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ABSTRACT

This paper studies the effect of flexible linear torso on the dynamics of passive
quadruped bounding. A reduced-order passive and conservative model with
linear flexible torso and springy legs is introduced. The model features
extensive spine deformation during high-speed bounding, resembling those
observed in a cheetah. Fixed points corresponding to cyclic bounding motions

Keywords: are found and calculated using numerical return map methodologies. Results

Legged robots
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show that the corresponding robot gaits and the associated performance
resemble those of its natural counterparts.

1. Introduction

Among the legged animals, quadrupeds are
characterized by high-speed locomotion. The main
mechanism for achieving such high-speeds is the
increase of stride frequency; however there is an upper
limit over which no further increase in frequency is
possible [1]. To overcome this limitation, quadrupeds
activate another mechanism, that of the compliant or
flexible torso. Extensive flexion and extension of their
torso is observed at high speeds only [1]. The cheetah, a
natural elite sprinter, owes its astonishing performance
in part to its flexible spine. Indeed, although the cheetah
and the racing greyhound are of similar size and gross
morphology, the cheetah attains significantly higher
Zspeed than the greyhound; the fastest recorded speed for
the cheetah is 29m/s [2] in contrast to a 17m/s top speed
for the racing greyhound [3]. Earlier studies in the
context of fast quadruped locomotion have revealed the
extensive use of spine by galloping mammals.
Hildebrand studied the phases of a stride during cheetah
galloping, and noted the extensive spine deformation and
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the large stride length of the cheetah, [4] and [5], see Fig.
1. According to studies focusing on the temporal and
spatial characteristics of locomotion, the combination of
large stride length and low stride frequency is considered
the key to attaining high speed [6]. In addition to its
contribution to speed, a flexible spine enhances energy
efficiency by storing in elastic form the fluctuating
energy due to the swinging of a quadruped leg, at the
spine musculature elements, such as the aponeurosis of
the longissimus thoracis et lumborum muscle [7].

In the last twenty years, scientists presuming the
importance of the spine have developed a large number
of dynamically stable quadruped robots with flexible
torso, trying to enlist its benefits. Leeser introduced the
first robot in this category [8], following Raibert’s
pioneering work [9]. It was a hydraulic planar robot with
two telescoping springy legs and an articulated spine
composed of three segments with actuated joints. Since
then various spine implementations have been proposed,
others with simple designs and others with more
complex biomimetic designs.
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Figure 1. The sagittal model with a flexible linear spine overlayed a cheetah at the gathered flight phase in the background.

The Bobcat [10] robot and the Lynx modular robot
[11] are representative examples of small quadruped
robots with a simple spine implementation, since they
feature one and multiple revolute spinal joints
respectively. Some of the complex designs worth
mentioning are the MIT Cheetah [12], and the Canid
robot [13], both with flexible torsos consisting of
intervertebral discs (flexible elements capable of storing
elastic energy), and vertebrae (rigid braces supporting the
intervertebral discs).

Other interesting spine implementations were
introduced by the Renny robot with a ball-and-socket
joint, and antagonistic pneumatic artificial muscles [14],
and by the Tiger robot featuring a compliant spinal
bending mechanism consisting of light-weight segments
and a linear spring [15]. In general, the complexity of
legged robots does not permit a generic analysis and
insight of the effect of spine motions on quadruped
locomotion, since most results and conclusions are highly
depended on the implementation of the robot. So the need
for reduced models of articulated spine robots has
emerged.

In the literature, a variety of dynamic models have
been proposed to study the influence of the articulated
spine on quadrupedal running. In analogy to the Spring
Loaded Inverted Pendulum (SLIP), the models have
springy legs, which in most studies are massless [16-19],
except for those in [20, 21]. The vast majority of the
proposed models feature a rotary back joint, either
actuated [19], [21] or passive [16-18], [20] with the single
exception that of the one-dimensional model, which
features a translational joint spine and oversimplified
legs, i.e. the legs are represented as masses always in
contact with the ground, moving due to controlled
actuator-applied forces and to the difference between the
forward and backward friction [22].

In this article, we introduce a sagittal plane model with
a linear flexible torso and massless springy legs, to the
best of our knowledge for the first time in the literature.
The model is passive and conservative, but despite its
simplicity, it allows the prediction of the existence of
repetitive passive gaits corresponding to Poincaré fixed-
points, and of resulting motions resembling those of its

natural counterparts. The developed model is the only one
that captures the extensive variation of the sagittal hip-to-
hip distance due to spine deformation. This property has
not been captured in other works so far, due to the use of
a revolute spinal joint.

The structure of the paper is as follows. In Section 2,
the model with the flexible linear torso is introduced and
the equations of motion are presented. Section 3 discusses
in detail the main properties of the calculated cyclic
bounding motions realized passively. Section 4 concludes
the paper.

