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Abstract. To accomplish tasks with high accuracy, advanced 

control strategies that benefit from the knowledge of system 

parameters are required. However, during operation some of 

them may change, or be unknown. In this paper, a novel param-

eter estimation method is proposed, which is based on the con-

servation of the angular momentum of a space manipulator 

system in the free-floating mode. The estimated parameters are 

combinations of spacecraft, manipulator and payload parame-

ters and render the system full dynamics identified and applica-

ble to model-based control. The algorithm requires only meas-

urements of joint angles and rates, and spacecraft attitude and 

angular velocity. No information about spacecraft and joint 

accelerations or joint torques, which include substantial noise, is 

required. Thus, in contrast to other methods using the equations 

of motion, the proposed method is insensitive to sensor noise. 

Moreover, it does not require the prior knowledge of any system 

parameters and can be applied to free-floating systems with 

more than one manipulators. The application of the proposed 

method is illustrated by a 3D example. 

I. INTRODUCTION 

On-Orbit Servicing (OOS) activities include missions, such 

as re-orbiting and de-orbiting, inspection and retrofit of or-

biting structures, satellite maintenance, repair of damaged 

ones and removal of space debris. A cost-effective way to 

accomplish these is to use space manipulator systems (SMS) 

since space is too dangerous to human life, especially during 

EVA. SMS consist of one or more robotic manipulators, 

mounted on a satellite base equipped with thrusters, reaction 

wheels, antennas and sensors, see Fig. 1. The ETS-7 and the 

Orbital Express are two examples of such systems [1], [2]. 

To increase SMS life or avoid interactions with a target, 

the reaction wheels and the thrusters are turned off. This re-

sults in a free-floating operation, which is feasible when no 

external forces and torques act on the system. Then, motion 

of the uncontrolled satellite base results from manipulator(s) 

motions, due to dynamic coupling between them. To accom-

plish tasks at high accuracy, advanced model-based control 

strategies can be adopted; these require accurate knowledge 

of system parameters, [3]. 
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Fig. 1. A space manipulator system with a single manipulator. 

However, very often, the dynamic parameters of an SMS 

may change on orbit for a number of reasons, such as fuel 

consumption, deployment of payload, docking to a spacecraft 

or object capture. To address this problem, many parameter 

estimation methods have been developed. Inspired by the 

methods for terrestrial fixed-base manipulators, [4], [5], some 

of them are based on the linearity of the equations of motion 

with respect to the dynamic properties, [6], [7]. However, 

these methods require measurements of spacecraft and joint 

accelerations, which contain undesirable noise. 

To tackle this issue, some researchers have proposed esti-

mation algorithms based on the momentum conservation. 

Yoshida and Abiko used the estimation errors for the reaction 

wheel momentum to compute the deviations of the parame-

ters from the nominal ones [8]. The proposed estimation 

method fails to identify all the required parameters. Ma et al., 

used the angular momentum conservation to identify the 

spacecraft inertial parameters only, using complete 

knowledge of manipulator and payload parameters, [9]. 

Murotsu et al., have proposed and compared the two 

above-mentioned methods, of which one requires spacecraft 

and joint accelerations [10]. Both methods estimate only the 

inertia parameters of an unknown object handled by a free-

flying manipulator. Xu et al. proposed a method, which uses 

both equations of motion and momentum equations, for iden-

tifying the inertia parameters of a space manipulator and the 

grasped target, [11]. The method requires measurements of 

spacecraft accelerations, which contain noise, and the use of 

thrusters for maneuvering, resulting in fuel consumption. 

