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ABSTRACT

Mobile robots that consist of a mobile platform with one
or many manipulators, are of great interest in a number of
applications. This paper presents a methodology for
generating paths and trajectories for both the mobile
platform and the manipulator that will take a system from
an initial configuration to a pre-specified final one,
without violating the nonholonomic constraint. The
generated paths are of polynomial nature and therefore are
continuous and smooth. The validity of the methodology
is demonstrated using differential-drive and car-like mobile
manipulator systems.
Keywords. Nonholonomic systems, path planning,
mobile manipulators, pfaffian constraints.

INTRODUCTION

Mobile manipulator systems consist of a mobile platform
equipped with manipulators, see Fig. 1. Applications for
such systems abound in mining, construction, forestry,
planetary exploration and the military.
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Fig. 1. Mobile manipulator systems.

Moving mobile manipulators systems, present many
unique problems that are due to the coupling of
holonomic manipulators with nonholonomic bases. Seraji
presents a simple on-line approach for motion control of
mobile manipulators using augmented Jacobian matrices,
[1]. The approach is kinematic and requires additional
constraints to be met for the manipulator configuration.
The proposed approach can be equally applied to
nonholonomic and holonomic mobile robots. Lim and
Seraji describe the design and implementation of real-time
control system applied on a 7 degree-of-freedom (DOF)
arm mounted on a 1-DOF holonomic platform, [2]. The
redundant equations are solved using weighted pseudo
inverses and geometry based control scheme.

A variety of theoretical and applied control problems
have been studied for various classes of nonholonomic
control systems. Motion planning problems are concerned
with obtaining open loop controls that steer the system
from an initial state to a final state without violating the

nonholonomic constraints. The algorithm proposed by
Lafferiere and Sussmann, is based on expressing the flow
resulting from piecewise constant inputs as a formal
exponential product expansion involving iterating Lie
brackets, [3]. Murray and Sastry used sinusoidal inputs at
integrally related frequencies to steer systems that are or
can be transferred in power or chained form, [4]. The
examples used to illustrate these methods are single
platforms or platforms with trailers. A variety of motion
planning techniques for nonholonomic systems are
described in the book by Li and Canny [5]. A summary of
recent developments in the control of nonholonomic
systems, including a wealth of references, can be found in
Kolmanovsky and McClamroch [6].

This paper focuses on the motion planning problem of
mobile manipulator systems, i.e. manipulators attached
on mobile platforms. Two commonly available mobile
platforms, a car-like and a differentially driven platform,
that are subject to nonholonomic constraints, are
employed. Here, we present a new methodology for
transforming the nonholonomic constraint into a form
that can be easily used in computing a path that does not
violate the constraint. This transformation allows the
generation of smooth and continuous paths for all system
control inputs such that the mobile manipulator system is
driven from some initial platform-manipulator
configuration to any pre-specified final one. Simulation
results are included to illustrate the proposed
methodology.

KINEMATIC MODELLING

In this paper we study two mobile manipulator systems.
The first consists of a two-link manipulator based on a
differentially driven mobile platform, while the second
consists of the same manipulator based on a car-like
mobile platform.

Here, we focus on deriving the kinematics for these
systems. To this end, we separate each mobile system
into two subsystems, consisting of the mobile platform
and the manipulator.

a. Differential Drive Mobile Manipulator
Fig. 2 depicts a differentially driven mobile platform with
a manipulator. We first examine the kinematics of the
manipulator, as a function of the base motion variables.
For simplicity, we consider a planar two-link manipulator
arm, as illustrated in Fig. 2. However, the methodology
presented is equally applicable to any type of n-jointed
mobile platform-mounted manipulator.

Holonomic manipulator subsystem. Let ϑ1 and ϑ2

represent the joint angles and l1 and l2  denote the link



lengths of the manipulator arms. The Cartesian
coordinates of the end effector E relative to the world
frame are given by

x x l lE F= + + + + +1 1 2 1 2cos( ) cos( )ϕ ϑ ϕ ϑ ϑ (1)

y y l lE F= + + + + +1 1 2 1 2sin( ) sin( )ϕ ϑ ϕ ϑ ϑ (2)

where ( , )x yF F  is the position of mounting point F of the
mobile platform and ϕ  is the platform orientation. Eqs.
(1)-(2) show that the position of the end-effector depends
on the position and the orientation of the mobile
platform. This illustrates the fact that mobile
manipulators, in contrast to fixed ones, can have an
infinite workspace.

b = 0.30m

r = 0.10m
r

b
G F

E

(xF ,yF )

(xE,yE)

Mobile Platform

Manipulator

Driven
Wheel

Driven
Wheel

X

Y

x

y

ϕϕ

ϑ1

ϑ2

= 0.20m
= 0.25m

= 0.30m

l 1

l
1

l 2

l
2

l
G

l G

Fig. 2.Mobile manipulator system on a
differentially-driven platform.