2. Dynamics of bounding with flexible linear torso

A quadruped robot is a complex nonlinear system with
hybrid dynamics, characterized by the strong coupling
between many degrees of freedom. In order to study the
effect of the flexible linear torso during fast locomotion,
a simplified sagittal model of a quadruped robot is
introduced, as shown in Fig. 2.

2.1. Model description and parameters

The main body of the model consists of two segments
(hind and fore segments). The two segments of the body
are connected via the spinal translational joint, which is
passive, with a linear spring connecting the two body
segments and which allows no rotation between them.
Two springy legs are connected to each of the two body
segments at the hips with revolute joints. The choice of
springy legs is in analogy with the Spring Loaded
Inverted Pendulum (SLIP) and captures the property of
energy storage during running. Subscripts , , and , refer to
the fore and hind individual body segments (or legs) and
to the torso, respectively.

As far as the dynamics of the model is concerned, the
hind and fore segments of the body are identical with
mass and moment of inertia about their center of mass
(CoM). The legs are massless springs of nominal length
and spring stiffness, and the distance between the hip
joint and the CoM of each body is.
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Figure 2. The sagittal-plane model of a quadruped robot with a linear
flexible torso.

The spinal joint is a linear spring of stiffness and
nominal length. The model is conservative since energy
dissipation and motor input torques are not considered.
The values of the model mechanical parameters are
chosen to match the parameters in [17]. The value for the
stiffness of the torso linear spring was chosen so that the
herein introduced model and the model of [17] have the
same natural frequency. The model mechanical
properties are displayed in Table 1.

Table 1. Model Mechanical Properties

PARAMETER VALUE UNITS
Fore/hind body mass (m) 10.432 Kg
Fore/hind body inertia (1) 0.339 KgMm?
Hip to com distance (d) 0.138 M
Nominal leg length (L) 0.323 M
Leg spring constant (k) 7046 N/M
Nominal torso spring length (L)  0.276 M
Torso spring stiffness (k) 5077 N/M

2.2. Bounding gait description

In nature, mammals use their spine mainly during high
speed galloping [1], [4], [5]. Galloping is an asymmetric
gait, featuring great complexity since none of the legs
moves in phase with another. Instead in bounding, i.e. the
gait at which the fore and the hind legs move in phase, is
easier to model and is employed frequently in nature
during obstacle avoidance and running with moderate
speed. In the robotic community bounding has received
considerable attention due to its sagittally symmetric
nature and to its use as a limiting case of galloping.

In this paper, we study the spine performance during
bounding. Bounding consists of four phases, two aerial
and two stance phases triggered by events such as leg
liftoff and leg touchdown. The phases of bounding are
illustrated in Fig. 3. It is interesting to note the existence
of two flight phases. During the gathered flight phase, the
spine spring reaches its minimum length, letting the two
body segments to approach. No collision is modeled, so

the two CoMs can come as close as needed. During the
extended flight phase, the spinal spring reaches its
maximum length, increasing the distance between them.

The existence of a fifth phase, called double stance
phase, during which the two legs are in contact with the
ground simultaneously, is also possible. In such a case,
the double stance replaces the gathered flight phase;
however this type of bounding is not studied here.

HIND LEG STANCE EXTENDED FLIGHT

GATHERED FLIGHT FORE LEG STANCE

Figure 3. Bounding phases and events.

2.3. Equations of motion

The equations of motion are derived using the
Lagrangian formulation. Virtual legs are used, i.e. the
fore or hind leg pairs that move together, are replaced by
a single leg with double stiffness. The generalized
coordinates include the Cartesian coordinates of the CoM
of the hind segment, the pitch angle of the body and the
spinal spring length i.e. the distance between the CoMs of
the two body segments. Assuming that during stance, the
foot-ground contact acts as a pin joint and no slippage

occurs, the leg lengths (1., I,) and the absolute leg
angles with respect to the vertical to the ground (y , 7,)
, can be expressed using the generalized coordinates as:

l, = \/[y+ (I, +d)sinG) +[X4 —x— (I, +d)cosdf 1)

1, = (Y —d sin 6)? + (X4, — x+d cos 6)? @)
l +d o
yfztan’l X — X — (I, +d) cos @3)
y+(l,+d)sing
7. = tan” xtdh—x+fjcos(9 @)
y—dsin 6)

1 tdh
and hind leg touchdown events respectively, and remain

constant during the stance phase.