All past research either is based on equations of motion 

which require acceleration measurements and contain sub-

stantial noise, or on the momentum conservation, but then 

cannot estimate all the dynamic parameters. In this paper, a 

novel parameter estimation method is proposed, which is 

based on the conservation of the angular momentum of an 
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SMS in free-floating mode (FFSMS). The parameters to be 

identified are combinations of spacecraft, manipulator and 

payload parameters, and once available, they are enough to 

reconstruct the system full dynamics as required in model-

based control. Only measurements of joint angles, rates, 

spacecraft attitude and angular velocity are employed; no 

spacecraft and joint accelerations or joint torques, which in-

clude substantial noise, are required. Hence, in contrast to 

equations of motion methods, the developed one is insensi-

tive to sensor noise, while at the same time, it identifies a full 

set of SMS dynamic properties. 

II. DYNAMICS OF FREE-FLOATING SPACE MANIPULATORS 

Advanced control strategies for FFSMS use the Generalized 

Jacobian matrix and the dynamic model of the system; hence 

they need knowledge of the system parameters, [12]. To this 

end, we briefly present the dynamics of an FFSMS with 

multiple manipulators and zero external forces and torques. 

We assume that the system has constant angular momentum, 

and without loss of generality, zero linear momentum, [13]. 

The FFSMS have an open chain kinematic configuration 

consist of n  manipulators. The number of the links of the m

-th manipulator is indicated by 
m

N . Under these conditions, 

the system Center of Mass (CM) remains fixed in inertial 

space, and hence the origin of an inertial frame, O, can be 

chosen to be the system CM, see Fig. 2. 

 
Fig. 2. A spatial FFSMS and the definition of its parameters. 

The system angular momentum 
CM

h  expressed in the iner-

tial frame is given by: 

 ( )� �0 0 0

CM 0 0 q
h R D D q�   (1) 

where 
0

0
�  is the spacecraft angular velocity expressed in 

the spacecraft 0
th

 frame and the column-vector q  is: 

 
(1)T (m)T (n)T T

[ ]�q q q q  (2) 

where the 1
m

N �  column-vector 
( )m

q  represents the joint 

rates of the m -th manipulator. The matrix � �,�
0

R 
  is the 

rotation matrix between the spacecraft 0
th

 frame and the 

inertial frame, expressed as a function of the Euler parame-

ters ,�
 , and the terms ,
0 0

q
D D  are inertia-type matrices of 

appropriate dimensions, given in Appendix A. 

It has been shown that the equations of motion of a spatial 

FFSMS with nonzero initial angular momentum are [6]: 

 � � �0 0 0 0

0 q 1 0
D( q) D (q) q c ( , q, q) 0� �   (3) 

 T � � �0 0 0 0

q 0 qq 2 0
D ( q) D ( q) q c ( , q, q)� � �   (4) 

where the term 0

qq
D  is an inertia-type matrix and 

1
c , 

2
c  are 

column vectors containing the centrifugal and Coriolis tor-

ques, given in Appendix A. The 3 1�  zero vector 0  corre-

sponds to the zero moments acting on the spacecraft and �  

is the vector of the manipulator joint torques 

 
(1)T ( )T ( )T T

[ ]
m n� � � � �   (5) 

where the 1
m

N �  column-vector ( )m�  represents the torques 

applied acting at the joints of the m-th manipulator.  

Eq. (3) can be solved for 
0

0
�  and the result substituted to 

Eq. (4), yielding the reduced equations of motion: 

 � �� �0

0
H(q) q c , q, q� �   (6) 

where H  and c  are given in Appendix A. 

III. PARAMETER ESTIMATION USING EQS. OF MOTION 

In this section, we present a well-known estimation method 

based on the dynamic equations (DE method), [4]-[5]. In the 

case of FFSMS, the reduced equations of motion (6) cannot 

be written in a linear form with respect to the dynamic pa-

rameters. The non-linearity is caused by the presence of the 

term 
1�0

D  in H (q)  and c , see Appendix A. However, if 

Eqs. (3) and (4) are used, these can be expressed linearly 

with respect to the vector of the parameters to be estimated,

� : 

 ( , , , , )� � � �0 0 0 0 0

0 q 1 1 0 0
0 D D q c Y q q q �� � �   (7) 

 T
( , , , , )� � � �0 0 0 0 0

qq q 0 2 2 0 0
D q D c Y q q q �� � � �  (8) 

Eqs. (7) and (8) can be combined into the following form: 

 
T T T

[ ] ( , , , , )� �* 0 0

0 0
0 Y q q q ��� � � �   (9) 

where 

 
T T T

[ ]�
1 2

Y Y Y�  of size 
1

(3 )

n

m

m

N k
�

� ��  (10) 

is the regressor matrix, and k  is the dimension of �  (see 

Section IV.B). 

