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ABSTRACT 
In this paper, a model-based impedance controller for 
electrohydraulic servosystems is developed. Rigid body 
and electrohydraulic models, including servovalve models 
are employed and described by a set of integrated system 
equations. Friction and leakage of hydraulic elements are 
also included. The control law consists of two signals, a 
feedback and a feedforward signal. An impedance filter 
modifies a desired trajectory according to a specified 
behaviour. The modified trajectory is fed to a simplified 
system model to reduce the effects of the nonlinear 
hydraulic dynamics. An example one degree of freedom 
servomechanism is studied. Simulations with typical 
desired trajectories are presented and a good performance 
of the controller is obtained. 
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1.  Introduction 
 
The combination of hydraulics science with servo control, 
or hydrotronics, has given new thrust to hydraulics 
applications, [1]. The main reasons why hydrotronics are 
preferred to electromechanical drives in some industrial 
and mobile applications, include their ability to produce 
large forces at high speeds, their high durability and 
stiffness, and their rapid response, [2]. 

Control techniques are used to compensate for the 
nonlinearities of electrohydraulic servosystems. Nonlinear 
adaptive control techniques for hydraulic servosystems 
have been proposed by researchers assuming linearization 
[3] and backstepping [4], approaches. A robust force 
controller design based on the nonlinear Quantitative 
Feedback Theory, has been implemented on an industrial 
hydraulic actuator, taking into account system and 
environmental uncertainties, [5]. 

Hydraulic systems differ from electromechanical ones, 
in that the force or torque output is not proportional to 
actuator current and therefore, hydraulic actuators cannot 
be modeled as force/ torque sources. As a result, 
controllers that have been designed for robot control, 
assuming the capability of setting actuator force/ torque, 

cannot be used here. To use such controllers, a hydraulic 
actuator must be able to apply a desired force. 

A unified approach to the control of a manipulator 
applicable to free motions, kinematically constrained 
motions, and dynamic interaction between the 
manipulator and its environment has been examined in 
[6]. Techniques for implementing a desired manipulator 
impedance and for choosing the impedance appropriate to 
a given application using optimization theory were 
presented, [6]. 

A model-based, feedforward-feedback impedance 
controller of hydraulic servosystems for high-
performance hydraulic joints [7] has been proposed, in 
which an impedance filter adjusts the desired trajectory 
according to a prescribed behaviour in free space and in 
contact. Similar work has been presented in [8], where a 
position-based impedance controller for an industrial 
hydraulic manipulator is developed. Further, impedance 
controllers have been studied and implemented on 
teleoperated hydraulic servosystems for heavy duty 
works, [9], [10]. 

In this paper, a model-based impedance controller for 
electrohydraulic servosystems is developed. Dynamic 
models are presented that describe the rigid body 
equations of motion and the hydraulic dynamics. Friction 
and leakages of hydraulic elements are included in the 
model. The control law includes two control signals, a 
feedback and a feedforward one. An impedance filter 
modifies a desired trajectory according to a specified 
behaviour. The modified trajectory is fed to a simplified 
model in order to reduce the effects of the nonlinear 
hydraulic dynamics. A case study of a servo-mechanism 
with one degree of freedom is studied in detail. Results 
show that a good performance of the controller is 
obtained. The approach can be further extended to 
hydraulic manipulator and simulator control. 
 
2.  Elements of Electrohydraulic Servosystem 

Dynamic Modeling 
 
In this section, the dynamic modeling of high 
performance electrohydraulic servocylinders is presented 
briefly. An electrohydraulic servosystem consists of a 



servomechanism, including a servovalve, a servoactuator, 
a controller, a mechanical load and a hydraulic power 
supply. Next, simple models of major components are 
described. 

An ideal single rod hydraulic cylinder is described by 

 p , 1,2= =r rQ A x r  (1a) 

 1 1 2 2 p− =p A p A F  (1b) 

where rQ  are the flows through its two chamber ports, 

1p , 2p  are the chamber pressures, 1A  is the piston side 
area, 2A  is the rod side area, px  is the piston 
displacement and pF  is the piston output force. A real 
cylinder model also includes chamber oil compressibility, 
friction and other effects. However, these can be 
neglected at an initial stage. 

