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Abstract—This paper studies the capabilities of a microrobotic
platform, driven by vibrating motors, to generate and impart
micromanipulation forces of desired type and magnitude. First, an
analysis is carried out on the nature of the actuation forces of the
motion mechanism of the platform. The results demonstrate that
the oscillating nature of these forces does not allow their direct
use for micromanipulations. Consequently, further analysis is
conducted to identify the conditions, under which the platform’s
actuation forces can be exploited for micromanipulations. To this
end, a dynamic model of a single-dimensional pushing operation
is developed, comprising the dynamics of the platform, the manip-
ulator and the object. It is demonstrated by simulation that the
forces imparted on the manipulated object depend on the physical
parameters of the platform-manipulator system. Accordingly, a set
of nonlinear equations involving platform-manipulator system pa-
rameters, is formulated that describes the conditions for developing
micromanipulation forces of appropriate type and magnitude. The
solution of this set of equations yields a range of parameter values,
which are used as guidelines in the design and construction of a ma-
nipulator that is capable of applying smooth and controllable forces
to manipulated objects. Using the parameter values suggested by
the developed analysis, a needle type manipulator, appropriate for
force feedback applications, is designed, built, and mounted on an
experimental prototype of the microrobotic platform. Using this
manipulator, experiments demonstrate the force capabilities of the
microrobotic platform and verified the analytical and simulation
results.

Index Terms—Force feedback, micromanipulation, microrobo-
tics, vibrating micromotors.

I. INTRODUCTION

DURING the past decade, microrobotics has become an in-
creasingly important field of research. Several domains of

application, such as microassembly, microbiology, biotechnol-
ogy, microscopy, and optoelectronics, employ miniaturized or
microrobotic platforms carrying a variety of novel tools that can
probe or manipulate specimens of micrometer dimensions [1].
Therefore, extensive research has been conducted on the design
and realization of autonomous, dexterous, microrobotic systems
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employing a number of cooperating microrobots and microma-
nipulators. These are capable for nanometric precision, and offer
flexibility and a wide mobility range.

The key issue in autonomous microrobotic systems is the ac-
tuation mechanism that they employ. This is responsible for their
precision and their motion capabilities. In addition, it determines
the power consumption, and consequently, their autonomy. Con-
ventional motion mechanisms, such as motors and wheels, do
not lend themselves to micropositioning tasks due to the increas-
ing significance of frictional phenomena such as the stick-slip
and the Stribeck effect, and to the large mechanical tolerances
of the actuation mechanisms [2], [3]. Hence, nonconventional
actuation mechanisms have to be employed for locomotion and
manipulation that do not incorporate moving mechanical parts
into their kinematic chain, i.e., from their base to their end-
effector. These actuation mechanisms are often based either on
inertial principles or use induced strain actuators (smart ma-
terials such as piezoelectric actuators, shape memory alloys,
etc.), and combine submicrometer resolution motion with the
speed virtues of coarse positioning. The most popular microp-
ositioning motion mechanism is the stick-slip principle, which
is implemented using piezoelectric actuators [4]. This principle
is employed by the microrobots presented in [5] and [6]. These
3 DOF platforms are capable of positioning accuracy of less
than 200 nm, and of speeds up to a few millimeters per sec-
ond. Both locomotion and manipulation modules incorporated
in these platforms employ the stick-slip principle. Another type
of motion mechanism, also based on piezoelectric actuation,
is the impact drive (a variant of the stick-slip) employed by
the microrobotic platform Avalon [7], [8]. Again, both loco-
motion and manipulation was based on piezoelectric actuation.
This platform allows for positioning accuracy of approximately
3 µm and develops speeds up to 1 mm/s. A different motion
mechanism also based on piezoactuators is employed by the
NanoWalker microrobot [9], [10]. The first prototypes of this mi-
crorobot were capable for minimum steps of the order of 30 nm,
and demonstrated a maximum displacement rate of 200 mm/s.
This platform used a scanning tunneling microscope (STM) tip
for micromanipulation. Also interesting is the walking principle
presented in [11] and [12]. Possibly, MiCRoN is the most ad-
vanced example of a microrobotic platform, employing piezo-
electric actuators, and having an integrated micromanipulator
[13], [14].