Use of N  measurements at time instants 
1 2
, , ...,

N
t t t  of the 

variables , , , ,
0 0

0 0
q q q � � , and � , obtained during an appro-

priate trajectory, results in the following system of equations: 

 

*

11

*

2* 2

*

( )( )

( )( )
44

( )( ) NN

tt

tt

tt

� % � %
� & � &
� & � &� � �
� & � &
� & � &
� & � '� '

Y

Y
� � �

Y

�

�

�

�

�

�
�

�

 (11) 

To solve (11) for � , the regressor matrix 4Y �  must be of 

full rank. For this purpose, �  must contain the minimum set 

of estimated parameters (see Section IV.B), appropriate excit-

ing trajectories must be performed by the manipulators (see 

Section IV.C) and the number of the measurements N  must 

be selected so that the number of rows of 4Y �  is at least equal 

to the dimension of the vector � , 

 
1

(3 )
n

m
m

N N k
�

� ��   (12) 
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The system of Eq. (11) is over-determined and subject to 

the above conditions, it is solved using least-squares as, 

 T 1 T *4 4 4 4( )
��� � � �� � � �   (13) 

It is important to note that the estimation method based on 

the equations of motion requires measurements of the space-

craft angular acceleration 
0

0
� , the manipulator joint acceler-

ations q , and the applied torques � . Joint accelerations are 

obtained essentially from encoder measurements and include 

substantial noise. The angular acceleration is obtained by 

angular velocity differentiation, again introducing noise to 

the estimation process. Finally, applied torques are hard to 

measure. They can be estimated using measurements or esti-

mates of motor current. However, noise exists in motor cur-

rent measurements and unmodeled joint friction and actuator 

dynamics limit the accuracy of applied torque estimation. 

IV. PARAMETER ESTIMATION USING THE ANGULAR 

MOMENTUM CONSERVATION 

Methods which employ the momentum conservation cannot 

estimate all the required system inertia parameters without 

prior knowledge of some of them. However, in this paper, 

the estimated parameters are combinations of spacecraft, 

manipulator, and payload inertia parameters and can render 

the full system dynamics identified. A novel parameter esti-

mation method for multi-arm FFSMS, based only on angular 

momentum conservation (AMC method), considering 

FFSMS with non-zero angular momentum, is developed. 

The desired non-zero angular momentum can be applied 

using momentum control devices such as reaction wheels. 

A. Estimation Method 

To use Eq. (1) for parameter estimation, the angular momen-

tum 
CM

h , must be expressed linearly with respect to the 

vector of the estimated parameters � . First, the terms ( )m0

ij
D , 

derived in Appendix A, are expressed in sums of terms, 

where each term is the product of a constant and a measured 

quantity. A similar procedure has to be followed for all other 

terms of (m)0

j
D  and 

0

0
D , shown in Appendix A. Thus, the 

angular momentum can be expressed as: 

 ( , , , , )�� 0

CM h 0
h Y q q �� 
   (14) 

where the 3 k�  matrix 
h

Y  is the regressor matrix. Note that 

this regressor does not require acceleration measurements. 

Assuming constant angular momentum 
,0CM

h , and N  

measurements of the variables , ,
0

0
q q �  and ,�
  obtained at 

time instants 
1 2
, , ...,

N
t t t  during an appropriate trajectory, 

results in the following system of equations: 

 

,0 1

,0 2

,0

( )

( )
4 4

( )
N

t

t

t

� % � %
� & � &
� & � &� � �
� & � &
� & � &
� & � '� '

C M h

C M h

C M h

C M h

h Y

h Y
h � � �

h Y

  (15) 

where �  is the parameter vector same for both methods. 

