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COORDINATED MOTION CONTROL OF

MULTIPLE MANIPULATOR SPACE FREE-FLYERS

S. Ali A. Moosavian1, Evangelos Papadopoulos2

In this paper, coordination between a spacecraft and its several
manipulators is investigated, during a capture maneuver of a moving
object in space. Using a general Lagrangian formulation, the dynamics
model of the system is derived, and the results are summarized in an
explicit dynamics model of multiple manipulator space free-flyers. The
system dynamics is also formulated on the basis of choosing Euler
parameters for orientation representation. This selection introduces
algebraic constraints to the system, and the Natural Orthogonal
Complement Method is applied to obtain independent system of
equations of motion. Two model-based control algorithms, based on an
Euler angle and an Euler parameter description of the orientation, are
developed that allow coordinated control of the manipulators and the
spacecraft, to track the planned trajectories. These trajectories ensure
smooth operation, and reduce disturbances on the spacecraft and on the
object just before grasping. The performance of the two model-based
algorithms is compared to that of a transposed Jacobian controller, by a 3-
D simulation. It is shown that both model-based algorithms result in
smaller errors, as long as model uncertainties are limited. However, the
Euler angle model-based control algorithm (MB1) presents the
inconvenience of representational singularities at some orientations,
while the one based on Euler parameters (MB2) overcomes this problem.

I. INTRODUCTION

Space Free-Flying Robots (SFFRs) in which manipulators are mounted on a thruster-
equipped spacecraft, have been proposed to increase the mobility of robotic systems in
space [1]. Unlike fixed-based robots, the base body of SFFR is disturbed by the dynamic
reaction forces due to the arms motion. The kinematics and dynamics of a free-floating
space manipulator system was described using the Virtual Manipulator Approach [2]. No
external forces act on the system, and so the system center of mass is fixed in inertial space,
enabling them to represent a free-floating system by one with a virtual fixed base. A
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barycentric vector approach was employed to study kinematics and dynamics of a single
arm SFFR in free-floating mode [3]. Taking the center of mass of the whole system as a
representative point for the translational motion, and using barycentric vectors which reflect
both geometric configuration and mass distribution of the system, results in a decoupling of
the total linear and angular motion from the rest of the equations. Also, a Generalized
Jacobian Matrix for a free-floating system was presented [4]. Assuming that no external
forces are applied on a rigid robotic system with revolute joints, they derive a generalized
Jacobian matrix which reflects both momentum conservation laws and kinematic relations.
The proposed generalized Jacobian matrix converges to the conventional Jacobian, when the
base body is relatively massive.

Although dynamics modelling of SFFR is still an ongoing subject of research, control
of these free-flying manipulators to perform precise tasks in space, has already received
some attention. In order to control such a system, it is essential to consider the dynamic
coupling between the arms and the base [5]. A resolved motion rate control was developed
to compensate for spacecraft motion [6], and applied to the control of a multiple arm system
[7]. The extended operational-space method was developed to control the motion of a SFFR
based on a reference model [8]. Efficient algorithms for computing the generalized Jacobian
matrix was studied to present the resolved acceleration control for multiple arm space robots
[9]. Control strategies for changing the configuration of all joints of an underactuated space
manipulator was also studied [10].

This paper studies coordination between a spacecraft and its several manipulators,
during a capture maneuver of a moving object in space. First, the dynamics model of the
system is derived, and an explicit dynamics model of multiple manipulator space free-flyers
is presented. The use of Natural Orthogonal Complement Method in formulating the
system dynamics on the basis of choosing Euler parameters for orientation representation
is briefly discussed. Then, two model-based control algorithms, based on an Euler angle
and an Euler parameter description of the orientation, and a transpose Jacobian algorithm
are developed. To ensure smooth operation and reduced disturbances on the spacecraft and
on the object, appropriate trajectories are planned. Finally, the performance of alternative
control algorithms is compared to each other, by a 3-D simulation, and the results are
discussed.