Although piezoelectric actuators tend to be the favored smart
material for micropositioning and do provide the required
positioning resolution and actuation response, they suffer from
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complex power units that are expensive and cumbersome and
do not easily allow for nontethered operation. Embedding
electronics in microrobotic platforms often result in excessive
heating problems.

We proposed a simple and compact microrobot, which
employs a novel actuation mechanism based on vibrating
micromotors [15]. According to the developed analysis, the
microrobotic platform is able to perform translational and
rotational sliding with submicrometer positioning accuracy and
velocities up to 2 mm/s [16]. All the components of the mech-
anism, including its driving units, are of low cost and readily
available.

The target applications of this microrobotic platform are
either: 1) industrially oriented such as the assembly of spatial
(3-D) miniature devices and microelectromechanical system
(MEMS) incorporating heterogeneous parts (Si, glass, ceramic,
etc.) or 2) biomedically oriented, such as cell manipula-
tion [13], sperm injection, the assembly of scaffolds for
tissue engineering [19], etc. To this end, the platform has to
execute, with submicrometer precision, a range of tasks such as
pushing, positioning, cutting, or gluing of micro- and miniature
components, whose weight ranges from a few milligrams to
a few grams. Most of these microapplications, at the moment,
are not standardized and involve a great degree of uncertainty.
Therefore, a manipulation system, composed of a few mobile
microrobots equipped with tools, is more efficient and has
increased rates of success compared to a microfabrication
station comprising a number of micromanipulators mounted on
static bases (like in the car industry).

The aforementioned microrobot platforms, apart from their
motion capabilities, must exhibit adequate force capabilities to
allow for a range of manipulation tasks to be accomplished.
Depending on the type of the application, micromanipula-
tion forces may range from a few micronewtons to a few
hundred millinewtons [17], [18], [19]. Forces of very small
magnitude (i.e., of the order of micronewtons) are usually
generated by the actuator that drives the microtool (e.g., the
actuator of a microgripper). However, forces of larger scale
should be provided by the motion mechanism of the platform
itself.

The thrust of this paper is the exploitation of the centripetal-
force actuation mechanism described in [15], in order to gen-
erate and transmit low ripple, controllable forces within a
useful range of values for micromanipulation purposes. To
this end, the dynamics of the system platform–manipulator
object are analyzed and studied. Conditions for impulse-
free force transmission are mathematically expressed, which
when solved numerically, yield parameter values that result
in controlled, impulse-free, low ripple, manipulation forces.
The theoretical results are first verified through simulations.
Based on the analytically derived design guidelines, a needle-
type manipulator is designed and built. The manipulator
is mounted on the microrobotic platform and force experi-
ments are conducted that verify the theoretical results. It is
shown experimentally that the platform is capable of apply-
ing micromanipulation controllable forces within the range of
10–300 mN.

Fig. 1. Simplified 1 DOF platform with a rotating mass m.

II. PLATFORM’S MOTION PRINCIPLE AND DYNAMICS

A. Motion Principle

The novel actuation principle of the microrobot is elaborated
in [15] and [16]. A brief description of the physics that govern the
motion principle is given here. To this end, a simplified 1 DOF
mobile platform of mass M is used, whose motion mechanism
is made of an eccentric mass m, rotated by a platform-mounted
motor O, as shown in Fig. 1. One cycle of operation is completed
when the mass m has described an angle of 360◦.

