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ABSTRACT

Mobile robots that consist of a mobile platform with one
or many manipulators, are of great interest in a number of
applications. Thispaper presents a methodology for
generating pathsand trajectories forboth the mobile
platform and the manipulator that will take a systieom

an initial configuration to apre-specified final one,
without violating the nonholonomic constraint. The
generated paths are pblynomial natureandtherefore are
continuousandsmooth. The validity of thenethodology

is demonstrated using differential-drigad car-like mobile
manipulator systems.

Keywords. Nonholonomic systems, path planning,
mobile manipulators, pfaffian constraints.

INTRODUCTION

Mobile manipulator systems consist of a molglatform
equippedwith manipulatorsseeFig. 1. Applications for
such systemsabound inmining, construction forestry,
planetary exploration and the military.
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Fig. 1.Mobile manipulator systems.

Moving mobile manipulators systempresent many
unique problems thatare due to the coupling of
holonomic manipulators with nonholonomic bases. Seraji
presents a simple on-lirepproach fomotion control of
mobile manipulators usingugmented Jacobian matrices,
[1]. The approach iskinematic and requires additional
constraints to be met for the manipulator configuration.
The proposed approach can be equally applied to
nonholonomicand holonomic mobile robots. Lim and
Seraji describe the desigimdimplementation ofeal-time
control systemapplied on a 7degree-of-freedon{DOF)
arm mounted on a 1-DORolonomic platform, [2]. The
redundantequations are solved using weighted pseudo
inverses and geometry based control scheme.

A variety of theoreticaland applied control problems
have beerstudiedfor various classes of nonholonomic
control systems. Motion planning proble® concerned
with obtaining open loop controls thateer thesystem
from an initial state to a final state without violating the

nonholonomic constraints. The algorithproposed by
Lafferiere andSussmann, idased orexpressing thélow
resulting from piecewise constant inputs as #&ormal
exponential product expansion involving iterating Lie
brackets, [3]. Murrayand Sastryusedsinusoidal inputs at
integrally related frequencies teteersystems thatre or
can betransferred inpower or chainedform, [4]. The
examplesused to illustrate these methodare single
platforms or platforms with trailers. A variety ofotion
planning techniques for nonholonomic systems are
described in the book by Li and Canny [5]. A summary of
recent developments ithe control of nonholonomic
systems, including a wealth offerences, can be found in
Kolmanovsky and McClamroch [6].

This paper focuses on the motion planning problem of
mobile manipulator systems, i.e. manipulataetsached
on mobile platforms. Two commonlhavailable mobile
platforms, acar-like and adifferentially driven platform,
that are subject to nonholonomic constraints, are
employed. Here, we present a new methodology for
transforming the nonholonomic constraint intofam
that can be easilysed incomputing a path thatoes not
violate the constraint. This transformation allows the
generation of smooth and continuous paths for all system
control inputs such that the mobile manipulator system is
driven from some initial platform-manipulator
configuration to anypre-specifiedfinal one. Simulation
results are included to illustrate the proposed
methodology.

KINEMATIC MODELLING

In this paper westudy two mobile manipulatosystems.
The first consists of a two-link manipulatbased on a
differentially driven mobile platform, while thesecond
consists of the same manipulatbased on a car-like
mobile platform.

Here, we focus on derivinthe kinematics fothese
systems. To thiend, we separate eachobile system
into two subsystems, consisting of the molplatform
and the manipulator.

a. Differential Drive Mobile Manipulator

Fig. 2 depicts a differentialldriven mobile platform with

a manipulator. We first examine the kinematics of the
manipulator, as a function of the basmtion variables.
For simplicity, we consider a plantwo-link manipulator
arm, as illustrated ifrig. 2. However, the methodology
presented is equallgpplicable to any type ohf-jointed
mobile platform-mounted manipulator.

Holonomic manipulator subsystem.Let &, and 3,
representhe joint anglesand I, and |, denotethe link



lengths of the manipulator arms. The€artesian
coordinates ofthe end effector E relative to theworld
frame are given by

Xe =X+l co8(p +8,) +l,co8(p +9, +I,) (1)

Ye =Ye +lisin(gp +8,) +l,sin(p +8,+9,) @

where (x.,Y,) is the position of mounting point F of the
mobile platformand ¢ is the platform orientationEgs.
(2)-(2) show that the position of thend-effectordepends
on the position and the orientation of the mobile
platftorm. This illustrates the fact that mobile
manipulators, in contrast tdixed ones, can have an
infinite workspace.
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Fig. 2.Mobile manipulator system on a
differentially-driven platform.

