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Abstract. To accomplish tasks with high accuracy, advanced
control strategies that benefit from the knowledge of system
parameters are required. However, during operation some of
them may change, or be unknown. In this paper, a novel param-
eter estimation method is proposed, which is based on the con-
servation of the angular momentum of a space manipulator
system in the free-floating mode. The estimated parameters are
combinations of spacecraft, manipulator and payload parame-
ters and render the system full dynamics identified and applica-
ble to model-based control. The algorithm requires only meas-
urements of joint angles and rates, and spacecraft attitude and
angular velocity. No information about spacecraft and joint
accelerations or joint torques, which include substantial noise, is
required. Thus, in contrast to other methods using the equations
of motion, the proposed method is insensitive to sensor noise.
Moreover, it does not require the prior knowledge of any system
parameters and can be applied to free-floating systems with
more than one manipulators. The application of the proposed
method is illustrated by a 3D example.

1. INTRODUCTION

On-Orbit Servicing (OOS) activities include missions, such
as re-orbiting and de-orbiting, inspection and retrofit of or-
biting structures, satellite maintenance, repair of damaged
ones and removal of space debris. A cost-effective way to
accomplish these is to use space manipulator systems (SMS)
since space is too dangerous to human life, especially during
EVA. SMS consist of one or more robotic manipulators,
mounted on a satellite base equipped with thrusters, reaction
wheels, antennas and sensors, see Fig. 1. The ETS-7 and the
Orbital Express are two examples of such systems [1], [2].

To increase SMS life or avoid interactions with a target,
the reaction wheels and the thrusters are turned off. This re-
sults in a free-floating operation, which is feasible when no
external forces and torques act on the system. Then, motion
of the uncontrolled satellite base results from manipulator(s)
motions, due to dynamic coupling between them. To accom-
plish tasks at high accuracy, advanced model-based control
strategies can be adopted; these require accurate knowledge
of system parameters, [3].
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Fig. 1. A space manipulator system with a single manipulator.

However, very often, the dynamic parameters of an SMS
may change on orbit for a number of reasons, such as fuel
consumption, deployment of payload, docking to a spacecraft
or object capture. To address this problem, many parameter
estimation methods have been developed. Inspired by the
methods for terrestrial fixed-base manipulators, [4], [5], some
of them are based on the linearity of the equations of motion
with respect to the dynamic properties, [6], [7]. However,
these methods require measurements of spacecraft and joint
accelerations, which contain undesirable noise.

To tackle this issue, some researchers have proposed esti-
mation algorithms based on the momentum conservation.
Yoshida and Abiko used the estimation errors for the reaction
wheel momentum to compute the deviations of the parame-
ters from the nominal ones [8]. The proposed estimation
method fails to identify all the required parameters. Ma et al.,
used the angular momentum conservation to identify the
spacecraft inertial parameters only, using complete
knowledge of manipulator and payload parameters, [9].

Murotsu et al., have proposed and compared the two
above-mentioned methods, of which one requires spacecraft
and joint accelerations [10]. Both methods estimate only the
inertia parameters of an unknown object handled by a free-
flying manipulator. Xu et al. proposed a method, which uses
both equations of motion and momentum equations, for iden-
tifying the inertia parameters of a space manipulator and the
grasped target, [11]. The method requires measurements of
spacecraft accelerations, which contain noise, and the use of
thrusters for maneuvering, resulting in fuel consumption.

All past research either is based on equations of motion
which require acceleration measurements and contain sub-
stantial noise, or on the momentum conservation, but then
cannot estimate all the dynamic parameters. In this paper, a
novel parameter estimation method is proposed, which is
based on the conservation of the angular momentum of an
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SMS in free-floating mode (FFSMS). The parameters to be
identified are combinations of spacecraft, manipulator and
payload parameters, and once available, they are enough to
reconstruct the system full dynamics as required in model-
based control. Only measurements of joint angles, rates,
spacecraft attitude and angular velocity are employed; no
spacecraft and joint accelerations or joint torques, which in-
clude substantial noise, are required. Hence, in contrast to
equations of motion methods, the developed one is insensi-
tive to sensor noise, while at the same time, it identifies a full
set of SMS dynamic properties.