Gravitational and centripetal forces exerted on the rotating
mass are resolved along the x–z axis to yield

fOx = mrω2 sin θ (1a)

fOz = −mg − mrω2 cos θ (1b)

where g is the acceleration of gravity and r is the length of the
link between m and O (see Fig. 1). Using a simplified static–
kinetic friction model to describe the motion of the platform
along the x- and z-axis results in the following equations

Mẍ = fOx − ff r = fOx − (fax + fbx) (2a)

faz + fbz + (−Mg + fOz ) = 0 (2b)

where M is the mass of the platform, ff r is the Coulomb friction
force, and all other forces are defined in Fig. 1.

For counterclockwise rotation of the eccentric mass m, the
equations of motion of the platform are numerically simulated
to yield the results displayed in Fig. 2. These are plotted as a
function of the angle θ of the eccentric mass. Fig. 2(c) clearly
displays the fact that a net displacement of the platform occurs
and that motion is induced. Moreover, Fig. 2(c) demonstrates
that, for a counterclockwise rotation of the motor, the platform
of Fig. 1 exhibits a net displacement along the positive x-axis.

Equation (1) suggests that if the angular speed ω were less
than a critical value ωc , the platform would not slide because the
horizontal actuation force fOx would be canceled by the fric-
tional forces at the platform contact points A and B. However, if
the angular speed ω is greater than ωc , as in the simulation ex-
ample, then at a critical angle θ1 , the horizontal actuation force
fOx overcomes the Coulomb friction forces applied to the two
contact points, [16]. In this case, as shown in Fig. 2, the plat-
form begins to slide along the positive x-axis. When m passes
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Fig. 2. Simulation results. (a) Acceleration. (b) Velocity. (c) Position along
the x-axis as a function of the actuation angle.

Fig. 3. Complete cycle of rotation of the eccentric mass m.

the highest point (at θ = 180◦), friction forces, together with
actuation forces, tend to decelerate the platform, and eventually,
at an angle θ2 change its direction of motion. As friction still in-
creases, reverse motion is decelerated, and finally, the platform
is brought to a stop at an angle θ3 . Fig. 3 demonstrates the cycle
of rotation of the eccentric mass m and associates the angle θ
with the motion state of the platform.

It is observed that the forward motion of the platform takes
place when the rotating eccentric mass m is at the second and
third quadrant of the cycle, i.e., when the vertical reactions are
low, see (1). In contrast to this, the reverse motion takes place in
the third and fourth quadrant, that is, when the vertical reactions
increase. Therefore, the forward displacement is greater than the
reverse one and the resultant displacement per cycle is positive.

It has been shown analytically that the single-dimensional
motion step that the platform exhibits over a cycle can be made
arbitrarily small depending on the actuation speed ω [16].
Accordingly, it has been demonstrated that the platform’s
motion resolution can reach submicrometer accuracy [15], [16].
In general, its resolution is hindered by the limited resolution
of the electronics and by the nonuniform distribution of the
coefficient of friction µ between surface and the contact points
of the platform.

B. Platform Dynamics

The actuation principle mentioned earlier was employed in
the design of a 3 DOF microrobot, [15], as shown schematically

Fig. 4. Forces applied on the 2 DOF platform: top view.

TABLE I
PLATFORM DESIGN PARAMETERS

in Fig. 4. On the top of the platform, two centripetal-force actu-
ators are mounted. The platform is capable of moving along the
body-fixed x-axis and of rotating about its center of mass (CM)
depending on the sense of rotation of the actuators.

The actuation forces generated by the two vibrating motors
are given by

bfix = −miriω
2
i sin φi sin θ

bfiz = −mig − miriω
2
i cos θ

}
, i = {D,E} (3)

where subscripts i = {D,E} correspond to the two motors,
ωi = θ̇i is motor’s i angular velocity, ri is the eccentricity of the
imbalance mass mi , and φi = {90◦,−90◦}.