Using (1) - (4), the equations of motion can be
simplified. Definingas g=[x y @ I]" theequations
of motion can be written in matrix form as:

where X and x  is the x coordinate of the foot at fore
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M(a)d =F(q,q)+G(a) ®)

where M is the mass matrix, the vector F contains the
Coriolis, the centrifugal and the leg forces acting on the
bodies, and the vector G contains the gravitational terms,
and are given below:

M(g) =

2m 0 -ml;sind mcoséd
0 2m ml,cosd msiné ©)
-ml,sind ml cos® 21, +ml> 0
mcosé  msing 0 m
Fa.a= 2mél;sin@+mé?l, cos+F, siny, +F, siny,
—2mél, cosf+me?), sinf+F, cosy, +F, cosy, (7)
—2mal |, +F, (d+,)cos(6-y, )-F, dcos(6—y, )
k (L—1,)+mé?L +F, sin(0-7, )
G(a) = 0
-2mg (8)
—mgl, cos @
—mgsin @
and ]
F =k(L-1}) (9)
R =k(L-1) (10)

The leg forces are zero when a leg does not touch the
ground.

2.4. Events and phase transition

The dynamics of the model is hybrid, containing
terms that are activated and deactivated depending on the
phase of bounding. Of major importance are the
conditions under which an event occurs and triggers the
phase transition for the model. The touchdown and liftoff
events, as well as the phase transitions are described
below.

1) Touchdown events: The flight phase terminates
when the lower part of the leg touches the ground. Using
the absolute angles (y,,y,) of the leg and Cartesian
coordinates of the hind segment of the body, the criterion
for the touchdown event to occur for the hind leg is:

y—dsind—Lcosy, =0 (11)
accordingly, the criterion of the fore leg touchdown is:
y+(d+l,)sin@—Lcosy, =0 (12)

2) Liftoff events: The stance phase terminates when the
ground reaction force becomes zero and the leg
acceleration is positive i.e. the leg and consequently the
segment to which it is attached is moving upwards. Under
the assumption of massless legs, the liftoff threshold is
significantly simplified since the liftoff occurs when a

spring leg reaches its nominal length. The threshold
function for the fore leg liftoff is:

I, -L=0 (13)
accordingly, the liftoff criterion for the hind leg is:

l,-L=0 (14)
2.5. Bounding cyclic motions

To study the existence of bounding cyclic (repetitive)
motions as shown in Fig. 3, the method of the Poincaré
return map is employed. The Poincaré section is taken in
the extended flight phase at the apex height of the spinal
joint, where the vertical velocity of the CoM of the total
body (consisting of the two segments) is zero, that is:

2y +1 sin@+4l, cosd=0 (15)

To study the periodic motions through the
computations of fixed-points on a Poincaré map, the
monotonically increasing horizontal coordinate x of the
CoM of the hind segment of the body will be projected
out of the state vector. A further dimensional reduction
inherent to the Poincaré method can be employed to
substitute y , 6 and I'[ . The reduced Poincaré map can be
defined through the rule,

z,[k+1]=P(z,[k], a;[K]) (16)
where

zo=(y, 0, % 1) (17)
and

a; =(r¢» Vh)T (18)

includes the leg angles which are controlled
kinematically.

3. Passive periodic motions

In this section, the search method for the passively
generated fixed points and their main characteristics are
presented. The objective is to find an argument z P that
maps onto itself i.e. the solution to the equation

zi[k+1-P(z([k], a;[k]) =0 (19)

The search for fixed points was conducted in two
levels. At the first level, possible areas of existence of
fixed points were found, based on a rough search of initial
conditions. At the second level, a search on the specified
areas was conducted using MATLAB’s fmincon and
patternsearch. The results were filtered in order to
discard from the sum of the calculated fixed points, the
motions featuring double stance phase, since the resulting
motion would have been in contrast to the bounding
regime described in Section 2. Following this method, a
large amount of fixed points has been computed.
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The fixed point parameters, i.e. the initial spine
deformation, the initial pitching rate and the initial
forward velocity, and the initial vertical distance of the
ground, vary significantly. However some basic
properties characterize the vast majority of fixed-points.
To study the effect of the flexible linear torso to the
bounding motion, we focus next to a representative fixed
point.

Figures 4 to 6 illustrate the evolution of the main
variables of motion corresponding to a representative
fixed point derived with the initial conditions given in
Table 2 The motion produced with these initial conditions
is characterized by a high-speed bounding (i.e. of 4.3 m/s,

1
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0 0.05 0.1 0.15
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©
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iy

Vertical velocity (m/s)

as shown in Fig. 4b) featuring extensive bidirectional
spine deformation and reduced pitching motion.