II. DYNAMICS OF FREE-FLOATING SPACE MANIPULATORS

Advanced control strategies for FFSMS use the Generalized
Jacobian matrix and the dynamic model of the system; hence
they need knowledge of the system parameters, [12]. To this
end, we briefly present the dynamics of an FFSMS with
multiple manipulators and zero external forces and torques.
We assume that the system has constant angular momentum,
and without loss of generality, zero linear momentum, [13].
The FFSMS have an open chain kinematic configuration
consist of » manipulators. The number of the links of the m

-th manipulator is indicated by », . Under these conditions,
the system Center of Mass (CM) remains fixed in inertial
space, and hence the origin of an inertial frame, O, can be
chosen to be the system CM, see Fig. 2.

@ System CM

& BodyCM

Fig. 2. A spatial FFSMS and the definition of its parameters.

The system angular momentum h_,, expressed in the iner-
tial frame is given by:
he, =R, ('D’@,+"D_q) (D)
where ‘@, is the spacecraft angular velocity expressed in
the spacecraft 0" frame and the column-vector q is:
- (HT ©(m)T (‘l(n)T ]T (2)

q=1[q q
where the N, x1 column-vector q""' represents the joint
rates of the m -th manipulator. The matrix R (e,7) is the
rotation matrix between the spacecraft 0" frame and the
inertial frame, expressed as a function of the Euler parame-
ters ¢,7 , and the terms D, qu are inertia-type matrices of
appropriate dimensions, given in Appendix A.

It has been shown that the equations of motion of a spatial
FFSMS with nonzero initial angular momentum are [6]:

‘'D(q) 0, + "D (1)q+¢,("0,,q,9)=0 3)

‘D (q) "o, + D (@) g+ c,("®,,q,q9) =7 )
where the term °D is an inertia-type matrix and ¢, , ¢, are
column vectors containing the centrifugal and Coriolis tor-
ques, given in Appendix A. The 3x1 zero vector 0 corre-
sponds to the zero moments acting on the spacecraft and =
is the vector of the manipulator joint torques

<y ®)

where the N, x1 column-vector ©"’ represents the torques
applied acting at the joints of the m-th manipulator.

Eq. (3) can be solved for ‘e, and the result substituted to
Eq. (4), yielding the reduced equations of motion:

H(Q)q+c('®,,q,9)=7 (6)

where H and ¢ are given in Appendix A.

nT T
=[cT e ™

(m)

III. PARAMETER ESTIMATION USING EQS. OF MOTION

In this section, we present a well-known estimation method
based on the dynamic equations (DE method), [4]-[5]. In the
case of FFSMS, the reduced equations of motion (6) cannot
be written in a linear form with respect to the dynamic pa-
rameters. The non-linearity is caused by the presence of the
term ‘D™ in H(q) and ¢, see Appendix A. However, if
Egs. (3) and (4) are used, these can be expressed linearly
with respect to the vector of the parameters to be estimated,
EL

0:°Dod)0+0Dqd+c1:Yl(d,d,q,0(bo,0m0)n 7
‘o) (8)
Egs. (7) and (8) can be combined into the following form:

0 o 0T 0 - . 0 -
t="D, q+ D "o,+c,=Y,(q.9.q, @,

T*:[OT TT]T :Y,(dvqaq’o(bwomo)n (9)

where

T
1

Y, 1" ofsize 3+ N, )xk

m=1

Y =[Y

T

(10)

is the regressor matrix, and k& is the dimension of = (see
Section IV.B).

