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ABSTRACT

In this paper, a model-based impedance controller for
electrohydraulic servosystems is developed. Rigid body
and electrohydraulic models, including servovalve models
are employed and described by a set of integrated system
equations. Friction and leakage of hydraulic elements are
also included. The control law consists of two signals, a
feedback and a feedforward signal. An impedance filter
modifies a desired trajectory according to a specified
behaviour. The modified trajectory is fed to a simplified
system model to reduce the effects of the nonlinear
hydraulic dynamics. An example one degree of freedom
servomechanism is studied. Simulations with typical
desired trajectories are presented and a good performance
of the controller is obtained.
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1. Introduction

The combination of hydraulics science with servo control,
or hydrotronics, has given new thrust to hydraulics
applications, [1]. The main reasons why hydrotronics are
preferred to electromechanical drives in some industrial
and mobile applications, include their ability to produce
large forces at high speeds, their high durability and
stiffness, and their rapid response, [2].

Control techniques are used to compensate for the
nonlinearities of electrohydraulic servosystems. Nonlinear
adaptive control techniques for hydraulic servosystems
have been proposed by researchers assuming linearization
[3] and backstepping [4], approaches. A robust force
controller design based on the nonlinear Quantitative
Feedback Theory, has been implemented on an industrial
hydraulic actuator, taking into account system and
environmental uncertainties, [5].

Hydraulic systems differ from electromechanical ones,
in that the force or torque output is not proportional to
actuator current and therefore, hydraulic actuators cannot
be modeled as force/ torque sources. As a result,
controllers that have been designed for robot control,
assuming the capability of setting actuator force/ torque,

cannot be used here. To use such controllers, a hydraulic
actuator must be able to apply a desired force.

A unified approach to the control of a manipulator
applicable to free motions, kinematically constrained
motions, and dynamic interaction between the
manipulator and its environment has been examined in
[6]. Techniques for implementing a desired manipulator
impedance and for choosing the impedance appropriate to
a given application using optimization theory were
presented, [6].

A model-based, feedforward-feedback impedance
controller of hydraulic servosystems for high-
performance hydraulic joints [7] has been proposed, in
which an impedance filter adjusts the desired trajectory
according to a prescribed behaviour in free space and in
contact. Similar work has been presented in [8], where a
position-based impedance controller for an industrial
hydraulic manipulator is developed. Further, impedance
controllers have been studied and implemented on
teleoperated hydraulic servosystems for heavy duty
works, [9], [10].

In this paper, a model-based impedance controller for
electrohydraulic servosystems is developed. Dynamic
models are presented that describe the rigid body
equations of motion and the hydraulic dynamics. Friction
and leakages of hydraulic elements are included in the
model. The control law includes two control signals, a
feedback and a feedforward one. An impedance filter
modifies a desired trajectory according to a specified
behaviour. The modified trajectory is fed to a simplified
model in order to reduce the effects of the nonlinear
hydraulic dynamics. A case study of a servo-mechanism
with one degree of freedom is studied in detail. Results
show that a good performance of the controller is
obtained. The approach can be further extended to
hydraulic manipulator and simulator control.

2. Elements of Electrohydraulic Servosystem
Dynamic Modeling

In this section, the dynamic modeling of high
performance electrohydraulic servocylinders is presented
briefly. An electrohydraulic servosystem consists of a



servomechanism, including a servovalve, a servoactuator,
a controller, a mechanical load and a hydraulic power
supply. Next, simple models of major components are
described.

An ideal single rod hydraulic cylinder is described by

Q =A%, r=12 (1a)
PA-pPA=F (1b)

where Q, are the flows through its two chamber ports,
p., P, are the chamber pressures, A is the piston side

area, A, is the rod side area, x, is the piston

displacement and F, is the piston output force. A real
cylinder model also includes chamber oil compressibility,
friction and other effects. However, these can be
neglected at an initial stage.

