

Control Systems Laboratory Department of Mechanical Engineering National Technical University of Athens

On Attitude Dynamics and Control of Legged Robots Using Tail-Like Systems

KONSTANTINOS MACHAIRAS AND EVANGELOS G. PAPADOPOULOS

ECCOMAS - THEMATIC CONFERENCE ON MULTIBODY DYNAMICS Barcelona, June 29 – July 2, 2015

Overview

- Motivation
- Tails in legged animals and robots
- Modeling and dynamics
- Angular momentum conservation
- Holonomy and Integrality
- Body attitude control with tails and reaction wheels
- Simulation experiments varying key design parameters
- Motor selection
- Conclusions
- Future work

Motivation

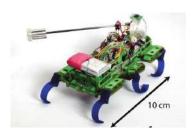
- Legged robots are highly underactuated hybrid systems.
- Their gaits include stance and aerial phases.
- Difficult tasks require precise control of the body attitude.
- Leg motions cause changes in system angular momentum.
- Control the body attitude by counteracting these changes.
- Dedicated appendages with large inertia can be used.
- We focus on attitude dynamics and control in aerial phases.

Learning from Biology

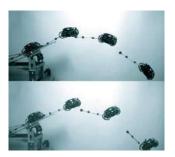
- Many legged animals have long tails which aid in balance and maneuverability at high speeds.
- Tail motion is effective for adjustments to unexpected perturbations when the legs are otherwise occupied.

Legged Robots with Tails

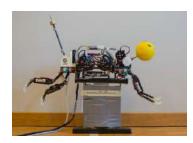
 A minority of the existing legged robots include appendages for angular momentum management, such as tails, or reaction wheels.



TAYLRoACH, Univ. of California, Berkeley



Tailbot, University of California, Berkeley



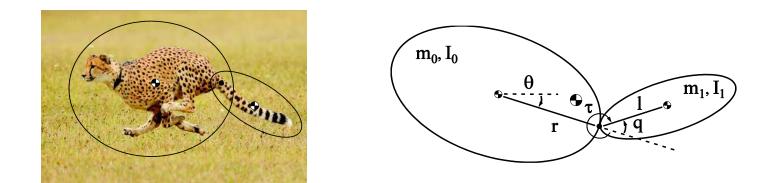
Cheetah-Cub EPFL

Penn Jerboa, Upenn

XRL, Upenn

FlipBot, University of Cape Town

Dynamic model in Aerial Phase



- We use the simplest dynamic model possible.
- Equations of Motion (reduced to the system CoM frame).
- System *effective mass*: $\mu = (m_1m_2)/(m_1+m_2)$

 $(I_{0}+I_{1}+\mu(l^{2}+r^{2}+2rl\cos q))\ddot{\theta}+(I_{1}+\mu(l^{2}+rl\cos q))\ddot{q}-\mu rl\sin q\dot{q}^{2}-2\mu rl\sin q\dot{q}\dot{\theta}=0$ (I_{1}+\mu l^{2}+\mu rl\cos q)\ddot{\theta}+(I_{1}+\mu l^{2})\ddot{q}+\mu rl\sin q\dot{\theta}^{2}=\tau

Angular Momentum (1)

- The body angle ϑ does not appear in the Lagrangian *L*.
- It is a cyclic or ignorable coordinate.
- The EoM can be written without θ.
- The tail angle q is a palpable or positional coordinate for the general case.
- The *generalized momentum* associated to ϑ is conserved.
- The conservation of angular momentum equation about the system CoM (h₀ is the initial angular momentum) is:

 $\partial L/\partial \ell$

Angular Momentum (2)

- An *integral of motion* exists.
- One of the EoM can be replaced with the first order conservation equation, giving a set of a second-order and a first-order differential equations.
- Can we integrate the conservation equation once more?
- This would yield an analytical expression between the body angle *∂* and the hinge angle *q*.

Conservation Equation: A Dynamic Constraint

- A constraint is dynamic if it is a consequence of the EoM, and not externally imposed.
- Angular momentum conservation is a dynamic constraint.
- A dynamic constraint can be:
 - integrable/ holonomic (geometric constraint), or
 - nonintegrable/ nonholonomic (constraint on velocities).
- The two-body system is often incorrectly considered nonholonomic for every case.
- We show that the system holonomy depends on the geometry and the initial angular momentum.