The direct kinematics equations given by Eqs. (1) and
(2) can be inverted. Thus we can find ϑ1 and ϑ2  which

correspond to a given end-effector position ( , )x yE E  and a

given platform position ( , )x yF F  and orientation ϕ .

The angle ϑ2  is found by the following expression

ϑ ϑ ϑ2 2 22= { }A s ctan , (3)

where s( ) is an abbreviation for sin( ), and c( ) for cos( ).
The sϑ2  and cϑ2  are given by
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The plus sign in Eq. (4a) corresponds to the elbow-
down posture, while the negative sign to the elbow-up
posture.

Similarly, the angle ϑ1 is given by

ϑ ϕ ϑ ϕ ϑ ϕ1 1 12= + +{ } −A s ctan ( ), ( ) (5)

where
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As expected, both manipulator angles are functions of the
base coordinates.

The existence of a solution requires that

c x x y y l lE F E Fϕ ≤ ⇒ −( ) + −( ) ≤ +( )1
2 2

1 2

2
(7)

If the above inequality is not satisfied, then the target is
outside the manipulator reach and thus the mobile
platform must move in order to bring the target into the
manipulator's workspace. Once the platform moves closer
enough to the target, the above constraint will be satisfied
and the angles will be given by Eqs. (3) and (5).

Nonholonomic mobile platform. The platform moves
by driving the two independent wheels as shown in Fig.
2. We assume that the speed at which the system moves
is low and therefore the two driven wheels do not slip
sideways. Hence, the velocity of the platform center of
mass, υG , is normal to the wheel axis. Its components
along the X and Y axes, see Fig. 2, are given by,

˙ cosxG G= υ ϕ  and ˙ sinyG G= υ ϕ (8)

Eliminating υG  from the above equations, we obtain

˙ sin ˙ cosx yG Gϕ ϕ− = 0 (9)

Eq. (9) is a nonholonomic constraint and cannot be
integrated analytically to result in a constraint between the
configuration variables of the platform, namely xG , yG

and ϕ . As is well known, the configuration space of the
system is three-dimensional (completely unrestricted)
while the velocity space is two-dimensional. This
constraint, written for the manipulator attachment point
F, becomes

˙ sin ˙ cos ˙x y lF F Gϕ ϕ ϕ− + = 0 (10)

where lG  is the distance between G and F, see Fig. 2.

The mobile platform control variables are the angular
velocities of the left and the right wheels,   ϑ̇ l  and ϑ̇ r

respectively. Its Cartesian velocities ( ˙ , ˙ , ˙ )x yF F ϕ  are related

to the control variables   ( / , / )d dt d dtrϑ ϑl
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The two control angular velocities are mapped to three
system output velocities. If one eliminates the wheel
angular velocities in Eq. (11), Eq. (10) results. Eq. (11)
demonstrates the fact that the output velocities are nonzero
even if one wheel only is rotating. Furthermore, in
contrast to car-like mobile platforms, this platform has
the ability to change its orientation on the spot.

b. Car-like Mobile Manipulator
Next, consider a mobile manipulator system whose
platform includes a front driven steering wheel and two
fixed axis rear wheels, see Fig. 3. The holonomic
manipulator subsystem is the same as before and thus
Eqs. (1)-(7) describing the manipulator forward kinematics
are the same. The rear wheels are parallel to the main axis
of the car while the front wheel is used for steering. It is



assumed that the wheels do not slip sideways.
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Fig. 3. Car-like mobile manipulator system.

For simplicity, the manipulator is mounted at point
F, where the steering wheel is located also. For this point
the nonholonomic constraint is written as

˙ sin ˙ cos ˙x y lF Fϕ ϕ ϕ− + = 0 (12)

where ẋF , ẏF  are respectively the X and Y components of

the velocity of point F, υF , and l  is the distance between

point F and the rear wheel axis.
The differential kinematics of the car-like mobile

platform are described by the following equations

˙ cos( ) cos( )x rF F= + = +υ ϕ γ ω ϕ γ (13a)

˙ sin( ) sin( )y rF F= + = +υ ϕ γ ω ϕ γ (13b)

˙ sin sinϕ υ γ ω γ= =F

l
r

l
(13c)

where γ  is the steering angle, υ ωF r=  is the velocity
due to the driving wheel at F, ω  is the front wheel angu-
lar rate, and r  is its radius. Eqs. (13) can be written as
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Eq. (14) maps the two input velocities, υF  and γ̇ , to

the three output velocities, ẋF , ẏF  and ϕ̇ . If one

eliminates the input velocities, the nonholonomic
constraint given by Eq. (12) results.