The direct kinematics equationgiven by Egs. (1) and
(2) can be invertedfhus wecan find 4, and &, which
correspond to @iven end-effectorposition (x.,y.) and a
given platform position(x.,y.) and orientation .

The angled, is found by the following expression

9, = Atan2{s9,,c9,} ©)

where s() is an abbreviation for sin(and c( )for cos( ).
The sg, and cd, are given by
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The plus sign in Eq(4a) corresponds tthe elbow-
down posture, while the negativeign to theelbow-up
posture.

Similarly, the angled, is given by

8, = Atan2{s(¢ +9,),c(¢ +9,)} - ¢ ©)
where
S(¢ +191) — (Il +|2 Cﬁz)(yE _zyF) - |2 S792 (:(E B XF) (63)
(XE - XF) +(YE _YF)
C(¢ +191) — (|1 + |2 Cﬁz)(XE XF) +|2 S192 (ZyE _yF) (6b)

(%e = %) +(Ye - ¥)

As expected, both manipulator angles functions of the
base coordinates.
The existence of a solution requires that

cp|<10 (xE—xF)2+(yE—yF)2 s(l1+lz)2 @)

If the above inequality isot satisfied, then the target is
outside the manipulatoreach andthus the mobile
platform must move irorder tobring the targeinto the
manipulator's workspace. Once the platform maateser
enough to the target, the above constraint wilkaigsfied
and the angles will be given by Egs. (3) and (5).

Nonholonomic mobile platfornThe platform moves
by driving the twoindependentvheels as shown iifrig.
2. We assume that thepeed atvhich the system moves
is low and thereforethe two driven wheels do notslip
sideways. Hencethe velocity of the platforntenter of
mass, U, is normal to the wheedxis. Its components
along the X and Y axes, see Fig. 2, are given by,

Xs =Uscos¢ andy, =u,sSing )]
Eliminating v, from the above equations, we obtain
X;Sing —y, cos¢ =0 9

Eg. (9) is a nonholonomic constraimnd cannot be
integrated analytically to result in a constrdietween the
configuration variables of the platform, nameky, v,
and¢. As is well known, the configuratiospace of the
system is three-dimensional (completelyunrestricted)
while the velocity space is two-dimensional. This
constraint, written for the manipulator attachmeoint
F, becomes

X.sing -y, cosp +¢l, =0 (10)

wherel, is the distance between G and F, see Fig. 2.

The mobile platform controlariablesarethe angular
velocities of the leftand the right wheels,$, and 3,
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respectively. Its Cartesian velociti€s.,y.,¢) arerelated
to the control variable(sd:?,y [ dt,dd, / dt)
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w+;w cp- wm
s¢ - C¢ C¢ D
» %
b b
The two controlangular velocitiesare mapped to three
system output velocities. If one eliminates thdeel
angular velocities in Eq. (11), Eq. (18sults. Eqg.(11)
demonstrates the fact that the output velocitiesxanzero
even if one wheelonly is rotating. Furthermore, in
contrast tocar-like mobile platforms, this platform has
the ability to change its orientation on the spot.

b. Car-like Mobile Manipulator

Next, consider amobile manipulator systemwhose
platform includes a frontriven steering wheebnd two

fixed axis rear wheels, seeFig. 3. The holonomic
manipulator subsystem is the same before and thus

Egs. (1)-(7) describing the manipulaforward kinematics

are the same. The rear wheels are parallel to the main axis
of the car while the front wheel issedfor steering. It is



assumed that the wheels do not slip sideways.
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Fig. 3. Car-like mobile manipulator system.

For simplicity, the manipulator isnounted atpoint
F, where the steering wheel is located also. For fibist
the nonholonomic constraint is written as

X.sing —y. cosp + @1 = (12)
where x_, Y, are respectively the X and Y components of

the velocity of point Fu,, andl is thedistance between

point F and the rear wheel axis.
The differential kinematics of the car-like mobile
platform are described by the following equations

X, = U COS(§ +y) = wr cos(¢ +) (13a)
Ye = U SIN(P +y) =wrsin(g +y) (13b)
(iJ:&Qny:ﬂsiny (13c)

where y is the steering angley, = wr is the velocity
due to the driving wheel at F is the front wheeangu-
lar rate, andr is its radius. Egs. (13) can be written as

X, O @:os(¢+y) OD

n(¢+y) o
Brﬁﬁ HuEiny ? B

Eqg. (14) maps the two input velocities, and y, to
the three output velocities, x., y. and ¢. If one

eliminates the input velocities, the nonholonomic
constraint given by Eq. (12) results.