A typical hydraulic servovalve consists of four 
symmetric and matched servovalve orifices making up a 
four-legged flow path of four nonlinear resistors, 
modulated by the input voltage. Thereby, the servovalve 
is modeled as the hydraulic equivalent of a Wheatstone 
bridge, see Fig. 1. When flow passes through the orifices 
1 and 3 (path → → →P A B T ), flow leakages exist in 
the valve orifices 2 and 4. Respectively, when flow passes 
through the path → → →P B A T , flow leakages exist in 
the valve orifices 1 and 3. This model is described by 

 1 1 1 3 1 2( ) , ( )= − = −v s v TQ f i p p Q g i p p  (2a) 

 2 2 2 4 2 1( ) , ( )= − = −v s v TQ f i p p Q g i p p  (2b) 

where sp  and Tp  are the power supply and return 
pressure of the servosystem, respectively, i  is the 
servovalve motor current (control command), 1( )f i , 

2 ( )f i , 1( )g i  and 2 ( )g i  are servovalve nonlinear orifice 
conductances, functions of the servovalve motor current. 
Because of servovalve symmetry, the following equations 
hold, 

 1 1 2( ) ( ) ( )= = −f i g i f i  (3a) 

 2 2 1( ) ( ) ( )= = −f i g i f i  (3b) 
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Fig. 1. a. Schematic model of servovalve. b. A drawing of a real 

servovalve. 
In the case of an ideal hydraulic cylinder with a double 

rod, the two areas 1A  and 2A  are equal and therefore, (1) 
is simplified further. 

Hydraulic equations must be appended with rigid body 
equations of motion that provide a relation between 
actuator torques/forces and the resulting accelerations. 
These are given by, 

 ( ) ( , ) ( ) ( )+ + + =M frq q V q q G q F q τ  (4) 

where q  is the 1×n  vector of generalized coordinates, 
( )M q  is the ×n n  positive definite mass matrix, the 1×n  

vector ( , )V q q  represents forces/torques arising from 
centrifugal and Coriolis forces, the 1×n  vector ( )G q  
represents torques due to gravity, ( )frF q  is the 1×n  
vector of the forces / torques due to friction and τ  is the 

1×n  vector of actuator joint torques. 
A number of methods exists, that model the friction 

vector 
  
Ffr( �q) , [12]. A widely used method suggests, 

 ( ) ( ) ( )= + +fr v c sF q F q F q F  (5) 

where ( )vF q , ( )cF q  and sF  are the viscous, Coulomb 
and static friction vector respectively. 

The hydraulic and load dynamic response can be 
described by integrated system equations derived using a 
systems approach, such as the Linear Graph, [13], or 
Bond Graph methods, [14]. This approach leads to a set of 
nonlinear state space equations, the solution of which 
determines the system variables. To integrate these 
models to the mechanical load dynamics, one needs to 
provide expressions transforming pressure differences to 
forces, see (1b), and velocities to flows, see (1a). In 
general, hydraulic and load dynamics are described by 
nonlinear equations, of the form, 

 
0, ( ) (0)

=
= = =t0

( ) + ( )
( )

x f x g x u
y h x x x x

 (6) 

where x  is a state column vector, 0x  is the initial state 
column vector for initial time 0 0=t , u  is the input 
column vector, y  is the output column vector and ( )f x , 

( )g x , and ( )h x  are nonlinear functions. 
 
 
3.  Example: Modeling of a 1-DOF Servo 
 
In this section, the dynamic model of a one-degree-of-
freedom electrohydraulic servomechanism is developed. 
This servo is to be used as an actuator in a robotic Stewart 
type mechanism, [15], for 6-dof CNC machining, i.e. a six 
dof closed kinematic chain mechanism consisting of a 
fixed base and a movable platform with six linear 
actuators supporting it. The one dof mechanism is 
illustrated schematically in Fig. 2. Also, a typical view of 
a 6-dof Stewart platform is depicted in the same figure. 

The angles of inclination of the actuator θ , and the 



load ϕ  shown in Fig. 2, can be expressed as function of 
the displacement of the actuator, px . The equation of 
motion for the complete system including actuator, load 
and beam, is derived applying the Lagrange formulation 
given by (4), which is written as 

 p p p p p p p( ) ( , ) ( ) ( )+ + + =frM x x V x x G x F x F  (7) 

where p( )M x  is a positive function, which represents the 
variable apparent mass of all moving masses including the 
piston mass, as seen by the actuator, p p( , )V x x  contains 
the Coriolis and centrifugal terms, p( )G x  represents the 
gravity term, pF  is the hydraulic force, which is applied 
by the piston and p( )frF x  is the friction term, which is 
described by (5) and is given by 

 p p p( ) ( )=fr c0 sF x bx + F sign x + F  (8) 

where b  is the parameter for viscous friction, c0F  is the 
parameter for Coulomb friction, and sF  is the static 
friction, which is given by 

 p p

p p

, , 0, 0
( ), , 0, 0

⎧ < = =⎪= ⎨ > = ≠⎪⎩

ext ext s0
s

s0 ext ext s0

F F F x x
F

F sign F F F x x
 (9) 