As with the DE method, appropriate exciting trajectories 

must be followed by the manipulators. The number of the 

measurements N  should satisfy Eqs. (16)-(17) for spatial 

and planar free-floating space robots, respectively, 

  3N k�   (16) 

 N k�   (17) 

The system of equations, given by Eq. (15), is over-

determined and the least-squares solution is, 

 T 1 T4 4 4 4( )
��

h h h CM
� � � � �   (18) 

B. Minimum Set of Estimated Parameters 

The vector �  should contain the minimum set of estimated 

parameters so that the regressor 4Y  ( 4Y � for DE and 4
h

Y for 

the AMC method), is of full rank. Therefore, a case-by-case 

analysis is required. Suppose that initially the Y  and �  are: 

 � 	�
1 i k

Y e e e   (19) 

and  

 � 	
T

1 i k
� � ���   (20) 

where 
i

e  is the th
i  column of matrix Y  and 

i
�  is the th

i  

element of column vector � . 

To find the minimum set of parameters, one must examine 

if a column 
i

e  can be written as a linear combination of the 

other columns, i.e., 

 
1,

k

j

j j i

�
� �

� �i j
e e   (21) 

where 
j

�  are constants. If this is the case, 
i

e  and 
i

�  are 

removed from Y  and � , respectively, to obtain a new � : 

 � � � � � � � �
T

1 1 1 1 1 1
1 1 1 1

i i i i k k
� � � � � � � �� � � �� � � � �� %� '�  (22) 

This is an iterative procedure that terminates when no col-

umn 
i

e  of Y  can be written in the form of (21). Then, the 

final �  contains the minimum set of estimated parameters. 

C. Exciting Trajectories 

Appropriate exciting trajectories are required that result in 

Y  being of full rank and with a small condition number. A 

small condition number is needed so that the estimation is 

relatively insensitive to measurement noise. The developed 

exciting trajectories are based on truncated Fourier series. To 

satisfy desired initial and final conditions, a fifth-order poly-

nomial is added to the truncated Fourier series: 

 
� � � � � �

( ) ( ) 5

( )

1 0

sin cos

fN i m i m

m i m jl l

i f f j

l jf f

a b
q lt lt c t

l l
� �

� �� �

� � �� �   (23) 

where 1, ...m n� , 1, ...,
m

i N� , 
f

N  is the number of the har-

monics employed, 
( )i m

l
a  and 

( )i m

l
b  are free coefficients and 

2
f f

t� ��  with 
f

t  the motion duration. 

The free coefficients of the Fourier series are found by 

minimizing the condition number of the regressor matrix. 

The optimization algorithm is implemented using the Global 

Search Solver provided by the Global Optimization Toolbox 

(MathWorks Inc.) taking into account mechanical con-

straints on joint positions, velocities and accelerations. 
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D. Noise Modeling 

To identify the desired identified parameters the measure-

ments obtained by the system sensors are required. Here, it is 

assumed that an Inertial Measurement Unit (IMU) and joint 

encoders are available on an SMS. 

The model of the IMU is given by, [14]: 

 � ��0 0

0 0
b n� � � �   (24) 

 
b� ��b n   (25) 

where 0

0
�  is the true angular velocity whereas 0

0
�  is the 

corresponding measurement of the angular velocity. Addi-

tionally, the term �b  is the gyroscope bias, considered to be 

a "Brownian" motion process, while the terms �n  and 
b�n  

represent white Gaussian noise with zero mean and standard 

deviations ��  and 
b�� , respectively. 

The output of the motor encoder is also noisy, [15]: 

 
q

� �q q n   (26) 

where q  is the true joint angle and q  is the corresponding 

measurement; the term 
q

n  represents Gaussian noise with 

zero mean and standard deviation 
q

� . 