Inspection of Eqg. (14)evealsthat one of its columns
is zero.Because ofthis, if the mobile platform is not
moving, thenneither theposition nor the orientation of
the platform can change using the steering wheel.

PATH PLANNING

A mobile system is especially useful when
manipulator task is outside the manipulatagach.
Therefore, inthis section we assume that this akvays
the case, in other words that inequality (7nist satisfied
for a given target.

A prerequisite forthe successful use of mobile
manipulator system is the availability of a planning
methodology thatan generate a feasilpath for driving
the end-effector to the desired coordinates without

(14)

the

violating the system nonholonomic constraiHbwever,

in many applications, it igequiredthat the platform
position and orientation is pre-specifiedfor a number of
reasons. Such reasoimeludethe particularsite geometry

or ground morphology, the ease of controlling or
supervising the manipulator, the maximization of the
system's manipulability or force output, etc.

Given that in general the system configuration
includes the positiomndorientation of both th@latform
and themanipulator, then aentralproblem that must be
tackled is described as follows. Fiddven joint paths for
both the mobile platformand its manipulator that can
drive the system from some initial configuration to a final
pre-specifiedone. Of course, it isvery desirable to
generatesmooth paths thatan be obtainedsing simple
and computationally inexpensive methods.

To solve this problem, wdocus our attention in
finding a path for the mobile platform, which connects its

initial configuration (x.",y.",¢"") to the final one,
(x.™,y.",¢™). This problem is not trivialdue to the

fact that in our disposal we have only two contrals at
the same time we must satisfy the nonholonomic
constraint,andachieve a change ithe three dimensional
configuration space. Next, wealevelop a planning
methodology for the two mobile platforms wensider in
this paper.

a. Differentially Driven Mobile Platform

The nonholonomic constraint of thdifferentially-driven
mobile platform given by Eq. (10) is scleronomic and
thus it can be written in the Pfaffian form

P(Xc, Ye, @)X +Q(Xc, Ve, @)y, + R(X:, Ve, ¢)d¢ =0 (15)
where,

P(Xe,Ye. @) =sing, Q(x.., Y, ) = —cosd, R(x..y.¢) =,

Eqg. (15) is noteasy to workwith for planning purposes.
However, Pfaffian equations can be transforrmad the
following form, [7],

du+vdw=0 (16)

that is much easier to work with for planning purposes. In
Eqg. (16), u, v, w are properly selectedfunctions of
platform position and orientatiorx_, y., and¢.
Should it be possible to transform Eq. (iB)o Eq.
(16), the following equations must hold
_ou  ow

du+VéW'Q_du ow v (17)
X O, &, oy o o

Next we construct the differential equatighsat u, v,
w, must satisfy To this end, we set

b QR R P

P=

o’ _RN

Q - YR (18)
op oy, ox. 0f Y. ox
and, after we substitute Eq. (17) into Eq. (18), we get
N oW oV ow
P = (19a)
XA
Q= N oW NV ow (19b)

ox. 0p Ip ox,
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Multiplying these equations, first by ow/dx,
ow/ady., andow/d¢ respectivelyand addinghe results

yields the following equation
pMW QgM, gMW_g
X . 0

Next, multiplying Eqs(19a)-(19c) byov/odx., ov/dy.,

and ov/ d¢ respectively, and adding the results, we get

P’ﬂ.pQ' N +R’ﬂ:0
X . 0

From the above analysis, we conclude that bothnd w

satisfy the same first order partial differential equation.

Finally, multiplying Egs. (19a, b, c) by’ —ou dx,

Q-0du/dy. and R—-0du 0¢ respectivelyadding andusing

Egs. (17) and (20) we get

0. oul_, O O @Q oul

— Pr + - ! + - Rl -
F o H TR oy B agH
ow

! +
ax oy, "Nop

Therefore,u satisfies the following differential equation

P’ﬂ+Q’ i +R’ﬂ=PP'+QQ'+RR' (23)
O N )

The right hand side in the above equatilmesnot vanish,
becausghe condition of integrability is not satisfied. If
the system was holonomic, then obviously would
satisfy the same equation ag@nd w.