Inspection of Eq. (14) reveals that one of its columns
is zero. Because of this, if the mobile platform is not
moving, then neither the position nor the orientation of
the platform can change using the steering wheel.

PATH PLANNING

A mobile system is especially useful when the
manipulator task is outside the manipulator reach.
Therefore, in this section we assume that this is always
the case, in other words that inequality (7) is not satisfied
for a given target.

A prerequisite for the successful use of a mobile
manipulator system is the availability of a planning
methodology that can generate a feasible path for driving
the end-effector to the desired coordinates without

violating the system nonholonomic constraint. However,
in many applications, it is required that the platform
position and orientation is pre-specified for a number of
reasons. Such reasons include the particular site geometry
or ground morphology, the ease of controlling or
supervising the manipulator, the maximization of the
system's manipulability or force output, etc.

Given that in general the system configuration
includes the position and orientation of both the platform
and the manipulator, then a central problem that must be
tackled is described as follows. Find driven joint paths for
both the mobile platform and its manipulator that can
drive the system from some initial configuration to a final
pre-specified one. Of course, it is very desirable to
generate smooth paths that can be obtained using simple
and computationally inexpensive methods.

To solve this problem, we focus our attention in
finding a path for the mobile platform, which connects its
initial configuration ( , , )x yF

in

F

in inϕ  to the final one,

( , , )x yF

fin

F

fin finϕ . This problem is not trivial, due to the

fact that in our disposal we have only two controls, and at
the same time we must satisfy the nonholonomic
constraint, and achieve a change in the three dimensional
configuration space. Next, we develop a planning
methodology for the two mobile platforms we consider in
this paper.

a. Differentially Driven Mobile Platform
The nonholonomic constraint of the differentially-driven
mobile platform given by Eq. (10) is scleronomic and
thus it can be written in the Pfaffian form

P x y dx Q x y dy R x y dF F F F F F F F( , , ) ( , , ) ( , , )ϕ ϕ ϕ ϕ+ + = 0 (15)

where,
P x y Q x y R x y lF F F F F F G( , , ) sin , ( , , ) cos , ( , , )ϕ ϕ ϕ ϕ ϕ= = − =
Eq. (15) is not easy to work with for planning purposes.
However, Pfaffian equations can be transformed into the
following form, [7],

du v dw+ = 0 (16)

that is much easier to work with for planning purposes. In
Eq. (16), u , v, w  are properly selected functions of
platform position and orientation, xF , yF , and ϕ .

Should it be possible to transform Eq. (15) into Eq.
(16), the following equations must hold
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Next we construct the differential equations that u , v,
w , must satisfy. To this end, we set
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and, after we substitute Eq. (17) into Eq. (18), we get
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Multiplying these equations, first by ∂ ∂w xF/ ,
∂ ∂w yF/ , and ∂ ∂ϕw /  respectively and adding the results

yields the following equation
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Next, multiplying Eqs. (19a)-(19c) by ∂ ∂v xF/ , ∂ ∂v yF/ ,

and ∂ ∂ϕv /  respectively, and adding the results, we get
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From the above analysis, we conclude that both v and w
satisfy the same first order partial differential equation.

Finally, multiplying Eqs. (19a, b, c) by P u x F− ∂ ∂ ,

Q u yF− ∂ ∂  and R u− ∂ ∂ϕ  respectively, adding and using

Eqs. (17) and (20) we get
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Therefore, u  satisfies the following differential equation

′ + ′ + ′ = ′ + ′ + ′P
u
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The right hand side in the above equation does not vanish,
because the condition of integrability is not satisfied. If
the system was holonomic, then u  obviously would
satisfy the same equation as v and w .

We have identified the differential equations that each
of u, v, and w satisfy, namely Eqs. (23), (21) and (20).
Next, we solve Eq. (20) and find w in the case of the
nonholonomic constraint given by Eq. (12), for which

′ = ′ = − ′ =P Q Rsin , cos ,ϕ ϕ 0 (24)

Eq. (20) can be solved by constructing the following
system of equations, [8],

dx
P
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d
R

F F
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′
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′
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(25)

and integrating them. The solution of Eq. (20) is any
function of the two independent integrals of Eqs. (25).
Two such integrals are the following

α ϕ ϕ ϕ( , , ) cos sinx y x y kF F F F= ⋅ + ⋅ = 1 (26a)

β ϕ ϕ( , , )x y kF F = = 2 (26b)

The solution for w can be any function of α  and β .

