller design and that future controllers 
should be designed using a more complete model. This 
conclusion is also verified by the form of the equations 
of motion, see Eq. (1). It is clear that, other than for the 
friction term, there is no coupling between the pitching 
motion and the leg angle or leg length. Therefore, a 
controller designed using the SLIP model cannot have 
a stabilizing effect on the pitching motion of a real 
robot. The rest of system destabilizes due to the leg 
inertia, not accounted for in SLIP based controllers. 
Because the leg inertia is not large, the system 
destabilizes more gradually. 

Next, FL-C is applied to the full model, using the 
same robot parameters as in the previous case. It is 
desired to examine whether the modifications made to 
the initial controller now lead to a stable motion for the 
full model. The gains used in the full model controller 
are k1 =0.2, kd =5, kp =10. The response is shown in 
Fig. 6. As can be immediately seen, FL-C is successful 
in stabilizing the motion of the full model. There is a 
transient phase during which each cycle differs 
considerably from the previous one. This lasts for 
about 5 s, after which the system enters a steady state 
motion. 

FL-C is now tested for various values of robot 
parameters, as well as for a range of initial conditions, 
to verify its generality. Note that all results presented 
below are for the same set of controller gain values 
used in the previous example. 
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Fig. 6. Full robot model response to FL-C. 

This means that there is no need to adjust the 
controller, despite the changes in robot parameters and 
initial conditions used. As the stable time response 
always has the general form of Fig. 6, the test results 
are collected in tables.  

Table 1 gives some sets of robot parameters and 
initial conditions 0x , y0  that lead to stable motions, as 
well as the resulting leg touchdown angle   θtd ,ss  and 
maximum torque τmax,ss  of a random cycle, after the 
system has entered the steady state. The following 
robot parameters are kept the same: m=10 kg, Ib=0.5 
kg.m2, Il=0.05 kg.m2, L=0.5 m,  bh =0.5 N.s/m. The 
same typical initial velocity 0x =2 m/s is used, so as 
not to vary too many parameters. 

Table 1. Robot parameters and initial conditions, and 
resulting stable gait characteristics. 

It can be seen that FL-C results in steady motions for 
the full model, for a large range of the leg stiffness, as 
well as in the case of significant energy dissipation in 
the leg.  

In Table 2, further examples of stable motions are 
given. In this table, various values of body inertia and 
mass are used to further demonstrate the controller’s 
applicable range, still using the same gains as the first 
example of Fig. 6. Again, the initial conditions 0x , y0  
are given, as well as the resulting leg touchdown angle 
θtd ,ss  and maximum torque τmax,ss  of a steady state 
cycle. The following robot parameters are kept steady: 
k=9000 N/m, Il=0.05 kg.m2, L=0.5 m,  bh =0.5 N.s/m. 

k 
(N/m) 

bl  
(N .s/m) 

0x  
(m/s) 

  y0  
(m) 

  θtd ,ss  
(deg) 

  τmax,ss

 (N.m) 

5000 1 2.0 0.6 -13.5 8.7 
5000 1 2.0 0.7 -15.8 4.8 
9000 3 2.0 0.6 -12.0 7.2 
9000 3 2.0 0.7 -13.2 11.0 

12000 4 2.0 0.6 -10.5 8.8 
12000 4 2.0 0.7 -11.5 9.6 



 

Table 2. Robot parameters and initial conditions, and 
resulting stable gait characteristics. 

Accomplishing steady motions using such a wide 
range of parameters and the same controller gains is 
made possible by the systematic exploration of the 
energy transfer mechanism. Because of this, the 
desired leg angle at touchdown is an analytical 
expression of the robot parameters, as seen in Section 
IV. As a result, once a set of reasonable gains is found 
for the controller, it is extremely accommodating to 
changes in both initial conditions and robot parameters. 
This makes the controller novel, as previous attempts 
to use the leg touchdown angle as a control input on 
realistic robots have relied on trial and error [11]. Also 
a number of previous controllers, such as [6], used 
special initial conditions so that the robot was already 
close to the steady state cycle at the beginning of its 
motion. It is evident that our controller, requiring only 
knowledge of the initial conditions, is capable of 
overcoming significant transient effects and still 
leading to stable locomotion. Finally, the controller can 
be implemented using only one actuator, situated at the 
hip, providing a real advantage in construction over the 
two-actuator implementation. 

VIII. CONCLUSIONS 
In this paper the mechanism of energy transfer was 
studied, between the single actuated DOF of a one-
legged hopping robot and the remaining unactuated 
DOFs, during stable locomotion. The concept of the 
energy transfer mechanism was analyzed, followed by 
an analytical study of the mechanism. Using this 
analysis, an initial controller for the simple SLIP model 
was found. The model incorporated friction in the leg 
and hip, and used a single actuator at the hip. Although 
this controller was successful for the SLIP model, it 
did not lead to stability for the full robot model. This 
result provides a strong indication that the SLIP model, 
often used for controller design, may be unsuitable for 
this purpose. Modifications were then made to the 
initial controller that resulted in stabilizing the full 
model for a wide range of parameters, using only a 
single actuator. 
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m 
(kg) 

 Ib  
(kg m2) 

 bl  
(N .s/m) 

0x  
(m/s) 

  y0  
(m) 

  θtd ,ss

 
(deg) 

τmax,ss

(N.m) 

8 0.6 3 2.0 0.6 -11.3 13.1 
8 0.6 3 2.0 0.7 -13.0 4.3 
15 0.8 2 2.0 0.6 -14.4 3.9 
15 0.8 2 2.0 0.7 -16.5 11.0 
20 1.5 1 2.0 0.6 -15.5 3.8 
20 1.5 1 2.0 0.7 -17.0 6.2 