We have identifiedhe differential equationghat each
of u, v, andw satisfy, namely Egs. (23), (28nd (20).
Next, we solve Eg. (20and find w in the case of the
nonholonomic constraint given by Eq. (12), for which

P'=sing, Q =-cos¢, R =0 (24)
Eqg. (20) can be solved bgonstructing the following
system of equations, [8],
dx, _dy. _d¢
P Q R
and integrating them. The solution dEqg. (20) is any

function of the twoindependenintegrals of Egs. (25).
Two such integrals are the following

a(Xe,Y: 9) = x. [Gosg +y, [8Sing =k, (26a)
BXe.Ye.9) =9 =k, (26b)

The solution forw can beany function ofa and S3.
For simplicity we choose
w=p (27)

Eq. (26b) representsralationship amongx.,y., and
¢, for which Eqg. (15) due to Egs. (17) becomes

P(Xe, Ve, @)ax, +Q(Xc, Ye, @)y, + R(X,, Y, 9)dd =

RI

(19¢)

(20)

(21)

ou
A
(22)

'6W+R'6—W§:o

(25)

_du ou

du
= dx. + dy. + —d¢ =du 28a
aXFFayFyF a¢¢ (28a)
that is, when Eq. (27) holds, the term
Pax. + Qldy, + R[al¢ (28b)

is a perfect differentialNow, we canuse the relationship
B(X.,Y.,¢)=k, to remove ¢ and d¢ from the

differential given by Eq. (28b). The resulting expression is
also a perfect differential, nameth(x.,y.,3)

dh(x.,Y.,B) =sin Bldx. —cosBlay. =0 (29)
By integrating Eq. (29) we obtain
h(x.,Y.,8) = x. [3inB -y, [&osf = const. (30)

If in h(x.,y.,8) the variable ¢ is re-inserted by
removing the constant3, then h(x.,y.,) becomes
u(Xe, Ye. 9)

u(x.,Y.,9) = x. [8ing -y, [tos¢ (31)

We thushave u and w. The expression fow is found
using any of Egs. (17). By choosing the third one, we get

V(XF’yF’¢):|G — X E:OS(]S—yF @n(p (32)
To conclude,the nonholonomic constrairdescribed

by Eg. (15) can béransformed tothe equivalent form
given by Eq. (16), provided that

U(Xe, Ye, @) = X [8ing —y, [os¢ (31)
V(XF'yF’¢):|G —X; m:OS¢_y|= Bln¢ (32)
W(Xe, Ve 0) = ¢ (33)

Egs. (31)-(33) constitute a transformationx.,y.,9)
- (u,v,w), which is defined at every point of the
configurationspace ofthe system. If we write Eqg31)-
(33) in matrix form, then we have

sing -cos¢ OO x.O Ou

O
%osrp sing OE{Z%/F E= EG —VE
ERY 0 1HMHE Bw H

wherethe determinant othe above matrix is always -1.
Therefore Egs. (31)-(33) constitute a  global
diffeomorphism in the configuration space.

It is interesting toobservethat Eqgs. (31pnd(32) can
be written also as

(34)

ou D: (sng —cos¢Dj<FD:
HG_VH EOS(p sing BSIFE (35)
M 1l0gosp sing (X0

"B oing -cospHy.H

wherethe first matrix corresponds to a reflectiowith
respect to a 45lope line while thesecond corresponds to
a reflection with respect to ¢/2 line slope.

So far, we have achieved to transform the
nonholonomic constraint to theguivalentform given by
Eqg. (16). Next, note that if we choose functibramdg as
follows

w= f(t) (36)



u = g(w) (37)
__Gu___
v=- =79 (w) (38)

then Eq. (16) is satisfied identically. Therefore, the
planning problenreduces tahe selection of function$

and g such that they satisfy the initiand final

configuration variables.

For example, because of Eq. (3B)s any function of
time that satisfies the initial and final orientatign Such
functions can be polynomials, splines, or anyther
continuous and smooth time function. Functiorg is
constructed inthe same way, using Eq. (31) for
computing the initial and final values for. Finally, v is
computedusing Eqg. (38).Onceu, v, andw have been
found, platform coordinates are computedibyerting Eq.
(34). This results in therequired history of platform
locations and orientations that if followed, theyll drive
the platform to thedesiredfinal location and orientation,
without violating the nonholonomic constraint.

b. Car-like Mobile Platform

Eq. (12) describes the nonholonomic constraint inctse
of the car-like mobile platform. Thisquationhasexactly
the same form with Eq. (10)herefore byapplying the
same methodology we find that Eq. (12) is equivalent to

du+vdw=0 (16)

with,
u(X:, e, @) = X [8ing —y, [os¢ (39)
V(XFva1¢):I = X: []:os¢_yF ®n¢ (40)
W(Xe, Ve, @) = ¢ (41)

Egs. (39)-(41) constitute a global diffeomorphism and
they havethe same meaning as Egs. (31)-(33, they
describetwo reflectionsand aparallel translation. Again,
if we choose functionsandg according to Eqg(36)-(38),
then wecancompute a path for the mobile platform that
does not violate the constraint.

