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This paper studies the effect of flexible linear torso on the dynamics of passive 

quadruped bounding. A reduced-order passive and conservative model with 

linear flexible torso and springy legs is introduced. The model features 

extensive spine deformation during high-speed bounding, resembling those 

observed in a cheetah. Fixed points corresponding to cyclic bounding motions 

are found and calculated using numerical return map methodologies. Results 

show that the corresponding robot gaits and the associated performance 

resemble those of its natural counterparts. 
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1. Introduction  

Among the legged animals, quadrupeds are 

characterized by high-speed locomotion. The main 

mechanism for achieving such high-speeds is the 

increase of stride frequency; however there is an upper 

limit over which no further increase in frequency is 

possible [1]. To overcome this limitation, quadrupeds 

activate another mechanism, that of the compliant or 

flexible torso. Extensive flexion and extension of their 

torso is observed at high speeds only [1]. The cheetah, a 

natural elite sprinter, owes its astonishing performance 

in part to its flexible spine. Indeed, although the cheetah 

and the racing greyhound are of similar size and gross 

morphology, the cheetah attains significantly higher 
2speed than the greyhound; the fastest recorded speed for 

the cheetah is 29m/s [2] in contrast to a 17m/s top speed 

for the racing greyhound [3]. Earlier studies in the 

context of fast quadruped locomotion have revealed the 

extensive use of spine by galloping mammals. 

Hildebrand studied the phases of a stride during cheetah 

galloping, and noted the extensive spine deformation and 
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the large stride length of the cheetah, [4] and [5], see Fig. 

1. According to studies focusing on the temporal and 

spatial characteristics of locomotion, the combination of 

large stride length and low stride frequency is considered 

the key to attaining high speed [6]. In addition to its 

contribution to speed, a flexible spine enhances energy 

efficiency by storing in elastic form the fluctuating 

energy due to the swinging of a quadruped leg, at the 

spine musculature elements, such as the aponeurosis of 

the longissimus thoracis et lumborum muscle [7]. 

In the last twenty years, scientists presuming the 

importance of the spine have developed a large number 

of dynamically stable quadruped robots with flexible 

torso, trying to enlist its benefits. Leeser introduced the 

first robot in this category [8], following Raibert’s 

pioneering work [9]. It was a hydraulic planar robot with 

two telescoping springy legs and an articulated spine 

composed of three segments with actuated joints. Since 

then various spine implementations have been proposed, 

others with simple designs and others with more 

complex biomimetic designs.  
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Figure 1. The sagittal model with a flexible linear spine overlayed a cheetah at the gathered flight phase in the background. 

The Bobcat [10] robot and the Lynx modular robot 

[11] are representative examples of small quadruped 

robots with a simple spine implementation, since they 

feature one and multiple revolute spinal joints 

respectively. Some of the complex designs worth 

mentioning are the MIT Cheetah [12], and the Canid 

robot [13], both with flexible torsos consisting of 

intervertebral discs (flexible elements capable of storing 

elastic energy), and vertebrae (rigid braces supporting the 

intervertebral discs).  

Other interesting spine implementations were 

introduced by the Renny robot with a ball-and-socket 

joint, and antagonistic pneumatic artificial muscles [14], 

and by the Tiger robot featuring a compliant spinal 

bending mechanism consisting of light-weight segments 

and a linear spring [15]. In general, the complexity of 

legged robots does not permit a generic analysis and 

insight of the effect of spine motions on quadruped 

locomotion, since most results and conclusions are highly 

depended on the implementation of the robot. So the need 

for reduced models of articulated spine robots has 

emerged. 

In the literature, a variety of dynamic models have 

been proposed to study the influence of the articulated 

spine on quadrupedal running. In analogy to the Spring 

Loaded Inverted Pendulum (SLIP), the models have 

springy legs, which in most studies are massless [16-19], 

except for those in [20, 21]. The vast majority of the 

proposed models feature a rotary back joint, either 

actuated [19], [21] or passive [16-18], [20] with the single 

exception that of the one-dimensional model, which 

features a translational joint spine and oversimplified 

legs, i.e. the legs are represented as masses always in 

contact with the ground, moving due to controlled 

actuator-applied forces and to the difference between the 

forward and backward friction [22]. 