For simplicity we choose

w = β (27)

Eq. (26b) represents a relationship among x yF F, , and
ϕ , for which Eq. (15) due to Eqs. (17) becomes
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that is, when Eq. (27) holds, the term

P dx Q dy R dF F⋅ + ⋅ + ⋅ ϕ  (28b)

is a perfect differential. Now, we can use the relationship
β ϕ( , , )x y kF F = 2  to remove ϕ  and dϕ  from the

differential given by Eq. (28b). The resulting expression is
also a perfect differential, namely dh x yF F( , , )β

dh x y dx dyF F F F( , , ) sin cosβ β β= ⋅ − ⋅ = 0 (29)

By integrating Eq. (29) we obtain

h x y x y constF F F F( , , ) sin cos .β β β= ⋅ − ⋅ = (30)

If in h x yF F( , , )β  the variable ϕ  is re-inserted by

removing the constant β , then h x yF F( , , )β  becomes
u x yF F( , , )ϕ

u x y x yF F F F( , , ) sin cosϕ ϕ ϕ= ⋅ − ⋅ (31)

We thus have u  and w . The expression for v is found
using any of Eqs. (17). By choosing the third one, we get

v x y l x yF F G F F( , , ) cos sinϕ ϕ ϕ= − ⋅ − ⋅ (32)

To conclude, the nonholonomic constraint described
by Eq. (15) can be transformed to the equivalent form
given by Eq. (16), provided that

u x y x yF F F F( , , ) sin cosϕ ϕ ϕ= ⋅ − ⋅ (31)

v x y l x yF F G F F( , , ) cos sinϕ ϕ ϕ= − ⋅ − ⋅ (32)

w x yF F( , , )ϕ ϕ= (33)

Eqs. (31)-(33) constitute a transformation ( , , )x yF F ϕ
→( , , )u v w , which is defined at every point of the
configuration space of the system. If we write Eqs. (31)-
(33) in matrix form, then we have
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where the determinant of the above matrix is always -1.
Therefore Eqs. (31)-(33) constitute a global
diffeomorphism in the configuration space.

It is interesting to observe that Eqs. (31) and (32) can
be written also as
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where the first matrix corresponds to a reflection with
respect to a 450 slope line while the second corresponds to
a reflection with respect to a ϕ 2 line slope.

So far, we have achieved to transform the
nonholonomic constraint to the equivalent form given by
Eq. (16). Next, note that if we choose functions f and g as
follows

w f t= ( ) (36)



u g w= ( ) (37)

v
du
dw

g w= − = − ′( ) (38)

then Eq. (16) is satisfied identically. Therefore, the
planning problem reduces to the selection of functions f
and g such that they satisfy the initial and final
configuration variables.

For example, because of Eq. (33), f is any function of
time that satisfies the initial and final orientation ϕ . Such
functions can be polynomials, splines, or any other
continuous and smooth time function. Function g is
constructed in the same way, using Eq. (31) for
computing the initial and final values for u . Finally, v is
computed using Eq. (38). Once u, v, and w have been
found, platform coordinates are computed by inverting Eq.
(34). This results in the required history of platform
locations and orientations that if followed, they will drive
the platform to the desired final location and orientation,
without violating the nonholonomic constraint.

b. Car-like Mobile Platform
Eq. (12) describes the nonholonomic constraint in the case
of the car-like mobile platform. This equation has exactly
the same form with Eq. (10). Therefore by applying the
same methodology we find that Eq. (12) is equivalent to

du v dw+ = 0 (16)

with,

u x y x yF F F F( , , ) sin cosϕ ϕ ϕ= ⋅ − ⋅ (39)

v x y l x yF F F F( , , ) cos sinϕ ϕ ϕ= − ⋅ − ⋅ (40)

w x yF F( , , )ϕ ϕ= (41)

Eqs. (39)-(41) constitute a global diffeomorphism and
they have the same meaning as Eqs. (31)-(33), i.e. they
describe two reflections and a parallel translation. Again,
if we choose functions f and g according to Eqs. (36)-(38),
then we can compute a path for the mobile platform that
does not violate the constraint.