II. DYNAMICS MODELLING
In this section, using a set of body-fixed geometric vectors, the dynamics of a rigid

multiple arm free-flying space robotic system is developed. The motion of the spacecraft
center of mass (CM) is used to describe the system global translation with respect to an
inertial frame of reference XYZ, Figure 1. An alternative approach using the system CM to
describe translation is described in [11], [12].
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Figure 1: A free-flying space robotic system with n manipulators.

Since a typical maneuver of SFFR is of relatively short length and duration,
microgravity and dynamical effects due to orbital mechanics are negligible, compared to
control forces. Therefore, the motion of the system is considered with respect to an in-orbit
inertial frame of reference (XYZ), and the system potential energy is taken equal to zero.

Using Euler Angles as Orientational Coordinates. Choosing the vector of
generalized coordinates as

        q R= ( , , )C
T T T T

0 0dd qq (1)

and using the general Lagrangian formulation, the equations of motion are obtained as

        H q C Q( , )ÇÇ ( , Ç , , Ç) ( , )dd qq dd dd qq qq dd qq0 0 0 0+ = (2a)

where R C 0
 is the inertial position of the spacecraft CM,         dd0  is a set of Euler angles that

describe the orientation of the spacecraft, 
          
qq qq qq qq= ( )( ) ( ) ( ), , ,1 2T T n T T

L  represents the joint
angles of n manipulators, H is an N´N mass matrix, C is an N´1 vector which contains all
the nonlinear velocity terms (in a microgravity environment), and Q is the N´1 vector of
generalized forces given by
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in which F0, p  is the p-th external force/moment applied on the spacecraft, Fi p
m
,
( )

 is the p-th
external force/moment applied on the i-th body of the m-th manipulator, if  is the number of
applied forces/moments on the corresponding body, and Ji p

m
,
( )

 is a Jacobian matrix
corresponding to the point of force/moment application.

The elements of the mass matrix H can be explicitly determined as [13]
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where         wwk
m( )   is the angular velocity of the k-th body of the m-th manipulator, and rC k

(m )  is the
CM position vector of the i-th body with respect to the spacecraft CM, computed as

rC i

(m ) = r0
(m ) + (rk

(m )

k =1

i -1

å - l k
(m ) ) - l i

(m )
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i =1, L , Nm
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(4)

where vectors l i
(m )  and ri

(m )  are body-fixed vectors which describe the position of joints i
and i+1 with respect to Ci, see Figure 1. The vector of nonlinear velocity terms in Eq. (2), C,
can be obtained as [13]

        C C q C( , Ç , , Ç) ( , Ç , , Ç) Ç ( , Ç , , Ç)dd dd qq qq dd dd qq qq dd dd qq qq0 0 1 0 0 2 0 0= + (5a)

where         Ç ( Ç , Ç , Ç )q R= C
T T T T

0 0dd qq , and
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Using Euler Parameters as Orientational Coordinates. Choosing Euler
parameters for orientation representation introduces algebraic constraints to the system
dynamics. This is due to the fact that these four parameters are not independent, and obey
an algebraic constraint. An independent system of equations of motion can be obtained
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using the Natural Orthogonal Complement Method [14], which is briefly described here.
The vector of generalized coordinates is defined as

        q R= ( )C
T T T T

0
, ,kk qq (6)

where         kk ee= ( )T T
,h  is the vector of Euler parameters describing the spacecraft attitude.

Accordingly, the vector of generalized speeds is selected as         v = ( )Ç , , ÇRC
T T T T

0

0
0ww qq . It can be

shown that [15]

        ww kk0 = E Ç (7a)

where

          
E E= -[ ] ´
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Similarly,         v = YY Çq can be defined, where

        FFYY YYFF= =+ ´ + ´1 1( ) ( ) &N N N N1 1 (9)

Then, the equations of motion can be obtained as [13]
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which is a set of N independent equations, and represents the system dynamics in terms
generalized speeds selected as         v = ( )Ç , , ÇRC

T T T T

0

0
0ww qq , and the generalized coordinates as

defined in Eq. (6). This is a proper dynamics model to be used in the implementation of the
second model-based control algorithm developed in the following sections.