In this article, we introduce a sagittal plane model with 

a linear flexible torso and massless springy legs, to the 

best of our knowledge for the first time in the literature. 

The model is passive and conservative, but despite its 

simplicity, it allows the prediction of the existence of 

repetitive passive gaits corresponding to Poincaré fixed-

points, and of resulting motions resembling those of its 

natural counterparts. The developed model is the only one 

that captures the extensive variation of the sagittal hip-to-

hip distance due to spine deformation. This property has 

not been captured in other works so far, due to the use of 

a revolute spinal joint. 

The structure of the paper is as follows. In Section 2, 

the model with the flexible linear torso is introduced and 

the equations of motion are presented. Section 3 discusses 

in detail the main properties of the calculated cyclic 

bounding motions realized passively. Section 4 concludes 

the paper. 

2. Dynamics of bounding with flexible linear torso  

A quadruped robot is a complex nonlinear system with 

hybrid dynamics, characterized by the strong coupling 

between many degrees of freedom. In order to study the 

effect of the flexible linear torso during fast locomotion, 

a simplified sagittal model of a quadruped robot is 

introduced, as shown in Fig. 2. 

2.1. Model description and parameters 

The main body of the model consists of two segments 

(hind and fore segments). The two segments of the body 

are connected via the spinal translational joint, which is 

passive, with a linear spring connecting the two body 

segments and which allows no rotation between them. 

Two springy legs are connected to each of the two body 

segments at the hips with revolute joints. The choice of 

springy legs is in analogy with the Spring Loaded 

Inverted Pendulum (SLIP) and captures the property of 

energy storage during running. Subscripts , , and , refer to 

the fore and hind individual body segments (or legs) and 

to the torso, respectively. 

As far as the dynamics of the model is concerned, the 

hind and fore segments of the body are identical with 

mass and moment of inertia about their center of mass 

(CoM). The legs are massless springs of nominal length 

and spring stiffness, and the distance between the hip 

joint and the CoM of each body is. 
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Figure 2. The sagittal-plane model of a quadruped robot with a linear 
flexible torso. 

The spinal joint is a linear spring of stiffness   and 

nominal length. The model is conservative since energy 

dissipation and motor input torques are not considered. 

The values of the model mechanical parameters are 

chosen to match the parameters in [17]. The value for the 

stiffness of the torso linear spring was chosen so that the 

herein introduced model and the model of [17] have the 

same natural frequency. The model mechanical 

properties are displayed in Table 1. 

Table 1. Model Mechanical Properties 

PARAMETER VALUE UNITS 

Fore/hind body mass 
  
(m)   10.432 Kg 

Fore/hind body inertia 
  
(I

z
)   0.339 Kg M2 

Hip to com distance 
  
(d)  0.138 M 

Nominal leg length 
  
(L)   0.323 M 

Leg spring constant 
  
(k)   7046 N/M 

Nominal torso spring length 
  
(L

t
)   0.276 M 

Torso spring stiffness 
  
(k

t
)   5077 N/M 

 

2.2. Bounding gait description 

In nature, mammals use their spine mainly during high 

speed galloping [1], [4], [5]. Galloping is an asymmetric 

gait, featuring great complexity since none of the legs 

moves in phase with another. Instead in bounding, i.e. the 

gait at which the fore and the hind legs move in phase, is 

easier to model and is employed frequently in nature 

during obstacle avoidance and running with moderate 

speed. In the robotic community bounding has received 

considerable attention due to its sagittally symmetric 

nature and to its use as a limiting case of galloping.  