A typical hydraulic servovalve consists of four
symmetric and matched servovalve orifices making up a
four-legged flow path of four nonlinear resistors,
modulated by the input voltage. Thereby, the servovalve
is modeled as the hydraulic equivalent of a Wheatstone
bridge, see Fig. 1. When flow passes through the orifices
1 and 3 (path P> A— B —>T), flow leakages exist in
the valve orifices 2 and 4. Respectively, when flow passes
through the path P —-B — A — T , flow leakages exist in
the valve orifices 1 and 3. This model is described by

Qu = fi()yps =P, Qs =0(1)ypP.—Ppr (22)
Q2= f(1)yps — P2, Qua=02()y/ P —Pr (2b)

where p, and p; are the power supply and return
pressure of the servosystem, respectively, i is the
servovalve motor current (control command), f,(i),
f,(i), g:(i) and g,(i) are servovalve nonlinear orifice

conductances, functions of the servovalve motor current.
Because of servovalve symmetry, the following equations
hold,

fi(i) = 9. (i) = f2 (=) (3a)
f2(i) = 9. (i) = fi (=) (3b)

D, qupp\y s gz(i) (a) (b) =

Servovalve

Fig. 1. a. Schematic model of servovalve. b. A drawing of a real
servovalve.

In the case of an ideal hydraulic cylinder with a double
rod, the two areas A and A, are equal and therefore, (1)

is simplified further.

Hydraulic equations must be appended with rigid body
equations of motion that provide a relation between
actuator torques/forces and the resulting accelerations.
These are given by,

M(@)G+V(a.4)+G(@) +Fx () =7 (4)

where q is the nx1 vector of generalized coordinates,
M(q) isthe nxn positive definite mass matrix, the nx1
vector V(q,q) represents forces/torques arising from
centrifugal and Coriolis forces, the nx1 vector G(q)
represents torques due to gravity, F(q) is the nx1
vector of the forces/torques due to friction and z is the
nx1 vector of actuator joint torques.

A number of methods exists, that model the friction
vector F_(q), [12]. A widely used method suggests,

Fi (q) =F (q) +F (q) +Fs (5)

where F,(4),F.(4d) and F, are the viscous, Coulomb

and static friction vector respectively.

The hydraulic and load dynamic response can be
described by integrated system equations derived using a
systems approach, such as the Linear Graph, [13], or
Bond Graph methods, [14]. This approach leads to a set of
nonlinear state space equations, the solution of which
determines the system variables. To integrate these
models to the mechanical load dynamics, one needs to
provide expressions transforming pressure differences to
forces, see (1b), and velocities to flows, see (1a). In
general, hydraulic and load dynamics are described by
nonlinear equations, of the form,

x=f(x)+g(x)u
y=h(x),

where X is a state column vector, X, is the initial state

Xo = X(t) = X(0) ©

column vector for initial time t, =0, u is the input
column vector, y is the output column vector and f(x),
g(x), and h(x) are nonlinear functions.

3. Example: Modeling of a 1-DOF Servo

In this section, the dynamic model of a one-degree-of-
freedom electrohydraulic servomechanism is developed.
This servo is to be used as an actuator in a robotic Stewart
type mechanism, [15], for 6-dof CNC machining, i.e. a six
dof closed kinematic chain mechanism consisting of a
fixed base and a movable platform with six linear
actuators supporting it. The one dof mechanism is
illustrated schematically in Fig. 2. Also, a typical view of
a 6-dof Stewart platform is depicted in the same figure.
The angles of inclination of the actuator ¢, and the



load ¢ shown in Fig. 2, can be expressed as function of
the displacement of the actuator,x,. The equation of

motion for the complete system including actuator, load
and beam, is derived applying the Lagrange formulation
given by (4), which is written as

M (%p) %5 +V (X0, X, ) + G (%) + Fre (%) = Fy (7)

where M (x,) is a positive function, which represents the

variable apparent mass of all moving masses including the
piston mass, as seen by the actuator, V(x,,X,) contains

the Coriolis and centrifugal terms, G(x,) represents the
gravity term, F, is the hydraulic force, which is applied
by the piston and Fy (%,) is the friction term, which is
described by (5) and is given by