In (7), p( ),M x  p p( , )V x x  and p( )G x  are given by 
 

 4 2 2 1
p 1 2 3( ) (4 ) ( )−= + + ⋅p A BM x m I l I L L L l  (10a) 

 
2 2 2 2 2 2 3 1

p p 4 1 3 2 1 2 3( , ) [4 ( ) ] ( )−= + − ⋅B A BV x x l L I r I l I L L L L L l (10b) 
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where 1r , 2r  and 3r  are defined in Fig. 2, m , bm , pm  and 

cylm  are the load, beam, piston, and cylinder masses 
respectively, AI  is the load and the load supportive beam 
moment of inertia about the rotation point A, BI  is a 
linear function of px  and represents the cylinder and 
piston moment of inertia about the rotation point B, and 

1 2 3 4, , , ,l L L L L  and 5L  are expressed as functions of the 
displacement of the actuator, px , 

 ( )= ≡ +p cyl pl l x l x  (11a) 
 2 2 2

1 1 1 3( )= ≡ + −pL L x l r r  (11b) 
 2 2

2 2 1 3( ) ( )= ≡ + −pL L x r r l  (11c) 
 2 2

3 3 1 3( ) ( )= ≡ − −pL L x l r r  (11d) 
 4 2 2 2

4 4 1 3( ) ( )= ≡ − −pL L x l r r  (11e) 
 2 2 2

5 5 1 3( )= ≡ + −pL L x r r l  (11f) 
 

 
Fig. 2. a. Schematic view of the one DOF servomechanism model. 

b. Schematic view of a six-dof Stewart Platform. 
 

The hydraulics equations of the servomechanism are 
described by (1)-(3). One of the most important 
characteristics is the servovalve characteristic, v vQ p−∆ . 
The flow through the cylinder and the piston output force 
applied to the load are given by (1a) and (1b) 
correspondingly. The pressure drop at the servovalve is 
expressed using (2), neglecting auxiliary elements 
pressure drops. 

The application of continuity and compatibility laws, 
along with individual elements equations, leads to a set of 
eight nonlinear first order differential equations, in the 
form of (6), as follows, 

 1
1 , 1 2 4 , 1 2 1 1[ ( ) ] −= − − − − −I l v v p in pp Q Q Q C p p A v C  (12a) 

 1
2 2 4 , 2 , 1 2 2 2[ ( ) ] −= + − + − +v v I l p in pp Q Q Q C p p A v C  (12b) 

 1
, 1 , 1 1 , 1 1[( ) ] −= − −C l s C l l I l lp p p R Q C  (12c) 

 1
, 2 , 2 , 2 2 2[ ( ) ] −= − −C l I l C l T l lp Q p p R C  (12d) 

 1
, 1 , 1 1 R1 v1 v1 1[ ] −= − −I l C l lQ p p C Q Q I  (12e) 

 1
, 2 2 , 2 R3 v3 v3 2[ ] −= − −I l C l lQ p p C Q Q I  (12f) 

1
p 1 1 2 2 p p p p( )[ ( , ) ( ) ( )]−= − − − −p frv M x A p A p V x x G x F x  (12g) 

 =p px v  (12h) 

where , 1I lQ , , 2I lQ  are the flows in hydraulic power and 
return line correspondingly, , 1C lp , , 2C lp  are respectively 
the pressures of hydraulic power and return line regarding 
with the lines’ capacitances, 1lI , 1lR , and 1lC  are the 
inertance, resistance and capacitance of hydraulic power 
line respectively, 2lI , 2lR , and 2lC  are the inertance, 
resistance and capacitance of hydraulic return line 
respectively, 1C , and 2C  are the fluid capacitance in the 
servoactuator chambers, and ,p inC  is the internal leakage 
coefficient of piston. 

The force acting on the load and beam, see Fig. 2, is 
given by 

 p p p p p( ) ( , ) ( )= + +m m m mF M x x V x x G x  (13) 



where p( )mM x  is the part of p( )M x  which represents the 
variable apparent mass of the load and beam, p p( , )mV x x  
is the part of p p( , ),V x x  which contains velocity terms, 
and p( )mG x  is the part of p( )G x  which represents gravity 
terms of the load mass and beam. 
 