The dynamics of the platform are described by [20]

M v̇ = R
∑

i

bfi , i = {A,B,C,D,E} (4a)

bIω̇p + bωp × bI bωp =
∑

i

(bri × bfi) +
∑

j

bnj ,

i = {A,B,C,D,E}, j = {D,E} (4b)

whereR is a rotation matrix that resolves body-fixed free vectors
to the inertial frame of reference, ωp is the platform angular
velocity, bI is its inertia matrix, and v = [ẋ, ẏ, ż]T is its CM
velocity wrt the inertial frame. The left superscript b denotes
a body-fixed frame, while a missing left superscript denotes
the inertial frame. The subscripts i = {A,B,C} correspond to
the three contact points of the platform. During planar motion
analysis, (4)b can be simplified.

According to design specifications given in [15], a set of
parameters was selected and is presented in Table I.

In this table, h0 is the distance between an actuator’s axis and
the ground and l is the length of the side of the triangular base
of the platform (see Fig. 4).
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Fig. 5. Minimum actuation speed ωc m in versus moving object mass.

III. FORCE ANALYSIS

Many micromanipulation processes are currently executed by
human operators, and consequently, suffer from low repeatabil-
ity and long execution times. To substitute the human operator
with one or more microrobots, the design must ensure that the
microrobots exert controlled, low ripple forces on the objects.
For this purpose, it is necessary to analyze the platform’s force
capabilities. The first step is to calculate an upper bound on the
load the platform may carry and on the forces it may impart on an
object. This is found by calculating the minimum required actu-
ation speed ωmin for pushing an object of mass MO . To this end,
it is assumed that an object of mass MO is attached to the plat-
form. Both actuators rotate at the same speed. The expression
for ωmin is found by considering the limiting case where motion
is impeding and friction forces have reached the static limit:

bfAx + bfBx + bfC x = µ(bfAz + bfBz + bfC z ) + µgMO .
(5)

Substituting (3) into (5) and solving for ω yields

ωc =
(
−µg(M + MO + 2m)
2mr(µ cos θ − sin θ)

)1/2

. (6)

From (6), it is evident that the critical speed ωc is a function
of θ. The angle θ, at which the minimum ωc occurs, is found
and substituted into (6) to yield ωc min :

ωc min =

(
µg(M + MO + 2m)

2mr
√

1 + µ2

)1/2

. (7)

Fig. 5(a) depicts ωc versus MO . As expected, it shows that
ωc min increases with the object mass. Note that Fig. 5 presents
a theoretical actuation speed ω lower bound for generating suf-
ficient forces to push an object of mass MO . It does not take into
account the actual nature of the forces imparted on a moving
object or exerted on a wall. In the next section, a detailed anal-
ysis regarding the actual forces applied to a manipulated object
is developed.

A. Forces Transmitted From the Platform to an Object

The platform is equipped with a needle-type micromanipula-
tor as shown in Fig. 6(a). The 1-D dynamic model of the system
platform–manipulator object is presented in Fig. 6(b).

The platform is constrained to move along the x-axis. With
respect to the dynamics, two distinct cases are considered.

Fig. 6. Platform. (a) Schematic of platform and needle-type manipulator. (b)
1-D dynamic model of system platform–manipulator object.

1) Manipulator Tip is Not in Contact With the Object: In
this case, the dynamics of the manipulator are neglected, i.e.,
mm = 0.

The system is described by the two following equations of
motion

MẍM = fx − ff r M (8a)

MO ẍO = −ff r O (8b)

where ff r M , ff r O represent the Coulomb friction exerted on
the platform and on the object, respectively, and are given by

ff r M

=




−fC psgn(ẋM), ẋM �= 0
(fx − fk − fb), ‖fx − fk − fb‖ < fC p,

ẋM = 0 and ẍM = 0
−fC psgn(fx − fk − fb), ‖fx − fk − fb‖ ≥ fC p ,

ẋM = 0 and ẍM �= 0

(9)