 

In this paper, we study the spine performance during 

bounding. Bounding consists of four phases, two aerial 

and two stance phases triggered by events such as leg 

liftoff and leg touchdown. The phases of bounding are 

illustrated in Fig. 3. It is interesting to note the existence 

of two flight phases. During the gathered flight phase, the 

spine spring reaches its minimum length, letting the two 

body segments to approach. No collision is modeled, so 

the two CoMs can come as close as needed. During the 

extended flight phase, the spinal spring reaches its 

maximum length, increasing the distance between them. 

The existence of a fifth phase, called double stance 

phase, during which the two legs are in contact with the 

ground simultaneously, is also possible. In such a case, 

the double stance replaces the gathered flight phase; 

however this type of bounding is not studied here. 

 
Figure 3. Bounding phases and events. 

2.3. Equations of motion 

The equations of motion are derived using the 

Lagrangian formulation. Virtual legs are used, i.e. the 

fore or hind leg pairs that move together, are replaced by 

a single leg with double stiffness. The generalized 

coordinates include the Cartesian coordinates of the CoM 

of the hind segment, the pitch angle of the body and the 

spinal spring length i.e. the distance between the CoMs of 

the two body segments. Assuming that during stance, the 

foot-ground contact acts as a pin joint and no slippage 

occurs, the leg lengths (
fl , hl ) and the absolute leg 

angles with respect to the vertical to the ground ( , )f h 

, can be expressed using the generalized coordinates as: 

2 2[ ( )sin ] [x ( )cos ]f t tdf tl y l d x l d         (1) 

2 2( sin ) (x cos )h tdhl y d x d       (2) 

1
x ( ) cos

tan
( ) sin

tdf t

f

t

x l d

y l d







   

  
  

 (3) 

1 x cos
tan

sin )

tdh
h

x d

y d






   
  

 
 (4) 

where 
 
x

tdf
 and 

 
x

tdh
 is the x coordinate of the foot at fore 

and hind leg touchdown events respectively, and remain 

constant during the stance phase. 

Using (1) - (4), the equations of motion can be 

simplified. Defining as [ ]tx y l q  the equations 

of motion can be written in matrix form as: 

h

f

x

y
+

(x,y)

kf 

kh , Lh

kt 

m , Iz

lf

d

lt

d

EXTENDED FLIGHT

GATHERED FLIGHT FORE LEG STANCE

HIND LEG STANCE
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M(q)q = F(q,q) +G(q)   (5) 

where M is the mass matrix, the vector  F  contains the 

Coriolis, the centrifugal and the leg forces acting on the 

bodies, and the vector G contains the gravitational terms, 

and are given below: 

2

2 0 sin cos

0 2 cos sin

sin cos 2 0

cos sin 0

t

t

t t z t

m ml m

m ml m

ml ml I ml

m m m

 

 

 

 

  
 

 
 
  
 
 

M(q)
 

(6)

 

2

2

2

2 sin cos sin sin

2 cos sin cos cos

2 (d )cos( ) dcos( )

( ) sin( )

t t h h f f

t t h h f f

t t f t f h h

t t t f f

m l m l F F

m l m l F F

m l l F l F

k L l m l F

     

     

    

  

  
   

    
 
      
 

     

F(q,q)

 

(7)

 

0

2

cos

sin

t

mg

mgl

mg





  
 
 
 
 
  

G(q)   

(8)

 

and 

( )f fF k L l    (9) 

( )h hF k L l    (10) 

The leg forces are zero when a leg does not touch the 

ground. 

2.4. Events and phase transition 

The dynamics of the model is hybrid, containing 

terms that are activated and deactivated depending on the 

phase of bounding. Of major importance are the 

conditions under which an event occurs and triggers the 

phase transition for the model. The touchdown and liftoff 

events, as well as the phase transitions are described 

below. 