Integrability of the Constraint

First, we write the conservation of angular momentum as an *acatastatic Pfaffian constraint:*

 $(I_0 + I_1 + \mu(l^2 + r^2 + 2rl \,\mathrm{cq}))d\theta + (I_1 + \mu(l^2 + rl \,\mathrm{cq}))dq = h_0 dt$ or $P(q)d\theta + Q(q)dq + Rdt = 0$

The necessary and sufficient condition for integrability is:

$$I = P(\frac{\partial Q}{\partial t} - \frac{\partial R}{\partial q}) + Q(\frac{\partial R}{\partial \theta} - \frac{\partial P}{\partial t}) + R(\frac{\partial P}{\partial q} - \frac{\partial Q}{\partial \theta}) = 0 \quad \text{or} \quad h_0 r l \sin q = 0$$

Nonintegrable only when $r, l \neq 0$ and $h_0 \neq 0$ at the same time, or:

Integrability of the Constraint

- Nonintegrable only when a tail is hinged at distance r from the body CoM and init. ang. momentum is nonzero.
- In other words:
 - For <u>zero initial angular momentum</u>,
 - Always integrable, independent of the hinge position.
 - For nonzero initial angular momentum,
 - Integrable only if the tail is hinged at the body CoM or if the appendage is a reaction wheel.

Integrable Cases

Zero initial ang. Momentum (same for tails and wheels):

$$\theta = \theta_0 - \frac{1}{2}(q - q_0) - \frac{A}{C} \tan^{-1}(\frac{B}{C} \tan \frac{q}{2}) + \frac{A}{C} \tan^{-1}(\frac{B}{C} \tan \frac{q_0}{2}) \qquad \qquad A = I_1 + \mu l^2 - I_0 - \mu r^2, \ B = I_0 + I_1 + \mu (l - r)^2 + \mu r^2 r^2 - (2\mu r l)^2$$

Nonzero initial angular momentum:

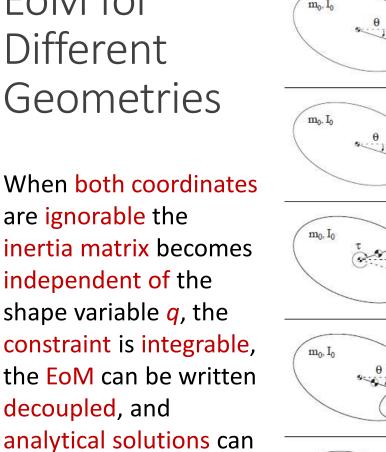
Tail hinged at the body CoM:

$$(I_0 + I_1 + \mu l^2)(\theta - \theta_0) + (I_1 + \mu l^2)(q - q_0) = h_0(t - t_0)$$

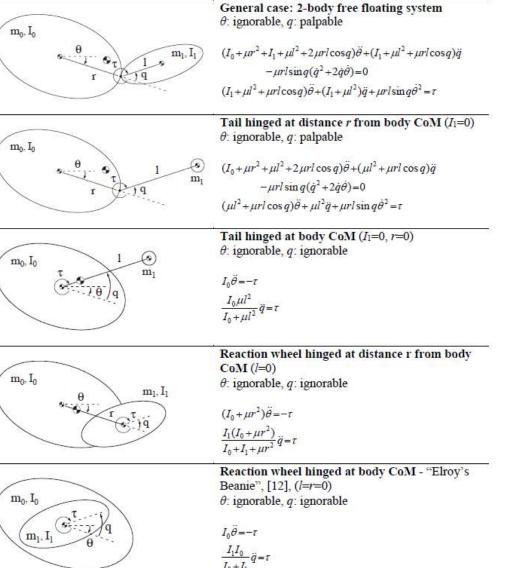
Reaction Wheel at distance r from the body CoM:

$$(I_0+I_1+\mu r^2)(\theta-\theta_0)+I_1(q-q_0)=h_0(t-t_0)$$

EoM for Different Geometries



be derived.



Design Principles – Tail Mass Selection

General Principles

- Tail mass selection determines the maximum body maneuver $\Delta \vartheta$ that can be performed for zero initial ang. momentum.
- The torque provided by the tail determines the maneuver duration – the higher the torque, the faster the maneuver.