and

ff r o

=




−fC osgn(ẋo), ẋo �= 0
(fk + fb), ‖fk + fb‖ < fC o, ẋo = 0,

ẍo = 0
−fC osgn(fk + fb), ‖fk + fb‖ ≥ fC o ,

ẋo = 0, ẍo �= 0

(10)

where fC p = µ(Mg + fz ) is the Coulomb static limit of the
platform and fC o = µMO g of the object and sgn() is the
signum function. Actuation forces fx, fz are given by

fx =
∑

i

fix , i = {D,E} (11)

fz =
∑

i

fiz , i = {D,E} (12)

where fix , fiz are given in (3).
2) Manipulator Tip is in Contact With the Object: In this

case, the dynamics of the manipulator are taken into account.
The object is considered to be rigid. The equations of motion
for the platform and object are

MẍM = fx − fk − fb − ff r M (13a)

MO ẍO = fk + fb − ff r O (13b)

fk = k(xM − xO ) = k∆x

fb = b(ẋM − ẋO ) = b∆ẋ (14)

where ∆x is the deformation of the manipulator.
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TABLE II
MANIPULATOR AND OBJECT PARAMETERS

Fig. 7. Platform pushing an object. (a) Position of platform and object.
(b) Zoom-in on three consecutive cycles of position of platform and object.

Equations (13) are used to simulate various pushing scenar-
ios in MATLAB. Typical simulation parameters for a pushing
scenario with a needle-type manipulator are given in Tables I
and II.

In the first case studied, the platform comes into contact
with the free to move object, and pushes it along the positive
x-axis. Fig. 7 depicts simulation results of the platform and
object response during the pushing operation.

The solid line represents the response of the manipulator and
the dashed line represents the response of the object. The first
plot depicts the displacement of the manipulator’s tip and of
the object. The second plot zooms-in on three successive cycles
of the first plot. It is observed that the platform bounces off
the object. Fig. 8 shows the forces exerted on the object by
the manipulator tip. Observing Fig. 8(a), one can see that these
are of impulsive nature. The second plot zooms-in on a single
impulse. Note that the forces applied to the object are always
positive, i.e., pushing forces. This is expected since the platform
manipulator is not able to pull.

The next example demonstrates the case of the platform push-
ing against a totally constrained object, i.e., a wall. From the first
plot in Fig. 9, it is observed that the manipulator tip bounces off
the wall and the platform retreats almost three cycles back. As
in the previous case, the platform exerts on the wall impulsive
forces and oscillates close to it. Note that, in Fig. 9, the ma-
nipulator’s tip (solid line) erroneously seems to cross the wall
(dashed line) when in contact. This happens due to the contact
detection tolerances set during simulation.

In most cases, impulsive forces are undesirable because they
result in wear and eventually in damage of the manipulated
object. Furthermore, the fluctuation of impulses cannot be pre-

Fig. 8. Impulsive forces applied on the object during bouncing.

Fig. 9. Displacement and velocity of the platform bouncing against a wall.

dicted and controlled easily. Hence, in most manipulation cases,
the forces exerted on the manipulated object have to be con-
trollable, impulse-free, and subject to low ripple. Therefore,
an appropriate design is desired to eliminate impulses during
manipulation.

B. Impulse Reduction and Ripple Attenuation

For reasons of simplicity and to exploit the merits of analytical
solutions, the following analysis assumes that the manipulator
pushes against a wall (object totally constrained).

Impulsive forces reduction: The ideal force transmission is
defined as the one where the platform smoothly pushes the
object, remains attached to it, and no bouncing takes place,
i.e., no impulsive forces are exerted on the object. This is a
challenging goal due to the vibrating nature of the actuation
mechanism. Ideal force transmission can be accomplished if the
platform oscillates about a fixed point O, while the manipulator
tip remains attached to the object, i.e., the manipulator should
always be deformed as shown in Fig. 10.