Computation of the obtained dynamics can be done either by numerical or symbolical
programming tools. It was shown that preparation of each term for numerical programming
requires cumbersome calculations, while by means of the symbolical tools, each term can be
analytically calculated [13]. Also, using various mathematical identities and factorization
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techniques, the result can be simplified to reduce the obtained analytical expressions. Next,
planning appropriate trajectories is discussed.

III. TRAJECTORY PLANNING

In this section, planning appropriate trajectories for the spacecraft and its manipulators
to result in capturing moving space objects, assumed to be passive, is briefly described.
These trajectories ensure smooth operation, and reduce disturbances on the spacecraft and
on the object just before grasping. All of these trajectories take into account the relative
target motion, and thruster or actuator saturation limits.

For the spacecraft motion, in both translation and rotation, parabolic trajectories made of
constant acceleration, constant velocity, and constant deceleration segments are planned.
Since the object detecting sensors are usually on board, and thruster capabilities can be
directly converted to the spacecraft maximum acceleration and deceleration magnitudes in
the body frame, the desired trajectories are first planned in the spacecraft frame at initial
time. These trajectories are subsequently transformed to the inertial space. The final
spacecraft orientation is chosen so as to provide an approximately symmetric motion of the
manipulators during capture, since this strategy can minimize spacecraft disturbances. To
ensure this symmetric motion, the final time for orientational motion is chosen to be smaller
than the final time used for the translational motion. Then the desired rotation matrix at final
time is assembled such that an axis of symmetry for the spacecraft is aligned with the
direction of the object motion. To position the end-effectors, this constraint yields an infinite
number of solutions. Therefore another constraint should be added, e.g. keeping the
spacecraft roll angle (if the attitude is described by Euler angles) constant during the
maneuver. Then, the corresponding parameters for the spacecraft final attitude are extracted
from the desired rotation matrix. Having these values, the desired trajectory for the
orientation of the spacecraft can be planned [13].

The manipulators remain in their home configuration as long as the final position of the
object is not in their fixed-base reachable workspace. During that period, a joint-space
controller acting as a brake, is used. When the object enters the reachable workspace of an
end-effector1, t = tr , a quintic trajectory is planned in the task space for that end-effector,
and accordingly a task-space control algorithm is applied. For instance, to plan the desired
trajectory for end-effector position, six coefficients have to be determined for each
component. First, the end-effector position, linear velocity, and acceleration at starting time
( t = tr ) are computed based on the current spacecraft position/orientation, and its linear and
angular velocity and acceleration. The final values are also computed based on final position

1- The planned trajectory for the spacecraft rotation aims to provide a symmetric grasp of the object, by two
participating manipulators. Therefore, the object enters the fixed-base workspace of both end-effectors, almost at
the same time.
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and velocity of the object. Then, the six coefficients of the desired quintic trajectory can be
computed based on end-effector position, linear velocity, and acceleration at initial and final
time [16]. The result provides continuity of end-effector position, linear velocity, and
acceleration, throughout the motion. The desired trajectory for end-effector orientation, can
be similarly planned. For some appendages, e.g. the communications antenna, a constant
attitude in the inertial frame is commanded throughout the maneuver.