Tail Mass Selection

- Full rotation about the hinge is forbidden $\rightarrow q$ bounded.
- Which tail mass permits a maneuver Δϑ when zero initial angular momentum is considered?

$$(I_0 + \mu l^2)\Delta\theta + \mu l^2\Delta q = 0 \implies m_1 = \frac{-\Delta\theta I_0 m_0}{(\Delta\theta + \Delta q)l^2 m_0 + \Delta\theta I_0}$$

Control of the Unactuated Body Angle ϑ

Eliminating \ddot{q} from the 2nd EoM, yields a single equation: $D^{*}(q)\ddot{\theta}+C^{*}(q,\dot{q},\dot{\theta})=\tau$

• A model-based controller is used for ϑ , achieving $\ddot{\theta} = \ddot{\theta}_{des}$ $\tau = D^*(q)(\ddot{\theta}_d + k_v \dot{e}_{\theta} + k_p e_{\theta}) + C^*(q, \dot{q}, \dot{\theta})$

A quintic polynomial is used for trajectory planning:

$$\theta_{des}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5$$

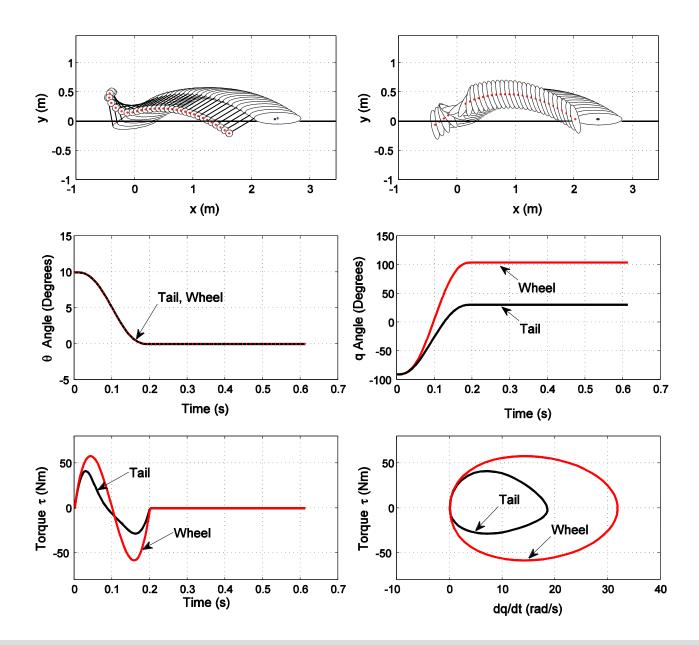
Tail – Reaction Wheel Comparison

- Tail and wheel with equal Mol about the hinge.
- **Body**: m_0 =40kg, I_0 =2kgm², performing a maneuver $\Delta \vartheta$ =10° in Δt =0.2s, with appendages hinged at distance r=0.4m from the body CoM.
- **Tail**: *m*₁=0.5kg, *l*=0.5m, *l*₁=0.
- Wheel: $m_1 = 2$ kg, $I_1 = m\rho^2$, $\rho = 0.25$ m.

Conclusions

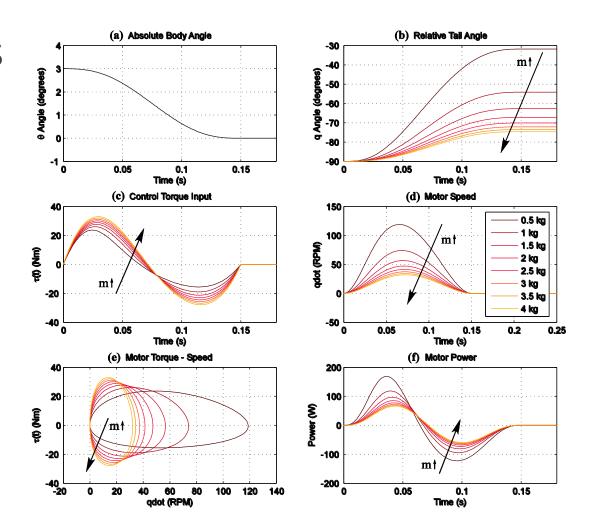
- Less torque required for the tail case.
- Much higher motor speed in the wheel case

 for the same result, more power is requested from the motor.