SIMULATION RESULTS

To illustrate the methodology described in the previous
section, we employ the mobile systems shown in Figs. 2
and 3. The main task for each system is to have the end-
effector reach a desired target point with coordinates
( , )x yE E . Since the system is redundant, we can satisfy
more requirements. For example, we can also specify the
desired platform location and orientation, and solve for the
required manipulator configuration using the holonomic
inverse relations, Eqs. (3) and (5).

In this example, we require instead that the end-effector
arrives at the target at some desired configuration, for
example at one which maximizes its force output or the
manipulability criterion. Setting ϑ2  restricts point F on

the platform to be on a circle in Fig. 4, with radius

R l l lfin fin= + +( cos ) sin1 2 2

2

2

2 2

2ϑ ϑ (42)

For some desired orientation of the mobile platform,
ϕ fin , the exact location of point F can be chosen such that

it minimizes the total path length from the initial to the
final destination. To this end, we construct paths that start
at the initial configuration and end on the circular locus
shown in Fig 4. The path selected is the one with
minimum length. By doing so, both the final position and
the path of the platform are known. Hence, Eqs. (5) and
(6) can be used to calculate the final value of the angle ϑ1.

Clearly, this approach requires that we are able to solve
the core problem of computing the joint histories needed
to drive the system to a desired final configuration
( , , , , )x yE

fin

E

fin fin fin finϕ ϑ ϑ1 2 .

Possible locations
 (xF, yF) of point F

Target (xE, yE)

ϑ2

F

Platform

Manipulator

Fig. 4. Platform possible final positions.

In order to find a path for the platform using the
method presented above we select functions f and g in Eqs.
(36)-(38) to be respectively fifth and third order
polynomials of time

f t a t a t a t a t a t a( ) = + + + + +5

5

4

4

3

3

2

2

1 0

g w b w b w b w b( ) = + + +3

3

2

2

1 0

where the coefficients above are calculated such that f and
g satisfy the initial and final conditions of the motion.
These conditions include positions, velocities and for the
platform orientation f = ϕ , accelerations, too.

For the simulation, the total time was chosen equal to
6s (for reasonable average velocities), while the initial
configuration is given by ( , , , , )x yE

in

E

in in in inϕ ϑ ϑ1 2

= − ° − ° − °( . , . , , , )0 5 0 5 90 30 60m m . Using Eq. (1) and (2)

we calculate the initial position of the platform, which is
( , ) ( . , . )x y m mF

in

F

in = 0 85 0 67  in both system cases. The

final configuration for the manipulator assumes a desired
angle ϑ2 135fin = °  (isotropic point). For a final orientation

ϕ fin = 600 , using a trial and error procedure we find the

path of minimum length and the final position of the
platform, which is ( , ) ( . , . )x y m mF

fin

F

fin = 1 86 1 89  in both

system cases. As stated above the final value of ϑ1 is

calculated using Eqs. (5) and (6) and is ϑ1

0102 5fin = − . .

The final system configuration is then given by
( , , , , )x yE

fin

E

fin fin fin finϕ ϑ ϑ1 2 = ° − ° °( , , , . , )2 2 60 102 5 135m m .
Fig. 5 depicts snapshots of the motion of the

differentially-driven system, while Fig. 6 depicts
snapshots for the car-like mobile system. In general, both
systems move in similar ways. However the differential-



drive system starts with a turn on-the-spot and then
proceeds to the target, while the car-like system, first
moves forward and then toward the target. This behavior is
due to its design which does not allow on-the-spot
maneuvers.
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Fig. 5. Motion animation of the differential-
drive mobile manipulator.
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Fig. 6. Motion animation of the car-like drive
mobile manipulator.

Figs. 7 and 8 depict platform and manipulator joint
velocities that correspond to the two mobile systems. It
can be observed that all trajectories are smooth and that
both mobile robotic systems start and stop smoothly.
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Fig. 7.Input velocities of the differentially
driven mobile manipulator.
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Fig. 8.Input velocities of the car-like mobile
manipulator.

CONCLUSIONS

This paper proposed a planning methodology for mobile
manipulator systems consisting of a mobile platform and
a manipulator. This methodology uses an appropriate
transformation of variables to generate paths for both the
mobile platform and the manipulator that will take a
mobile system from an initial platform-manipulator
configuration to a pre-specified final one, without
violating the nonholonomic constraint. The generated
paths can be constructed using a variety of functions
including polynomials, splines, etc. The resulting paths
are continuous and smooth. The validity of the
methodology was demonstrated using a differential-drive
and a car-like mobile manipulator system.
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