4.  Control Design 
 
Impedance control essentially allows a physical system to 
emulate another simpler one assuming the new behaviour 
is within the capabilities of the physical system. In this 
section a model-based impedance control design for 
electrohydraulic servosystems is developed. This law is 
applied to the examined single dof application. The 
control design strategy presented here involves two 
control parts, a feedback and a feedforward one. 
 

Feedback Control Scheme: In the model-based 
impedance approach, a new desired trajectory is 
computed and is called an impedance filter. The design of 
this new trajectory includes a set of impedance 
parameters, which are responsible for the good behaviour 
of the tracking performance. 

A typical response system behaviour is given by a 
second order system, [6]. The desired behaviour can be 
extended considering the virtual point position as a time 
function and including the velocity, acceleration and force 
error in the control law scheme, in general. The 
impedance filter approach used for the electrohydraulic 
servomechanism at hand, is described by 

, , ,( ) ( ) ( )− + − + − =d e p des d e p des d e p des envM x x B x x K x x F  (14) 

where dM , dB , dK  are respectively the desired inertia, 
damping and stiffness (desired impedance parameters) 
describing the desired second order behaviour, ex  is the 
new desired impedance trajectory, which depends on the 
desired one, ,p desx , and the contact force, ,p desx  is the 
desired trajectory of the system and envF  is the 
environment force acting to the system, which can be 
measured by a force sensor and can be approximated by, 

 ( )= −env env env pF K x x  (15) 

where envK  is a positive constant which symbolizes the 
environment stiffness and envx  is a virtual point of the 
environment. 

The model-based impedance control law is introduced 
by the feedback valve current, fbi . This loop can include a 
number of terms depending on the robustness and 
performance required. Examples include the following 
feedback laws, 

 ( ) ( )= − + −fb v e p p e pi K x x K x x  (16a) 

 ,( ) ( ) ( )= − + − + −fb v e p p e p f e des ei K x x K x x K F F  (16b) 

where ex  is determined by (14), pK , vK  and fK  are 
control gains, eF  is found subtracting environmental force 
from force acting on the load mass and beam and ,e desF  is 
the impedance desirable force acting on the load mass and 
beam. The forces eF  and ,e desF  are given respectively by 

 = −e m envF F F  (17a) 

 , e e e e e( ) ( , ) ( )= + +e des m m mF M x x V x x G x  (17b) 

Here, the control law given by (16b) is studied. The 
impedance control law is examined taking into account 
the servovalve orifice conductances are assumed to be 
linear functions of the input current. Therefore, the flows 
through the orifices of the servovalve are written as 

 1 1 0,1 1 3 1 0,1 2( ) , ( )= + − = + −v s v TQ K i K p p Q K i K p p  (18a) 

 2 2 0,2 2 4 2 0,2 1( ) , ( )= + − = + −v s v TQ K i K p p Q K i K p p  (18b) 

where i  is the valve current, 1K , 0,1K , 2K  and 0,2K  are 
positive constants, which correspond to the main and 
leakage valve flow path. 
 
Feedforward Control Scheme: A feedforward control 
signal can be added in the control scheme to further 
reduce deviations from the desired trajectory. This current 
must be determined such that the physical plant behaves 
like the desired system in noncontact and contact regimes. 
Schematically, the proposed control scheme is depicted in 
Fig. 3. 

 

 
Fig. 3. Schematic view of the full model-based impedance controller 
diagram. 

 

The feedforward input current is determined using a 
simplified model of the hydraulic servosystem. The use of 
a simplified model in the feedforward loop yields 
practically the same response as that using the full model. 
Moreover, the main advantage of this approach is a 
significant decrease in the computational burden required 
for simulation. Indeed, neglecting the internal leakage 
coefficient of piston and the servovalve leakages, (12a-b) 
are written as 

 1
1 1 1 1[ ] −= −v pp Q A v C  (19a) 

 1
2 2 3 2[ ] −= −p vp A v Q C  (19b) 



Further, the continuity equation to each of the piston 
chambers, [11], and the combination of (19a-b) yields 

 1
1 2(4 ) ( )β − ∆ = − −t e L L pV p Q A A v  (20) 

where tV  is the total volume of fluid under compression 
in both chambers, βe  is the effective bulk modulus of the 
fluid, 1 2∆ = −Lp p p  is the piston pressure drop and LQ  is 
the load flow, which is given by, [11] 

 ( ) ( ( ) ) / 2= − ∆L s LQ F i p sign i p  (21) 

where 

 1 1 0,1

2 2 0,2

( ) , 0
( )