SIMULATION RESULTS

To illustrate the methodologglescribed inthe previous
section, we employ the mobile systems shown in Figs. 2
and 3. The main task faachsystem is tohavethe end-
effector reach adesired target point with coordinates
(Xe,Ye). Since the system isedundant, we carsatisfy
more requirementszor example, weanalso specify the
desired platform location and orientation, and solve for the
required manipulator configuration using the holonomic
inverse relations, Egs. (3) and (5).

In this example, we require instead that @mel-effector
arrives atthe target at somelesired configuration, for
example at one which maximizés force output or the
manipulability criterion. Setting?, restricts point F on

the platform to be on a circle in Fig. 4, with radius
R=./(l, +1,cosd,™)* +1,2sin*9,"™ (42)

For somedesiredorientation of the mobile platform,
¢ ™, the exact location of point F can be chosen such that

it minimizes the total path length from the initial to the
final destination. To this end, we construct paths that start
at the initial configuratiorand end onthe circular locus
shown in Fig 4. The patlselected isthe one with
minimum length. By doing so, both the final position and
the path of the platformare known. Hence, Eqgs. (5) and
(6) can be used to calculate the final value of the atfigle

Clearly, thisapproach requirethat we are able to solve
the coreproblem of computing the joint historieseeded
to drive the system to adesired final configuration

(XE fin’yE fin’¢ fm,glfm’gzﬁn) .

Possible locations
(xF, yF) of point F

Target (xg, Yg)

Manipulator

Fig. 4. Platform possible final positions.

In order to find a path for the platformusing the
method presented above we select functions f andegsn
(36)-(38) to be respectivelyfifth and third order
polynomials of time

fit)y=at°+a,t'+at’+at>+at+a,
g(w) =b,w* +b,w? +b w+h,
where the coefficients abowge calculateduch thatf and
g satisfy the initialand final conditions of themotion.

These conditioninclude positions, velocitiegandfor the
platform orientationf = ¢, accelerations, too.

For the simulation, the total time was chosepal to
6s (for reasonableveragevelocities), while the initial
configuration is given by (x.",y.",¢",3,",3,")
=(0.5m,0.5m,-90°,-30°,-60°). Using Eq. (1)and (2)
we calculate the initial position of the platform, which is
(%", y¥") =(0.85m,0.67m) in both system cases. The
final configuration for the manipulator assumeslesired
angled,™ =135° (isotropic point). For a final orientation
¢ ™ =60°, using a trialand error procedure wéind the
path of minimum lengthand the final position of the
platform, which is (x.",y.™)=(1.86m,1.89m) in both
system cases. Astated abovehe final value ofd, is
calculatedusing Egs.(5) and (6) and is 3, =-102.5°.
The final system configuration is then given by
x."y."¢"8,™38,™) =(2m,2m,60°,-102.5°,135°).

e Ve o

Fig. 5 depicts snapshots of the motion of the
differentially-driven system, while Fig. 6 depicts
snapshots for the car-like mobile systemgémeralboth
systems move in similar waybloweverthe differential-



drive system starts with a turn on-the-spand then
proceeds tothe target, while thecar-like system, first
moves forward and then toward the target. This behavior is
due to its design whichdoes not allow on-the-spot
maneuvers.
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5. Motion animation of the differential-
drive mobile manipulator.

Fig.

Final
position|

L Initial
position

05
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Fig. 6. Motion animation of the car-like drive
mobile manipulator.

Figs. 7 and 8 depict platform and manipulator joint
velocities thatcorrespond tadhe two mobile systems. It
can be observethat all trajectoriesare smooth and that
both mobile robotic systems start and stop smoothly.
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Fig. 7.Input velocities of the differentially
driven mobile manipulator.
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manipulator.

CONCLUSIONS

This paper proposed planning methodology for mobile
manipulator systems consisting of a mobile platform and
a manipulator. This methodology uses appropriate
transformation of variables tgeneratepaths for both the
mobile platform and the manipulator that willtake a
mobile system from an initialplatform-manipulator
configuration to a pre-specified final one, without
violating the nonholonomic constraint. Thgenerated
paths can be constructedsing a variety of functions
including polynomials, splines, etc. The resulting paths
are continuous and smooth. The validity of the
methodology waslemonstratedising a differential-drive
and a car-like mobile manipulator system.
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