Use of N measurements at time instants ¢,,¢,,....¢, of the
variables q,q.q,"'®,, '®, , and 1 , obtained during an appro-
priate trajectory, results in the following system of equations:

EXGIERAGE

. |r*<zz>} }Y,<t2>|
o _

o IR R LA

(1

. \ |
{T (ty )J LY. ()]
To solve (11) for =, the regressor matrix Y, must be of
full rank. For this purpose, # must contain the minimum set
of estimated parameters (see Section IV.B), appropriate excit-
ing trajectories must be performed by the manipulators (see
Section IV.C) and the number of the measurements ¥ must
be selected so that the number of rows of Y_ is at least equal

to the dimension of the vector = ,
G+3 NNk

m=1

(12)
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The system of Eq. (11) is over-determined and subject to
the above conditions, it is solved using least-squares as,
n=(Y]Y) Y% (13)
It is important to note that the estimation method based on
the equations of motion requires measurements of the space-
craft angular acceleration "o, , the manipulator joint acceler-
ations q , and the applied torques = . Joint accelerations are
obtained essentially from encoder measurements and include
substantial noise. The angular acceleration is obtained by
angular velocity differentiation, again introducing noise to
the estimation process. Finally, applied torques are hard to
measure. They can be estimated using measurements or esti-
mates of motor current. However, noise exists in motor cur-
rent measurements and unmodeled joint friction and actuator
dynamics limit the accuracy of applied torque estimation.

IV. PARAMETER ESTIMATION USING THE ANGULAR
MOMENTUM CONSERVATION

Methods which employ the momentum conservation cannot
estimate all the required system inertia parameters without
prior knowledge of some of them. However, in this paper,
the estimated parameters are combinations of spacecraft,
manipulator, and payload inertia parameters and can render
the full system dynamics identified. A novel parameter esti-
mation method for multi-arm FFSMS, based only on angular
momentum conservation (AMC method), considering
FFSMS with non-zero angular momentum, is developed.
The desired non-zero angular momentum can be applied
using momentum control devices such as reaction wheels.

A. Estimation Method

To use Eq. (1) for parameter estimation, the angular momen-
tum h., , must be expressed linearly with respect to the
vector of the estimated parameters = . First, the terms D",
derived in Appendix A, are expressed in sums of terms,
where each term is the product of a constant and a measured
quantity. A similar procedure has to be followed for all other
terms of ‘D™ and ‘D, shown in Appendix A. Thus, the
angular momentum can be expressed as:

(14
where the 3xk matrix Y, is the regressor matrix. Note that
this regressor does not require acceleration measurements.

Assuming constant angular momentum h., ,, and N

measurements of the variables q,q, ‘®, and &,7 obtained at

time instants ¢,z,,...,t, during an appropriate trajectory,
results in the following system of equations:

I—hCI\LU—| I— Yh(tl)—‘
-
N

. 0
h., =Y, (4.9, ®,,&n7)=n

| \
~ :| th.0| Yh.(tZ)‘ﬂ::\A(n

CcM | S | ‘ h

| \
Lhcwl.oJ LY, ()]
where = is the parameter vector same for both methods.

As with the DE method, appropriate exciting trajectories
must be followed by the manipulators. The number of the

(15)

measurements N should satisfy Eqs. (16)-(17) for spatial

and planar free-floating space robots, respectively,

3N>k (16)

17)

The system of equations, given by Eq. (15), is over-
determined and the least-squares solution is,

N=k

n :(QhT Q1. )71 Q}j ﬁCM

(18)

B.  Minimum Set of Estimated Parameters

The vector = should contain the minimum set of estimated
parameters so that the regressor Y (Y, for DE and Y, for
the AMC method), is of full rank. Therefore, a case-by-case
analysis is required. Suppose that initially the Y and = are:

(19)

Y:[el ei ek]
and

T

(20)

T[=[7Z' T, 7Z'k]

where e, is the i column of matrix Y and z, is the i*
element of column vector = .

To find the minimum set of parameters, one must examine
if a column e, can be written as a linear combination of the
other columns, i.e.,

e, = Y e, 20

j=1, j#i
where 4, are constants. If this is the case, e, and z, are
removed from Y and = , respectively, to obtain a new = :

=[x, (144 )7, (44 ), (144, ), (144,)] (22)

This is an iterative procedure that terminates when no col-
umn e, of Y can be written in the form of (21). Then, the
final = contains the minimum set of estimated parameters.