Fi (X,) =X, + Fgsign(%,) + K (8)

where b is the parameter for viscous friction, F, is the
parameter for Coulomb friction, and F, is the static
friction, which is given by

| Feas |Fex| < Fios % =0, %, =0 ©
- FsOSign(Fext)x |Fext| > FsO: Xp = O, Xp #0

In (7), M(%,), V(X,,%2) and G(x,) are given by
M (X,)=m, + (41 1% + 1512) - (L, Ls1?)? (10a)

V (%, %) =[417L, (Ig1? + 1 a17) — 15 Ls L, L2 ] - (L3 L513)* (10D)

G(XP) =9 '[2|—3L2Ir1mp +2(r + r2)I3L5(2m +m,) -
(10c)
r1L4 (Zmpl + It:yl mcyl _mplp)]'(Al'rlr-:%lz\/E)_1

where r, r, and r; are defined in Fig. 2, m, m,, m, and
my: are the load, beam, piston, and cylinder masses
respectively, 1, is the load and the load supportive beam
moment of inertia about the rotation point A, Iz is a
linear function of x, and represents the cylinder and

piston moment of inertia about the rotation point B, and
I,L,L,L,L, and L5 are expressed as functions of the

displacement of the actuator, x,,

I=1(X,)=ley + X (11a)

L =L(x,)=1?+r?—rf (11b)
Lo =Lo(x) =(h+ )2 —1° (11c)
Ls = Ls(Xp) =17 = (r —13)? (11d)
Lo =Li(Xp) = 1" = (12 —r)? (11e)
L =Ls(Xp) =1+ —1° (11f)
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Fig. 2. a. Schematic view of the one DOF servomechanism model.
b. Schematic view of a six-dof Stewart Platform.

The hydraulics equations of the servomechanism are
described by (1)-(3). One of the most important
characteristics is the servovalve characteristic, ¢, — Ap, .

The flow through the cylinder and the piston output force
applied to the load are given by (1a) and (1b)
correspondingly. The pressure drop at the servovalve is
expressed using (2), neglecting auxiliary elements
pressure drops.

The application of continuity and compatibility laws,
along with individual elements equations, leads to a set of
eight nonlinear first order differential equations, in the
form of (6), as follows,

Pr=[Qi11 Q2 —Qua —Cpin (P — P2) — AV, 1CiH  (123)

P2 =[Q2 +Qua = Qi 2 +Cpin (P — P2) + AV, ]G (12b)

Pen =[(Ps = Pen)/Ru = Qi u]Ct (12c)
Pz =[Qii2 = (Peiz = Pr)/R]Ci? (12d)
Qi =[Pen = P —CriQu|Quifl it (12e)
Quiz =[P2 = Pesz ~CraQua|Quefl 177 (12f)

Vp =M 71(Xp)[A1 pl_AQ P2 -V (Xp ' Xp )_ G(Xp )_Ffr (Xp)] (129)
b=V, (12h)

where Q,;;, Q. are the flows in hydraulic power and
return line correspondingly, pci, Pc. are respectively
the pressures of hydraulic power and return line regarding
with the lines’ capacitances, 1,, Ry, and C,, are the
inertance, resistance and capacitance of hydraulic power
line respectively, 1,,, R, and C,, are the inertance,
resistance and capacitance of hydraulic return line
respectively, C,, and C, are the fluid capacitance in the
servoactuator chambers, and C,;, is the internal leakage

coefficient of piston.
The force acting on the load and beam, see Fig. 2, is
given by

Fn = Mu (%) X, + Vi (X, %) + G (X5) (13)



where M, (x,) is the part of M(x,) which represents the
variable apparent mass of the load and beam, Vi, (x,,X%,)
is the part of V(x,,X,), which contains velocity terms,
and G (x,) is the part of G(x,) which represents gravity
terms of the load mass and beam.

4. Control Design

Impedance control essentially allows a physical system to
emulate another simpler one assuming the new behaviour
is within the capabilities of the physical system. In this
section a model-based impedance control design for
electrohydraulic servosystems is developed. This law is
applied to the examined single dof application. The
control design strategy presented here involves two
control parts, a feedback and a feedforward one.