IV. DESIGN OF CONTROL LAWS

The first model-based control algorithm (MB1) is based on using Euler angles and
suffers from the inconvenience of representational singularities. It is expected that such
non-physical singularities will occur whenever a three-parameter description of the
orientation such as Euler angles, is employed. This is due to the fact that inversion of the
relation between angular velocity and Euler rates is not possible at some orientations. Note
that such an inversion is required in calculating actuator forces/torques based on the control
command [13]. So, the orientational error grows as the system approaches these
singularities, Figure 2, and if it goes through these points, the control system fails.
Therefore, at such points, a different set of Euler angles must be used. However, a great
improvement can occur if a singularity appears at some attitude error and not at some
attitude. An Euler parameter model-based control algorithm that achieves this condition has
been presented for the attitude control of a single rigid body [17]. This algorithm is adapted
here as part of a coordination scheme to control a multiple arm free-flyer robot, and is
presented as the second model-based control algorithm (MB2).
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Figure 2: Errors in spacecraft orientation encountering a non-physical
singularity at time = 4.75 sec.

Using Euler Angles (MB1). Defining the output variables as

          Ã [ , , , , , , ]( ) ( ) ( ) ( )q R x x= C
T T

E
T

E
T

E
n T

E
n T T

0 0
1 1dd dd ddL (11)
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where xE
m( )  and         ddE

m( )  correspond to the m-th end-effector position and orientation, the
dynamics model of Eq. (2) can be rewritten as

ö H d ö ú ú q + ö C d = ö Q d (12)

Then, the model-based control law (MB1), under the assumption of knowledge of the
systemÕs properties, is presented as

ö Q d = ö H d u + ö C d (13a)

The auxiliary control signal u can be computed as

u K e K e q= + +p d des
Ç ÃÇÇ (13b)

where K p , and Kd  are chosen as positive definite matrices, to result in a guaranteed stable
error behavior, and e is the tracking error. Applying the control law of Eq. (13) results in

ú ú e + Kd
ú e + K p e = 0 (14)

which guarantees asymptotic convergence of the tracking error e to zero.

Using Euler Parameters (MB2). To develop the MB2 controller, the angular velocity
of the spacecraft/end-effectors is included in the vector of generalized speeds, instead of
corresponding Euler rates, and the system dynamics is formulated on the basis of choosing
Euler parameters for orientation representation as described in Section II. Therefore, the
output speeds are defined as

          Ã [ Ç , , Ç , , , Ç , ]( ) ( ) ( ) ( )v = R x xC
T T

E
T

E
T

E
n T n

E
n T T

0

0
0

1 1 1ww ww wwL (15)

Then, the dynamics model of Eq. (10) can be rewritten as

ö H ö v 
ö ú v + ö C ö v = ö Q ö v (16)

and the model-based control law (MB2) is presented as

ö Q ö v = ö H ö v u + ö C ö v (17a)

The auxiliary control signal u is partitioned as

u = [u ú R 0

T ,u w 0

T ,u ú x 
(1) T ,u w

(1) T ,¼ ,u ú x 
(n )T ,u w

(n) T ]T (17b)

where the partition follows that of Ãv , and

u K e K e R
R R R R RÇ , , ,

Ç ÇÇ= + +p d C des0
(17c)

        u T e e e e ew = + - - -e des d p
T eÇ [ ] ( / ) /, ,ww ww ´

w w w w w w e hK K2 4 (17d)
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The matrix Te  relates the error between the desired and current attitude in terms of rotation
matrices. In fact, it is a rotation matrix which maps the body frame with desired orientation
to the actual body frame, and is defined as

T = Te Tdes (18a)

or

Te = T Tdes
T (18b)

The matrix T is a rotation matrix which corresponds to the current body orientation with
respect to the inertial frame, and Tdes  is the one which corresponds to the desired
orientation. The vector ew  is the error in angular velocity, expressed in the actual body-fixed
frame

        e Tw = -ww wwe des (19)

where         ww is the current angular velocity of the corresponding body expressed in its own
body fixed frame, and         wwdes  is the desired angular velocity, expressed in the desired
orientation frame. So, the term         Te desww  represents the desired angular velocity resolved in the
actual body frame, and the subtraction in Eq. (19) is in terms of consistent coordinates.
Finally, ee  and eh , which correspond to the error in attitude as expressed by Euler
parameters, are defined as

          e Ee h= -
(
des
T

desee ee (20)

        e des
T

desh h h= +ee ee (21)

where 
( 
E  has been already defined in Eq. (7c).