C. Exciting Trajectories

Appropriate exciting trajectories are required that result in
Y being of full rank and with a small condition number. A
small condition number is needed so that the estimation is
relatively insensitive to measurement noise. The developed
exciting trajectories are based on truncated Fourier series. To
satisfy desired initial and final conditions, a fifth-order poly-
nomial is added to the truncated Fourier series:

N, i(m) i(m) 5

q:m}=z q sin(w,-lf)— ! ; COS((U,.ZI)"’Z C;(m)tj (23)
w

-1 @ I} =0

N, is the number of the har-

m f

where m =1,..n, i=1,...N

i(m)

" and 5" are free coefficients and

monics employed, a
®,=2r[t, with ¢, the motion duration.

The free coefficients of the Fourier series are found by
minimizing the condition number of the regressor matrix.
The optimization algorithm is implemented using the Global
Search Solver provided by the Global Optimization Toolbox
(MathWorks Inc.) taking into account mechanical con-
straints on joint positions, velocities and accelerations.
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D. Noise Modeling

To identify the desired identified parameters the measure-
ments obtained by the system sensors are required. Here, it is
assumed that an Inertial Measurement Unit (IMU) and joint
encoders are available on an SMS.

The model of the IMU is given by, [14]:

‘®,="w,+b, +n, (24)
b, =n,, (25)
where ‘o, is the true angular velocity whereas ‘o, is the

corresponding measurement of the angular velocity. Addi-
tionally, the term b is the gyroscope bias, considered to be
a "Brownian" motion process, while the terms n_ and n,,
represent white Gaussian noise with zero mean and standard
deviations o and o, , respectively.
The output of the motor encoder is also noisy, [15]:

d=q+n, (26)

where q is the true joint angle and q is the corresponding

measurement; the term n_ represents Gaussian noise with
zero mean and standard deviation o .

V. SIMULATION RESULTS

The proposed identification method is illustrated by a spatial
3-DOF FFSMS. Although the method can be easily applied
in multi-arm FFSMS, here a single arm manipulator, shown
in Fig. 2, is studied. The kinematic and inertia parameters of
the FFSMS are given in Table 1.

The angular momentum of the system is set by the reaction
wheels toh_, =[68 66 65]" Nms and the initial spacecraft
attitude is [e;, 7, 1" =[0.2 0.1 0.3 0.9274]".

in

Table 1. Parameters of the system shown in Fig. 2.

i li i m; Ixx ]vv Izz
(m) (m (kg) | (kgm’) | (kgm?) | (kg m?)

0 - [0.1,0.2,11" | 2000 1500 1500 1500

1]0.25 0.25 10 0.21 0.21 0.01

21 1.0 1.0 50 0.05 16.69 16.69

3110 1.0 50 0.05 16.69 16.69

The exciting trajectories are given by Eq. (23) where
t,=30s and N, =3 . The desired initial and final conditions
correspond to zero joint angles, rates and accelerations. The
number of measurements is taken eaual to N =20. Reeres-
sors Y, and Y, differ, therefore different optimized trajecto-
ries are derived, which correspond to different minimum
condition numbers. Since the DE method is more sensitive in
measurement noise than the proposed AMC method, the ex-
citing trajectory used in identification with both methods cor-
responds to that with minimum condition number of the re-
gressor Y_, which is 28. The coefficients 4, and & of the
exciting trajectory are shown in Table II.

The gyro measurements are simulated using Egs. (24) and
(25) with standard deviations o, =3.1623-10 * urad/s”> and
o, =0.31623 urad/s"? , respectively, and with initial bias
on each axis b, , =0.1deg/hr, [14]. The joint angle standard
deviation is o =10 rad. The time histories of joint angles,
rates and accelerations including noise, are shown in Fig. 3.

Table II. Trajectory coefficients for minimum condition number.

a! 0.0411 b 0.0533
al -0.0622 b! -0.1269
al 0.0002 b! 0.0171
a’ 0.0435 b? -0.0393
al -0.0407 b? 0.0596
al -0.1253 b? -0.0444
al 0.0516 b? -0.0153
al -0.0423 b? 0.0449
al 0.1343 b 0.0463

(a)

q (deg)

2
j=2)
(b)
o

0 5 10 15 20 25 30
t(s)
(a) Joint angles, (b) joint rates and (c) joint accelerations of the
spatial FFSMS in Table I, for the trajectories described in Table II,
considering noisy measurements.