Table 2. Fixed point initial conditions and Touchdown angles

VARIABLE VALUE UNITS
Horizontal Velocity of hind body CoM (x) 4.3 m/s
Vertical Position of hind body CoM (y) 0.3 m
Pitch Rate () -119.0  degls
Spine Spring Length (/) 0.35 m
Fore Leg Touchdown angle (g,) 26.0 deg
Hind Leg Touchdown angle (g,) 250  deg
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Figure 4. Time evolution of the Cartesian variables for the CoM of fore body segment (solid green), hind body segment (solid red) and whole system
(dashed black) at a representative passively generated fixed point during bounding. (a) horizontal body positions, (b) horizontal velocity, (c) vertical
position, (d) vertical velocity.
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Figure 5. Evolution of the pitch angle, pitch rate, spine linear deformation and spine linear deformation rate with respect to time at a representative
passively generated fixed point. The vertical dashed lines correspond to touchdown and liftoff events related to fore legs (green dashed line) and to
hind legs (red dashed line). The spine spring nominal length is represented by the dashed black line.
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Figure 6. Evolution of the absolute leg angles (with respect to the vertical of the ground) and the leg length for the fore (solid green line) and the hind
(solid red line) with respect to time.

At the start of the bounding cycle, the robot is placed
at the apex height of the spinal joint, where the vertical
velocity of the system CoM is zero. The spinal spring is
extended reaching its maximum deformation, and the legs
have their proper touchdown angles. The free fall of the
robot ends with the fore leg touchdown and the system
enters the fore stance phase. Under the impact of the
contact force, the fore leg spring deforms. When it
reaches its nominal length, the fore liftoff event occurs.
After the gathered flight phase at which the maximum
flexion of the spine spring appears, the same sequence of
events repeats for the hind legs. Following the hind leg
liftoff, the model returns to the apex height of the spinal
joint, completing a stride. The aforementioned cyclic
motion exhibits some characteristics worth mentioning.

=
o
T

Energy (J)

0 0.02 0.04 0.06 0.08

1 )
0.1 0.12 0.14

As far as the spine motion is concerned, during the
bounding stride the spinal spring features extensive
bidirectional deformation. In more detail, the maximum
flexion and the maximum extension of the spring exceeds
25% of its nominal length resulting to a large variation of
the distance between the fore and the hind hip. This
characteristic is in agreement with the extensive body
length variation of galloping mammals [4], [5]. In
addition the maximum spinal flexion and extension occur
before and after hind and fore touchdown events
respectively and are not strictly coupled to the events, as
described also in recent research concerning therian
mammals. [23]. Another interesting result is the low
amount of spine elastic energy needed to produce the
cyclic bounding motion, see Fig. 7.

8

1
0.16 0.1

Time (s)

Figure7. Evolution of spine energy (black line), leg deformation energy (blue line) and angural kinetic energy (cyan line) with respect to time at the
representative fixed point. The vertical dashed lines correspond to touchdown and liftoff events related with fore legs (green dashed line) and the hind
legs (red dashed line). The spine spring nominal length is represented by the dashed black line.

The motion of the linear torso model at the Careful inspection of Fig. 4 reveals that the evolution

representative fixed point possesses another interesting
characteristic in terms of the horizontal velocity of its
body segments. During the repetitive bounding gait, the
extensive linear motion in Fig. 5¢, and the relative small
pitch angle in Fig. 5a, result in a large horizontal velocity
variation between the fore and hind body segments while
the horizontal velocity of the system CoM in Fig. 4b
remains almost constant during the stride. Note that for
each stance phase, the forward velocity of the segment in
touch with the ground is significantly lower than the
forward velocity of the system CoM.

of both velocities (vertical and horizontal) of the fore
body segment, forward in time, is indistinguishable from
the evolution of velocities of the hind body segment.
Symmetry can be found also between the fore and hind
leg touchdown and liftoff angles, where the absolute
touchdown angle of the fore leg equals to the negative of
the absolute liftoff angle of the hind leg, see Fig. 6a. The
aforementioned time-reversal symmetry is a byproduct of
the model symmetric properties of fixed points for the
energy-preserving system, and also exists in the rotational
spine model [17].
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As a closing remark, it is worth mentioning that the
gathered flight phase during bounding with a flexible
linear torso is of relatively short duration, see Fig. 5 and
Fig. 6. This fact results in a larger stance phase in
comparison to the flexible revolute torso [17]. However,
recent research on galloping mammals reveals that stance
duration of high-speed galloping (rotary galloping)
during which spine motions are observed, is larger than
the stance duration of moderate speed galloping
(transverse galloping), during which the spine motion is
relatively small [1].

4. Conclusion

In this paper, the effect of linear flexible torso during
high-speed galloping was investigated by introducing a
planar reduced model featuring a linear spinal joint.
Passive cyclic motions were discovered and calculated
using the Poincaré return map. The properties of a
representative fixed point corresponding to high velocity
bounding were analyzed in detail. The quadrupedal
bounding produced in the presence of a linear flexible
torso, despite the reduced nature of the model, resembles
the motion of galloping mammals and features extended
bidirectional spine deformation.
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