Feedback Control Scheme: In the model-based
impedance approach, a new desired trajectory is
computed and is called an impedance filter. The design of
this new trajectory includes a set of impedance
parameters, which are responsible for the good behaviour
of the tracking performance.

A typical response system behaviour is given by a
second order system, [6]. The desired behaviour can be
extended considering the virtual point position as a time
function and including the velocity, acceleration and force
error in the control law scheme, in general. The
impedance filter approach used for the electrohydraulic
servomechanism at hand, is described by

Md (Xe - 5('p,des) + Bd (Xe - Xp,des) + Kd (Xe - Xp,des) = Fenv (14)

where My, By, Ky are respectively the desired inertia,
damping and stiffness (desired impedance parameters)
describing the desired second order behaviour, x, is the
new desired impedance trajectory, which depends on the
desired one, X, 4, and the contact force, X,qs IS the
desired trajectory of the system and F,, is the

environment force acting to the system, which can be
measured by a force sensor and can be approximated by,

Fenv = Kenv (Xenv - Xp) (15)

where K., is a positive constant which symbolizes the
environment stiffness and x,, is a virtual point of the
environment.

The model-based impedance control law is introduced
by the feedback valve current, iy, . This loop can include a
number of terms depending on the robustness and
performance required. Examples include the following
feedback laws,

iszKv(Xe_Xp)+Kp(Xe_Xp) (16&)

ifb :Kv(xe_xp)"'Kp(Xe_xp)"" Kf(Fe,des_Fe) (16b)

where x. is determined by (14), K,,K, and K; are
control gains, F, is found subtracting environmental force
from force acting on the load mass and beam and F, g4 is

the impedance desirable force acting on the load mass and
beam. The forces F, and F, 4, are given respectively by

Fe = Fm - Fenv (17&)
l:e,des = Mm(xe) X +Vm (Xe’xe)+Gm (Xe) (17b)

Here, the control law given by (16b) is studied. The
impedance control law is examined taking into account
the servovalve orifice conductances are assumed to be
linear functions of the input current. Therefore, the flows
through the orifices of the servovalve are written as

Qu=(Kii+Kg1)y/Ps =P, Qua=(Kii+Kg1)y/P2—pr  (183)
Qu2 =(Koi+Kg )4/ Ps— P2, Qua =(Kai+Kg )/ pi—pr (18b)

where i is the valve current, K;, Ky, K; and K,, are

positive constants, which correspond to the main and
leakage valve flow path.

Feedforward Control Scheme: A feedforward control
signal can be added in the control scheme to further
reduce deviations from the desired trajectory. This current
must be determined such that the physical plant behaves
like the desired system in noncontact and contact regimes.
Schematically, the proposed control scheme is depicted in
Fig. 3.

_Ful Dynamic Mode!
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Fig. 3. Schematic view of the full model-based impedance controller
diagram.

The feedforward input current is determined using a
simplified model of the hydraulic servosystem. The use of
a simplified model in the feedforward loop yields
practically the same response as that using the full model.
Moreover, the main advantage of this approach is a
significant decrease in the computational burden required
for simulation. Indeed, neglecting the internal leakage
coefficient of piston and the servovalve leakages, (12a-b)
are written as

pl = [Qvl - Alvp ] Cl_l (19&)
P, =[AV, — Qi]C:t (19b)



Further, the continuity equation to each of the piston
chambers, [11], and the combination of (19a-b) yields

Vt (4ﬂe)7lApL = QL - (A]. - AZ)Vp (20)

where V, is the total volume of fluid under compression
in both chambers, . is the effective bulk modulus of the
fluid, Ap_. = p, — p. is the piston pressure drop and Q, is
the load flow, which is given by, [11]

Q. = F(i)y/(ps —sign(i)Ap, )/ 2 (21)

where

F(i):{ f.(i) = Kii + Kop, 10 2

fz(i): Kzi+K0y2, i<0

Using (18)-(22), the feedforward current is determined.
For instance, when i >0 the current is given by

CVe(4B)AD + (A=A, Koy

" k(e —signap0 /2 Ke @)

Finally, the full control law scheme of the servosystem
is given by the total valve current of the feedback and
feedforward current,

i =g +ig (24)

Substituting (24) to state equations (12), taking into
account (14), (16) — (18) and associating appropriate (12),
is resulted

€ + K, +Kyee =0 (25)

where e =x,—X, and K,., K,. are positive quantities,

which represent the control gains. Last equation
represents the system error dynamics and proves that the
system is stable.