V. SIMULATION RESULTS 

The proposed identification method is illustrated by a spatial 

3-DOF FFSMS. Although the method can be easily applied 

in multi-arm FFSMS, here a single arm manipulator, shown 

in Fig. 2, is studied. The kinematic and inertia parameters of 

the FFSMS are given in Table I. 

The angular momentum of the system is set by the reaction 

wheels to
T

[68 66 65] Nms�
cm

h  and the initial spacecraft 

attitude is 
T T T

in in
[ ] [0.2 0.1 0.3 0.9274]� �
 . 

Table I. Parameters of the system shown in Fig. 2. 

i 
li 

(m) 

ri 

(m) 

mi 

(kg) 

Ixx 

(kg m2) 

Iyy 

(kg m2) 

Izz 

(kg m2) 

0 - [0.1,0.2,1]T 2000 1500 1500 1500 

1 0.25 0.25 10 0.21 0.21 0.01 

2 1.0 1.0 50 0.05 16.69 16.69 

3 1.0 1.0 50 0.05 16.69 16.69 

The exciting trajectories are given by Eq. (23) where 

30
f

t s�  and 3
f

N � . The desired initial and final conditions 

correspond to zero joint angles, rates and accelerations. The 

number of measurements is taken equal to 20N � . Regres-

sors 4Y �  and 4
h

Y  differ, therefore different optimized trajecto-

ries are derived, which correspond to different minimum 

condition numbers. Since the DE method is more sensitive in 

measurement noise than the proposed AMC method, the ex-

citing trajectory used in identification with both methods cor-

responds to that with minimum condition number of the re-

gressor 4Y � , which is 28. The coefficients 
i

l
a  and 

i

l
b  of the 

exciting trajectory are shown in Table II. 

The gyro measurements are simulated using Eqs. (24) and 

(25) with standard deviations 
3/ 24

3.1623 10 rad s�

�� 
��  and 
1/ 2

b
31620. ra s3 d�� � 
 , respectively, and with initial bias 

on each axis 
,0

b 0.1deg hr� � , [14]. The joint angle standard 

deviation is 5
10 rad.

q

�� �  The time histories of joint angles, 

rates and accelerations including noise, are shown in Fig. 3. 

Table II. Trajectory coefficients for minimum condition number. 

1

1
a  0.0411 

1

1
b  0.0533 

1

2
a  -0.0622 

1

2
b  -0.1269 

1

3
a  0.0002 

1

3
b  0.0171 

2

1
a  0.0435 

2

1
b  -0.0393 

2

2
a  -0.0407 

2

2
b  0.0596 

2

3
a  -0.1253 

2

3
b  -0.0444 

3

1
a  0.0516 

3

1
b  -0.0153 

3

2
a  -0.0423 

3

2
b  0.0449 

3

3
a  0.1343 

3

3
b  0.0463 

 
Fig. 3 (a) Joint angles, (b) joint rates and (c) joint accelerations of the 

spatial FFSMS in Table I, for the trajectories described in Table II, 

considering noisy measurements. 

For the spatial 3-DOF manipulator, shown in Fig. 2, the 

minimum set of estimated parameters is presented in Appen-

dix B. The results of the identification methods DE and 

AMC, using measurements with and without noise, are dis-

played in Table III. As shown in this table, if no noise exists 

in the measurements, (second and third column in Table III), 

both methods estimate the required parameters practically 

exactly. 

However, when noisy measurements are introduced, the 

DE method fails to identify the parameters, displaying errors 

between 19 and 140%. In contrast to these results, the devel-

oped AMC method, (fourth and fifth column in Table III) 

exhibits errors which are 25-1800 times smaller than those 

obtained with the DE method. The main reason for this spec-

tacular difference is that the developed method does not re-

quire noisy acceleration measurements. 