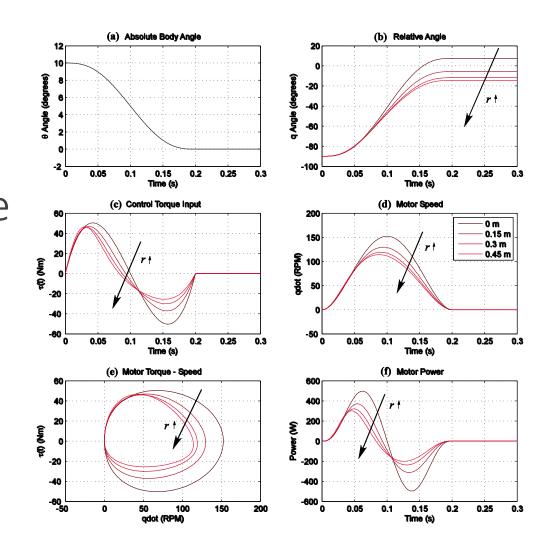
Experiments varying the tail mass

A body of m_0 =30kg, I_0 =2kgm², with a tail of length *I*=0.4m, Mol I_1 =0, and mass m_1 varying from 0.5kg to 4kg, hinged at distance *r*=0.4m from the body CoM, performs a maneuver of $\Delta \vartheta$ =3° in Δt =0.15s.



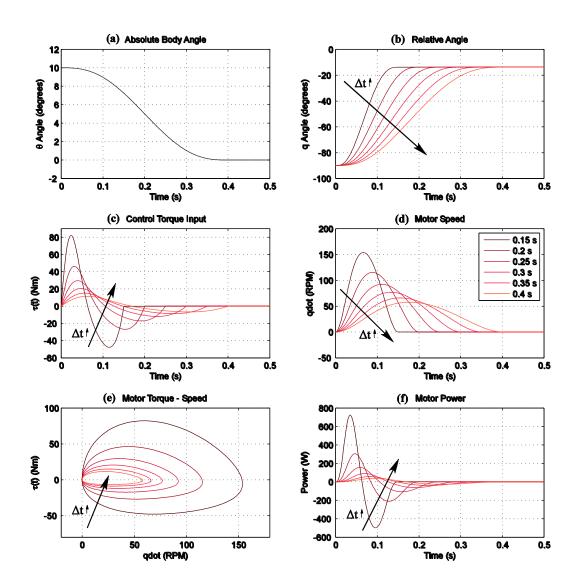
Experiments varying the Body CoM -Hinge Distance

A body of m_0 =30kg, I_0 =2kgm², with a tail of mass m_1 =1.5kg, Mol I_1 =0, and length I=0.4m, hinged at a distance rfrom body CoM, which varies from 0m to 0.45m, performs a maneuver $\Delta \vartheta$ =10° in Δt =0.2s.



Experiments varying the Time of the Maneuver

A body of m_0 =30kg, I_0 =2kgm², with a tail of mass m_1 =1.5kg, Mol I_1 =0, and length I=0.4m, hinged at a distance r=0.4m from the body CoM, performs a $\Delta \vartheta$ =10° maneuver in time intervals Δt varying from 0.15 to 0.4s.

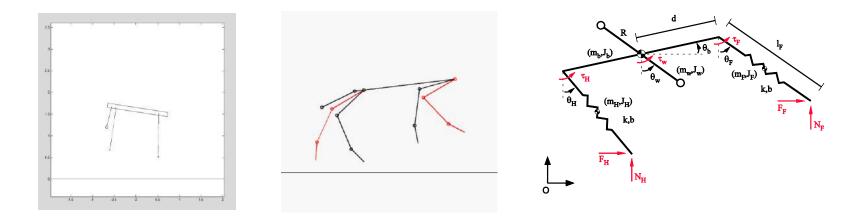


Conclusions

- EOM derivation for a two-body system in aerial phase.
- Analysis based on the angular momentum conservation.
- Analytical solutions for the holonomic cases.
- A tail should be preferred to a wheel less torque and speed needed.
- Design guidelines given for a tail.
- Tail and maneuver parameters affect motor selection.
- Simulation results showed the best design choices for different maneuvers.

Future Work

Dynamic analysis and control of more complicated models with ground contact.



Acknowledgement

This research has been financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) – Research Funding Program: **ARISTEIA**: Reinforcement of the interdisciplinary and/ or inter-institutional research and innovation.

Thank you for your attention!