A custom-designed benchmark setup, shown in Fig. 4,
was built at the NTUA to test the proposed controller. The
particular design of the setup allows for easy changes in
the static and dynamic components of the inertial load,
driven by the actuator. This is achieved by varying the
angle of the cylinder with respect to the horizontal, and by
adding or removing loads.

A Moog G122-202A1 Series controller is used. To read
servocylinder headside and rodside pressure, pressure
sensors on the valve manifold are used. The piston rod
position is read by a built-in analog LDT. A force cell at
the end of the rod provides the force transmitted to the
load. To use nonlinear and model based controllers, the
PID control section of the card is bypassed and the card is
used only for reading feedback measurements and for
sending the appropriate control voltages to the
servoamplifier. The servoamplifier in turn sends
appropriate currents to the servovalve.

Controller p/ env
PC - QNX ' Load
:. PRl ] “ael 4, 3

O* Force™ -

K ~.. - _sensor
Voltage - . ’ 5
: Pressures®, | ps $%
LDT.
sensors 5 ) pr

A .
\_ Servovalve ‘e ! Servocylinder
Servoamplifier R4

Input cn:J;r;e;wt

i

Benchmark
Fig. 4. Schematic of control system setup and benchmark.

5. Simulation Results

The tracking performance of the controller is evaluated on
the full hydraulic servosystem, described by (12a-h),
using Matlab/Simulink. System parameters include the
load supportive beam mass and inertia, m, =15.11kg ,

I, =6.32kgm? and geometrical parameters such as
n=104m, r,=0.08m and r;b=1.64m, see Fig. 2.
Friction parameters are b=200Ns/m, F,=50N,
Fo=20N.

Simulations runs were obtained using a number of
desirable trajectories. As an example, Fig. 5 shows typical
results with m=60kg, K, =10* A/m,K, =3x10™* As/m
K; =2x10°%A/N and K., =5x10* N/m. A stiff wall
is present at X, =0.045m. A desired impedance
parameters selection of the system response are
K¢ =10N/m, By =20Ns/m and M, =0.1kg, [7].
Finally, the natural frequency is determined as
w, =+/Kq /My =10rad/s. The piston displacement and

velocity responses, the input signal, the environment force
response, as well as the load power and chamber
pressures histories are shown in Fig. 5.
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Fig. 5. Simulation results. (a) Piston displacement response, (b) Piston
velocity response, (c) Input signal, (d) Environment force response, (e)
Load power history, (f) Chamber pressures histories.

The robustness of the controller can be demonstrated
by applying the controller to the system in the case of
erroneous parameter estimation. For example, assume that
the load, cylinder mass, beam mass, cylinder length and
r, are estimated to be 5% larger than their true values,
while the piston mass, piston length, r and r, are
estimated to be 5% smaller. In this case, despite these
errors, the controller leads the system to the desired
conditions, albeit with some intermediate oscillation, as
can be seen from the piston displacement and velocity
responses, shown in Fig. 6.
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Fig. 6. Simulation results with parameter estimation error. (a) Piston
displacement response, (b) Piston velocity response.

6. Conclusions

A model based impedance controller was developed for
electrohydraulic servosystems, using a position-based
impedance scheme. The control law included two control
signals, a feedback and a feedforward one. Full rigid body
and electrohydraulic models, including servovalve models
were employed and described by a set of integrated
system equations. The proposed methodology was
illustrated by a detailed example. Simulations with typical
desired trajectories were presented and a good
performance of the controller was obtained. The approach
can be further extended to hydraulic manipulator and
simulator control.
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