1) Touchdown events: The flight phase terminates 

when the lower part of the leg touches the ground. Using 

the absolute angles ( , )f h   of the leg and Cartesian 

coordinates of the hind segment of the body, the criterion 

for the touchdown event to occur for the hind leg is: 

sin cos 0hy d L       (11) 

accordingly, the criterion of the fore leg touchdown is: 

( )sin cos 0t fy d l L       (12) 

2) Liftoff events: The stance phase terminates when the 

ground reaction force becomes zero and the leg 

acceleration is positive i.e. the leg and consequently the 

segment to which it is attached is moving upwards. Under 

the assumption of massless legs, the liftoff threshold is 

significantly simplified since the liftoff occurs when a 

spring leg reaches its nominal length. The threshold 

function for the fore leg liftoff is: 

0fl L     (13) 

accordingly, the liftoff criterion for the hind leg is: 

0hl L     (14) 

2.5. Bounding cyclic motions 

To study the existence of bounding cyclic (repetitive) 

motions as shown in Fig. 3, the method of the Poincaré 

return map is employed. The Poincaré section is taken in 

the extended flight phase at the apex height of the spinal 

joint, where the vertical velocity of the CoM of the total 

body (consisting of the two segments) is zero, that is: 

2 sin cos 0t ty l l       (15) 

 To study the periodic motions through the 

computations of fixed-points on a Poincaré map, the 

monotonically increasing horizontal coordinate  x  of the 

CoM of the hind segment of the body will be projected 

out of the state vector. A further dimensional reduction 

inherent to the Poincaré method can be employed to 

substitute y ,   and tl . The reduced Poincaré map can be 

defined through the rule, 

[ 1] ( [ ], [ ])f f fk k k z P z a   (16) 

where 

( , , , )T

f ty x lz    (17) 

and 

( , )T

f f h a    (18) 

includes the leg angles which are controlled 

kinematically. 

3. Passive periodic motions 

In this section, the search method for the passively 

generated fixed points and their main characteristics are 

presented. The objective is to find an argument 
  
z

f
 that 

maps onto itself i.e. the solution to the equation 

[ 1] ( [ ], [ ]) 0f f fk k k  z P z a  (19) 

The search for fixed points was conducted in two 

levels. At the first level, possible areas of existence of 

fixed points were found, based on a rough search of initial 

conditions. At the second level, a search on the specified 

areas was conducted using MATLAB’s fmincon and 

patternsearch. The results were filtered in order to 

discard from the sum of the calculated fixed points, the 

motions featuring double stance phase, since the resulting 

motion would have been in contrast to the bounding 

regime described in Section 2. Following this method, a 

large amount of fixed points has been computed.  
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The fixed point parameters, i.e. the initial spine 

deformation, the initial pitching rate and the initial 

forward velocity, and the initial vertical distance of the 

ground, vary significantly. However some basic 

properties characterize the vast majority of fixed-points. 

To study the effect of the flexible linear torso to the 

bounding motion, we focus next to a representative fixed 

point.  

Figures 4 to 6 illustrate the evolution of the main 

variables of motion corresponding to a representative 

fixed point derived with the initial conditions given in 

Table 2 The motion produced with these initial conditions 

is characterized by a high-speed bounding (i.e. of 4.3 m/s, 

as shown in Fig. 4b) featuring extensive bidirectional 

spine deformation and reduced pitching motion. 

 

Table 2. Fixed point initial conditions and Touchdown angles 

 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. Time evolution of the Cartesian variables for the CoM of fore body segment (solid green), hind body segment (solid red) and whole system 

(dashed black) at a representative passively generated fixed point during bounding. (a) horizontal body positions, (b) horizontal velocity, (c) vertical 

position, (d) vertical velocity. 

 
 

(a) (b) 

  
(c) (d) 

Figure 5. Evolution of the pitch angle, pitch rate, spine linear deformation and spine linear deformation rate with respect to time at a representative 

passively generated fixed point. The vertical dashed lines correspond to touchdown and liftoff events related to fore legs (green dashed line) and to 

hind legs (red dashed line). The spine spring nominal length is represented by the dashed black line. 
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(a) (b) 

Figure 6. Evolution of the absolute leg angles (with respect to the vertical of the ground) and the leg length for the fore (solid green line) and the hind 

(solid red line) with respect to time. 