Note that for these results no joint torque noise or unmod-

eled friction was added; if such terms are added, it is ex-

pected that the results of the DE method will be even worse. 

Therefore, the AMC method yields much better results, and 

in addition it does not require torque measurements, which 

are difficult to obtain. 
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Table III. Results from DE & AMC methods with & without noise. 

�  

�  
True 

value 

No noise With noise 

Relative 

Error (%) 

(DE) 

Relative 

Error (%) 

(AMC) 

Relative 

Error (%) 

(DE) 

Relative 

Error (%) 

(AMC) 

1
�

 
1832.5 0.0214 0.0008 30.85 -0.017 

2
�

 
-104.2 -0.0042 -0.0371 139.48 -0.898 

3
�

 
-154.0 -0.0972 -0.0146 73.54 -0.681 

4
�

 
1832.5 0.0324 0.0035 38.27 -0.066 

5
�

 
-154.0 -0.0121 -0.0519 97.86 -0.470 

6
�

 
1708.5 0.0158 0.0108 34.29 -0.147 

7
�

 
321.5 0.0581 0.0787 50.47 0.603 

8
�

 
321.5 0.0043 0.0353 29.89 0.290 

9
�

 
255.9 -0.0074 -0.0471 29.75 0.166 

10
�

 
256.0 0.0381 0.0040 25.96 0.038 

11
�

 
-65.4 -0.0087 -0.0568 60.89 1.451 

12
�

 
65.5 0.0834 0.0318 18.33 -0.674 

13
�

 
142.1 0.0042 0.0179 78.23 -0.466 

14
�

 
213.4 0.0024 0.0171 39.80 0.345 

15
�

 
142.1 0.0289 0.0303 85.82 -0.645 

16
�

 
47.4 0.0959 0.0476 25.49 -0.999 

17
�

 
71.1 0.0271 0.0843 44.99 0.309 

18
�

 
47.39 0.0121 0.0976 119.23 -0.564 

19
�

 
96.4 0.0064 0.0333 26.01 0.745 

VI. CONCLUSIONS 

In this paper, a novel parameter estimation method was de-

veloped, based on the conservation of the angular momen-

tum of FFSMS. Combinations of spacecraft, manipulator 

and payload parameters are identified that allow full recon-

struction of the system dynamics, and therefore can be used 

in model-based control algorithms. Only measurements of 

joint angles, rates, and spacecraft attitude and angular veloci-

ty are needed; noisy and hard to obtain spacecraft and ma-

nipulator joint accelerations or joint torques, are not re-

quired. Thus, in contrast to methods based on equations of 

motion, the developed method is insensitive to sensor noise 

while it identifies the full parameter set. Moreover, it does 

not require prior knowledge of any parameter and can be 

applied to free-floating systems with more than one manipu-

lators. The developed method was illustrated by a 3D exam-

ple. 
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APPENDIX A 

The matrices 
0
D , 0

q
D  and 0

qq
D , expressed in the space-

craft frame, are presented. 

First, the term 0
D  is given by, 
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The term 
0

q
D  is given by, 
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where 
� �m0

j
z  is the unit vector along the j -F�� %�AFPE��J�E�%��

the m -th manipulator expressed in spacecraft frame and 0  

is the zero matrix. 

The 
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D  is given by, 
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In Eqs. (A2)L(A4) and Eq. (A8), the body-fixed barycen-

tric vectors � �m0

k
l , � �m0

k
r  and 

( )m0

k
e  are given in [16] and 
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where 1  is the unit dyadic. 

The column vectors 
1

c  and 
2

c  in Eqs. (3) and (4) are giv-

en by, [13]: 
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where 
0

0
�  is given by Eq. (1). 

The inertia matrix in Eq. (6) is given by: 
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The vector c  in Eq. (6) is given by: 
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APPENDIX B 

The minimum set of parameters of the FFSMS in Fig. 2, 

i.e. the elements of the �  vector are shown below: 
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