Considering Eqs. (20, 21), for perfect tracking it can be obtained

        ee ee= =( ) Þ = =( )des des e& &h h e he 0 1
(22)

It should be noted that assuming the same axis of rotation (for the desired and actual
orientations), the above definitions given for ee  and eh  result in ee q= sin( / )e

0
2  and

eh = cos(eq0
/ 2) where q0  describes a simple rotation about axis of rotation, and eq0

 is
error in q0 . Therefore, these definitions are geometrically meaningful, rather than         ee eedes -( )
and hdes - h( )  which do not have any physical interpretation. Also note that due to the form
of Eq. (17d), singularities occur only when eh  is zero, that is when the attitude error angle
is p rad about the eigen axis, i.e. eh = cos(eq0

/ 2) = cos(p / 2) = 0.

Applying the control law given by Eq. (17), the attitude error is governed by a
homogeneous linear second order differential equation, which guarantees that the error will
converge asymptotically to zero
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ú ú e e + Kd,w ú e e + K p ,w ee = 0 (23)

Therefore, it can be concluded that applying the control law given by Eq. (17) guarantees
asymptotic convergence for the position errors, and attitude error expressed in terms of
Euler parameters.

Transpose Jacobian Algorithm (TJ). If high enough gains are used, the simpler
transpose Jacobian controller (TJ) can be employed as

Q J K e K e= +{ }C
T

p dd
Ç (24)

This algorithm is quite simple to use with no significant computational burden, and without
requiring a priori knowledge of plant dynamics. In fact, for slow trajectories this algorithm
approximates the behavior of the model-based algorithms.

Having a mathematical model of the system dynamics, developed control laws, and
desired trajectories for every output variable, the system performance can now be simulated.
This is to be discussed next.

V. SIMULATION RESULTS

The performance of the presented Euler parameter model-based controller (MB2) is
now compared to that of alternative algorithms, i.e. an Euler angle model-based control
algorithm (MB1) and a transposed Jacobian controller (TJ). The system is a 14-DOF space
free-flyer equipped with reaction jets on the base, chasing a moving target in 3-dimensional
space [13]. The spacecraft includes three open chain appendages, two of which are three-
DOF manipulators, while the third is a two-DOF communication antenna. Figure 3 shows
the system general configuration, and Figure 4 depicts the planned path for the spacecraft
center of mass and the two end-effectors.

Figure 3: A three manipulator and appendage free-flyer.
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To include the effects of model uncertainties in the MB laws, the mass properties of the
model used in the control circuit were perturbed with respect to the ÒtrueÓ parameters by
up to 30%. The gains used for the MB controllers are Kp=diag(80,...,80,50,50), and
Kd=diag(150,...,150,100,100), while for the TJ controller the gains are Kp=diag(300,
300,300,200,...,200,100,100), and Kd=diag(600,600,600,400,...,400,200, 200). The gain
selection for the model-based control was based on error equation settling time and
damping criteria, while for the TJ control on heuristics.

Tracking error for the position of the first manipulator end-effector is shown in
FigureÊ5. Other tracking errors (e.g. spacecraft CM position, second manipulator end-
effector, etc.) behave similarly. So, Figure 5 represents typical error characteristics of the
implemented algorithms. During the chase phase (0< t <58), the error for MB algorithms is
almost zero, as the manipulators are kept fixed at their home configurations and the whole
system moves like a single rigid body. However, for the TJ algorithm, the error is
considerable at the beginning of this phase, where the system is accelerating (i.e. 0< t <7
sec). This is due to the fact that the TJ algorithm does not include dynamics terms in its
structure. When the object enters the manipulator workspace, the manipulators start moving,
and some errors appear due to the dynamic coupling and also transition from joint-space to
task-space control phase.