Fig. 3

For the spatial 3-DOF manipulator, shown in Fig. 2, the
minimum set of estimated parameters is presented in Appen-
dix B. The results of the identification methods DE and
AMC, using measurements with and without noise, are dis-
played in Table III. As shown in this table, if no noise exists
in the measurements, (second and third column in Table III),
both methods estimate the required parameters practically
exactly.

However, when noisy measurements are introduced, the
DE method fails to identify the parameters, displaying errors
between 19 and 140%. In contrast to these results, the devel-
oped AMC method, (fourth and fifth column in Table III)
exhibits errors which are 25-1800 times smaller than those
obtained with the DE method. The main reason for this spec-
tacular difference is that the developed method does not re-
quire noisy acceleration measurements.

Note that for these results no joint torque noise or unmod-
eled friction was added; if such terms are added, it is ex-
pected that the results of the DE method will be even worse.
Therefore, the AMC method yields much better results, and
in addition it does not require torque measurements, which
are difficult to obtain.
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Table III. Results from DE & AMC methods with & without noise.

. No noise With noise
x True Relative Relative Relative | Relative
value Error (%) | Error (%) | Error (%) | Error (%)
(DE) (AMC) (DE) (AMC)
7 1832.5 0.0214 0.0008 30.85 -0.017
T, -1042 | -0.0042 -0.0371 139.48 -0.898
T, -154.0 | -0.0972 -0.0146 73.54 -0.681
7, 1832.5 0.0324 0.0035 38.27 -0.066
7 -154.0 | -0.0121 -0.0519 97.86 -0.470
T, 1708.5 0.0158 0.0108 34.29 -0.147
T, 321.5 0.0581 0.0787 50.47 0.603
Ty 321.5 0.0043 0.0353 29.89 0.290
T, 2559 | -0.0074 -0.0471 29.75 0.166
Ty 256.0 0.0381 0.0040 25.96 0.038
T, -654 | -0.0087 -0.0568 60.89 1.451
T, 65.5 0.0834 0.0318 18.33 -0.674
7, 142.1 0.0042 0.0179 78.23 -0.466
T, 2134 0.0024 0.0171 39.80 0.345
7, 142.1 0.0289 0.0303 85.82 -0.645
Ty, 47.4 0.0959 0.0476 25.49 -0.999
7, 71.1 0.0271 0.0843 44.99 0.309
7 47.39 0.0121 0.0976 119.23 -0.564
Ty 96.4 0.0064 0.0333 26.01 0.745

VI. CONCLUSIONS

In this paper, a novel parameter estimation method was de-
veloped, based on the conservation of the angular momen-
tum of FFSMS. Combinations of spacecraft, manipulator
and payload parameters are identified that allow full recon-
struction of the system dynamics, and therefore can be used
in model-based control algorithms. Only measurements of
joint angles, rates, and spacecraft attitude and angular veloci-
ty are needed; noisy and hard to obtain spacecraft and ma-
nipulator joint accelerations or joint torques, are not re-
quired. Thus, in contrast to methods based on equations of
motion, the developed method is insensitive to sensor noise
while it identifies the full parameter set. Moreover, it does
not require prior knowledge of any parameter and can be
applied to free-floating systems with more than one manipu-
lators. The developed method was illustrated by a 3D exam-
ple.
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APPENDIX A

The matrices ‘D, "D, and "D, expressed in the space-
craft frame, are presented.

First, the term °D is given by,

n N,
OD:0D0+ZZO (m) (Al)
m=1 j=1
where
Nm ( )
v N . M Ym
T S o AT
m=1 i=1 m=l pp 72 mi»t)
k=1
Nm Ng
. MY m"y m ) 020
— - 0~(m) 0~
72 Z( N, = = Ng [ ro > ro‘/] (AZ)