( ) , 0
= + >⎧

= ⎨ = + <⎩

f i K i K i
F i

f i K i K i
 (22) 

Using (18)-(22), the feedforward current is determined. 
For instance, when 0>i  the current is given by 

 
1

1 2 0,1

11

(4 ) ( )
( ( ) ) / 2
β − ∆ + −

= −
− ∆

t e L p
ff

s L

V p A A v K
i

KK p sign i p
 (23) 

Finally, the full control law scheme of the servosystem 
is given by the total valve current of the feedback and 
feedforward current, 

 = +t fb ffi i i  (24) 

Substituting (24) to state equations (12), taking into 
account (14), (16) – (18) and associating appropriate (12), 
is resulted 

 , , 0+ + =e v e e p e ee K e K e  (25) 

where = −e e pe x x  and , ,,v e p eK K  are positive quantities, 
which represent the control gains. Last equation 
represents the system error dynamics and proves that the 
system is stable. 

A custom-designed benchmark setup, shown in Fig. 4, 
was built at the NTUA to test the proposed controller. The 
particular design of the setup allows for easy changes in 
the static and dynamic components of the inertial load, 
driven by the actuator. This is achieved by varying the 
angle of the cylinder with respect to the horizontal, and by 
adding or removing loads. 

A Moog G122-202A1 Series controller is used. To read 
servocylinder headside and rodside pressure, pressure 
sensors on the valve manifold are used. The piston rod 
position is read by a built-in analog LDT. A force cell at 
the end of the rod provides the force transmitted to the 
load. To use nonlinear and model based controllers, the 
PID control section of the card is bypassed and the card is 
used only for reading feedback measurements and for 
sending the appropriate control voltages to the 
servoamplifier. The servoamplifier in turn sends 
appropriate currents to the servovalve. 

 

 
Fig. 4. Schematic of control system setup and benchmark. 

 
 
5.  Simulation Results 
 
The tracking performance of the controller is evaluated on 
the full hydraulic servosystem, described by (12a-h), 
using Matlab/Simulink. System parameters include the 
load supportive beam mass and inertia, 15.11kg=bm , 

26.32kgm=bI  and geometrical parameters such as 

1 1.04m=r , 2 0.08m=r  and 3 1.64m=r , see Fig. 2. 
Friction parameters are 200 Ns/m=b , 0 50 N=cF , 

0 20 N=sF . 
Simulations runs were obtained using a number of 

desirable trajectories. As an example, Fig. 5 shows typical 
results with 3 460kg, 10 / , 3 10 /−= = = ×p vm K A m K As m  

62 10 /−= ×fK A N  and 45 10= ×envK /N m . A stiff wall 
is present at 0.045=envx m . A desired impedance 
parameters selection of the system response are 

10 /=dK N m , 20 /=dB Ns m  and 0.1=dM kg , [7]. 
Finally, the natural frequency is determined as 

/ 10 /ω = =n d dK M rad s . The piston displacement and 
velocity responses, the input signal, the environment force 
response, as well as the load power and chamber 
pressures histories are shown in Fig. 5. 
 

 



 
Fig. 5. Simulation results. (a) Piston displacement response, (b) Piston 
velocity response, (c) Input signal, (d) Environment force response, (e) 
Load power history, (f) Chamber pressures histories. 
 

The robustness of the controller can be demonstrated 
by applying the controller to the system in the case of 
erroneous parameter estimation. For example, assume that 
the load, cylinder mass, beam mass, cylinder length and 

2r  are estimated to be 5% larger than their true values, 
while the piston mass, piston length, 1r  and 3r  are 
estimated to be 5% smaller. In this case, despite these 
errors, the controller leads the system to the desired 
conditions, albeit with some intermediate oscillation, as 
can be seen from the piston displacement and velocity 
responses, shown in Fig. 6. 

 

 
Fig. 6. Simulation results with parameter estimation error. (a) Piston 
displacement response, (b) Piston velocity response. 
 
 
6.  Conclusions 
 
A model based impedance controller was developed for 
electrohydraulic servosystems, using a position-based 
impedance scheme. The control law included two control 
signals, a feedback and a feedforward one. Full rigid body 
and electrohydraulic models, including servovalve models 
were employed and described by a set of integrated 
system equations. The proposed methodology was 
illustrated by a detailed example. Simulations with typical 
desired trajectories were presented and a good 
performance of the controller was obtained. The approach 
can be further extended to hydraulic manipulator and 
simulator control. 
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