Comparison of the maximum tracking errors for these algorithms shows that the errors
occurring with the TJ are about two-five times higher than the errors with the MB
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algorithms2, although their absolute magnitude may be considered small enough for
performing a wide range of tasks.
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Figure 5: Tracking position errors for the first end-effector, (a) MB1. (b)ÊMB2.

(c) TJ.

Figure 6 displays applied torques to control the spacecraft attitude and motion of the
first manipulator, near the end of the maneuver (53.0< t <60.0). As shown in this figure, the
required torques are almost the same for all algorithms, though MB2 is less demanding.

2- Note that to include the effects of model uncertainties in the MB laws, the mass properties of the model
used in the control law were perturbed with respect to the ÒtrueÓ parameters by up to 30%. As expected and shown
by simulation [13], the larger these uncertainties are the worse tracking is.



13

Note that the spacecraft torques for MB2 just touch the saturation limit (10 N-m), while for
the others they remain saturated for a relatively long time.

-15

-10

- 5

0

5

1 0

1 5

5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0

t0(1)
t0(2)
t0(3)

T
or

qu
e 

(N
-m

)

time (sec)

( )

- 8

- 6

- 4

- 2

0

2

4

6

5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0

t1(1)
t1(2)
t1(3)

Jo
in

t 
T

or
qu

es
 (

N
-m

)

time (sec)

(a)

-10

- 5

0

5

1 0

1 5

5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0

t0(1)
t0(2)
t0(3)

T
or

qu
e 

(N
-m

)

time (sec)

( b )

- 8

- 6

- 4

- 2

0

2

4

6

5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0

t1(1)
t1(2)
t1(3)

Jo
in

t 
T

or
qu

es
 (

N
-m

)

time (sec)

(b)

-15

-10

-5

0

5

1 0

1 5

5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0

t0(1)
t0(2)
t0(3)

T
or

qu
e 

(N
-m

)

time (sec)

-6

-4

-2

0

2

4

6

5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0

t1(1)
t1(2)
t1(3)

Jo
in

t 
T

or
qu

es
 (

N
-m

)

time (sec)

(c)
Figure 6: Applied torques on the spacecraft (left) and joint torques for the first

end-effector (right), (a) MB1, (b) MB2, (c)ÊTJ Algorithm.

Comparing FiguresÊ6a and 6c, it is interesting to note that profile of (c) is comparable to
the profile of (a), despite the fact that the TJ does not include information about the
systemÕs dynamics.

As this general 3-dimensional maneuver reveals, the MB algorithms result in a better
tracking and smaller errors, even in the presence of model uncertainties. The MB2 controller
is preferred because as shown in the development of this algorithm, it overcomes the non-
physical singularity problem.



14

VI. CONCLUSIONS

To obtain the dynamics model of a multiple manipulator SFFR with rigid elements, the
general Lagrangian formulation was applied, and an explicit model was presented. Taking
into account the object motion relative to the spacecraft, as well as thruster and actuator
saturation limits, appropriate trajectories for the spacecraft and its manipulators motion were
planned. Two model-based algorithms, and a transpose Jacobian control algorithm were
developed. The Euler angle model-based control algorithm (MB1) presents the
inconvenience of representational singularities at some orientations. To overcome this
problem, an Euler parameter model-based control algorithm was proposed as the second
model-based control algorithm (MB2). As shown by simulation, the model-based
algorithms result in smaller errors, as long as model uncertainties are limited. However, due
to the complexity of space robotic systems, the performance of these algorithms deteriorates
if higher levels of model uncertainties exist. On the other hand, the TJ algorithm with
relatively high gains, yields acceptable results (in terms of small errors and reasonable
required forces/torques) for executing many tasks in space, without requiring knowledge of
system dynamics.
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