 

At the start of the bounding cycle, the robot is placed 

at the apex height of the spinal joint, where the vertical 

velocity of the system CoM is zero. The spinal spring is 

extended reaching its maximum deformation, and the legs 

have their proper touchdown angles. The free fall of the 

robot ends with the fore leg touchdown and the system 

enters the fore stance phase. Under the impact of the 

contact force, the fore leg spring deforms. When it 

reaches its nominal length, the fore liftoff event occurs. 

After the gathered flight phase at which the maximum 

flexion of the spine spring appears, the same sequence of 

events repeats for the hind legs. Following the hind leg 

liftoff, the model returns to the apex height of the spinal 

joint, completing a stride. The aforementioned cyclic 

motion exhibits some characteristics worth mentioning. 

As far as the spine motion is concerned, during the 

bounding stride the spinal spring features extensive 

bidirectional deformation. In more detail, the maximum 

flexion and the maximum extension of the spring exceeds 

25% of its nominal length resulting to a large variation of 

the distance between the fore and the hind hip. This 

characteristic is in agreement with the extensive body 

length variation of galloping mammals [4], [5]. In 

addition the maximum spinal flexion and extension occur 

before and after hind and fore touchdown events 

respectively and are not strictly coupled to the events, as 

described also in recent research concerning therian 

mammals. [23]. Another interesting result is the low 

amount of spine elastic energy needed to produce the 

cyclic bounding motion, see Fig. 7.  

 

 
Figure7. Evolution of spine energy (black line), leg deformation energy (blue line) and angural kinetic energy (cyan line) with respect to time at the 

representative fixed point. The vertical dashed lines correspond to touchdown and liftoff events related with fore legs (green dashed line) and the hind 

legs (red dashed line). The spine spring nominal length is represented by the dashed black line. 

 

The motion of the linear torso model at the 

representative fixed point possesses another interesting 

characteristic in terms of the horizontal velocity of its 

body segments. During the repetitive bounding gait, the 

extensive linear motion in Fig. 5c, and the relative small 

pitch angle in Fig. 5a, result in a large horizontal velocity 

variation between the fore and hind body segments while 

the horizontal velocity of the system CoM in Fig. 4b 

remains almost constant during the stride. Note that for 

each stance phase, the forward velocity of the segment in 

touch with the ground is significantly lower than the 

forward velocity of the system CoM. 

Careful inspection of Fig. 4 reveals that the evolution 

of both velocities (vertical and horizontal) of the fore 

body segment, forward in time, is indistinguishable from 

the evolution of velocities of the hind body segment. 

Symmetry can be found also between the fore and hind 

leg touchdown and liftoff angles, where the absolute 

touchdown angle of the fore leg equals to the negative of 

the absolute liftoff angle of the hind leg, see Fig. 6a. The 

aforementioned time-reversal symmetry is a byproduct of 

the model symmetric properties of fixed points for the 

energy-preserving system, and also exists in the rotational 

spine model [17]. 
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As a closing remark, it is worth mentioning that the 

gathered flight phase during bounding with a flexible 

linear torso is of relatively short duration, see Fig. 5 and 

Fig. 6. This fact results in a larger stance phase in 

comparison to the flexible revolute torso [17]. However, 

recent research on galloping mammals reveals that stance 

duration of high-speed galloping (rotary galloping) 

during which spine motions are observed, is larger than 

the stance duration of moderate speed galloping 

(transverse galloping), during which the spine motion is 

relatively small [1]. 

 

4. Conclusion 

In this paper, the effect of linear flexible torso during 

high-speed galloping was investigated by introducing a 

planar reduced model featuring a linear spinal joint. 

Passive cyclic motions were discovered and calculated 

using the Poincaré return map. The properties of a 

representative fixed point corresponding to high velocity 

bounding were analyzed in detail. The quadrupedal 

bounding produced in the presence of a linear flexible 

torso, despite the reduced nature of the model, resembles 

the motion of galloping mammals and features extended 

bidirectional spine deformation. 
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