= = w ) )
HHZ;LLM_ mi )JLM_ m,(:i)J
k=1 k=1

non Ny -
+ z z z kil 0;0("1)7oli(4)]

m=lg=l =l pr 72 mi’")
k=1

g=m

and
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le

n Nu N
0 (m) _ 0 (m) _ 0y(m) 0
R I Y D AN

lliq)]
i=0 g=1 k=1
q#m
Nq A3
., M m:q) (A3)
- 07(m) 0=(q)
+ +[ 1",
zzmM m:(q)
k=1
where
( 03 (m) 0=(m)
}—M[ 1", "] i<j
\
}Ulzm)+mfm)[Oéfm),()é:m)]+m0[lJli(m)’(lli(m)]
D(m> +(zzm(rl) (m) +o4m ('77))[01(”1) 0l<m)] l:] (A4)
=1 k=1
|
(m) (m)\p 0= (m) 0~(m)
} +(m,,, +odmy I A A
\
‘ 0~(m) 07(m) .
[—M[ L ] i>j
The term "D, is given by,
D = |:°D(') ce0plm 0D(")J (A5)
q q q q
where
(m) _ (m) (m)
‘D Z D" "F, (A6)
and
Oopm _[0 (m) .0 (m) | 0 (A7)
i T 4 Z; XN, -))
where l’z(j’”) is the unit vector along the ; -th joint’s axis of

the m -th manipulator expressed in spacecraft frame and 0
is the zero matrix.

The ZN x z N, matrix "D is given by,

N, Ny

M Zz oFi(m)T[ol;M),0l(jq)]0Fj(q) m#gq

i=1 j=1

N, N,
m n (m)
IR AR Tl

j=1 i=1

(A8)

m=q

(
‘D, (m.q)= l|
t

In Egs. (A2)~(A4) and Eq. (A8), the body-fixed barycen-
tric vectors "1\"), "r") and *¢"’ are given in [16] and

[a,b] :(a-b)l—ab (A9)

where 1 is the unit dyadic.
The column vectors ¢, and ¢, in Egs. (3) and (4) are giv-
en by, [13]:

a('p’ a(°p q))
¢="o, 'D'e, +L"cox 0D + ( m0)+ ( qq)J(l (A10)
oq oq

(2('D}",) 2(*Dyi) 12(i""D,,))
. 1

q qq
€ :L oq oq 2 oq Jq
(A11)
o(*01 D) 15('e1"D),
_ q-— ®,
oq 2 oq
where '@, is given by Eq. (1).
The inertia matrix in Eq. (6) is given by:
H(q)="D_-'D, ‘D" "'D, (A12)
The vector ¢ in Eq. (6) is given by:
c:czf“DI ‘D™ (A13)
APPENDIX B

The minimum set of parameters of the FFSMS in Fig. 2,
i.e. the elements of the = vector are shown below:

7[1:lOX+Ily+A(r02y+r021+2r0111+le)(28r1 (rz)z+ll)+Cr12) (B1)
—Ar,.1,, (B2)
7wy =—(A4r, (r,. +1)+ Br,r) (B3)
7r4:10y+[lv+A(r02A+r022+ZrOZl]+llz)(ZBrl(r01+ll)+Criz) (B4)
s :_(Ar()y(r()z+ll)+Br0yrl) (BS)
7, =1, +A(02)+r02y) (B6)
mo=l ~1 +1, +13‘,+C122+D(132+r22 )+2Elzr2 (B7)
my=1,+ 1, +1,, +CL +D(I; +r )+2ELr, (B8)
wy =1, —1, —(CL +Dr, +2ELr, ) (B9)
o =1, +CI} +Dr] +2ELr, (B10)
m, =1, -1, -DI (B11)
7, =1, + DI (B12)
7, =r,, (Bl +Fr)) (B13)
7, =Bl (r, +1)+CLr, + Enr, + Fr,(r,,+1) (B14)
7 =1, (Bl +Fr,) (B15)
7 = FLr,, (B16)
7, =ELr+FL(r, +1) (B17)
7y, = FLr,, (B18)
7, =DILr, + ELL (B19)

where,
A=m(m, +m,+m,)/ M (B20)
B=my,(m,+m,)/ M (B21)
C=(my+m)(m,+m)/ M (B22)
D=m (my+m +m,) M (B23)
E=m,(m,+m )/ M (B24)
F=mym,/ M (B25)
M=m +m +m,+m, (B26)
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