Fig. 10 presents a single cycle of operation. The top schematic
shows the manipulator at its minimum deformation xθ1 . As the
eccentric mass rotates, the manipulator reaches its maximum
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Fig. 10. Steady-state operation. Manipulator tip remains attached to the object
while platform oscillates about a fixed point O.

deformation xθ2 at angle θ2 , shown in the middle schematic.
Next, the manipulator again reaches its minimum deformation
xθ3 = xθ1 at angle θ3 and stays deformed until the rotating
mass reaches angle θ1 again. Hence, ideal force generation can
be attained if there exists a steady-state operation, where the
forward displacement of the platform is equal to the reverse
one. To express mathematically this condition, it is convenient
to break (13) a into two parts.

1) Platform Equation of Forward Motion, i.e., for ẋ ≥ 0:
Equation 15 as shown at bottom of the page.

Solving the linear ordinary differential equation (ODE) (15)
with respect to the displacement xfwd yields the following ana-
lytical solutions, for xfwd and the velocity ẋfwd

xfwd(θ) = − g(2m + M)µ
k

+ e−bθ/2M ω (c1 cos γ + c2 sin γ)

− 2mrω2 cos θ((kµ + ω(b − Mµω)) cos θ1

(bω)2 + (k − Mω2)2

+
(−k + ω(bµ + Mω)) sin θ1)

(bω)2 + (k − Mω2)2

× 2mrω2((k − ω(bµ + Mω)) cos θ1

(bω)2 + (k − Mω2)2

+
(kµ + ω(b − Mµω)) sin θ1) sin θ

(bω)2 + (k − Mω2)2 (16)

ẋfwd(θ) = − b e−
b θ

2 M ω (c1 cos γ + c2 sin γ)
2M

+ e−bθ/2M ω

(
c2
√
−b2 + 4kM cos γ

2M

− c1
√
−b2 + 4kM sin γ

2M

)

+
2mrω3 cos θ((k − ω(bµ + Mω) cos θ

(bω)2 + (k − Mω2)2

+
(kµ + ω(b − Mωµ)) sin θ1)

(bω)2 + (k − Mω2)2

+
2mrω3((kµ + ω(b − Mµω)) cos θ1+

(bω)2 + (k − Mω2)2

+
(−k + ω(bµ + Mω)) sin θ1) sin θ

(bω)2 + (k − Mω2)2 (17)

where the angles θ1 , θ2 , θ3 are defined in Fig. 3, c1 , c2 , are
coefficients related to the initial conditions of (15) and are given
in Appendix A, and

θ = ωt

γ =
√
−b2 + 4kM

2Mω
. (18)

2) Platform Equation of Reverse Motion, i.e., for ẋ < 0:
Equation 19 as shown at bottom of the page.

Solving the linear ODE (19) with respect to the displacement
xrvr yields the following analytical solutions, for xrvr and the
velocityẋrvr

xrvr(θ) =
µ(2m + M)g

k
+ e−bθ/2M ω (c3 cos γ + c4 sin γ)

+
2mrω2 cos θ((kµ − ω(b + Mµω)) cos(θ2 + θ1)

(bω)2 + (k − Mω2)2

+
(k + ω(bµ − Mω)) sin(θ2 + θ1))

(bω)2 + (k − Mω2)2

+
2mrω2((k + ω(bµ − Mω)) cos(θ2 + θ1)

(bω)2 + (k − Mω2)2

+
(−kµ + ω(bµ − Mω)) sin(θ2 + θ1)) sin θ

(bω)2 + (k − Mω2)2

(20)

ẍfwd(t) +
b

M
ẋfwd(t) +

k

M
xfwd(t)

= (−µ(M + 2m)g + 2mrω2(sin(ωt)(cos θ1 + µ sin θ1) + cos(ωt)(sin θ1 − µ cos θ1)))/M − kxθ1/M (15)

ẍrvs(t) +
b

M
ẋrvs(t) +

k

M
xrvs(t)

=(µ(M+2m)g + 2mrω2(sin(ωt)(cos(θ1 +θ2)−µ sin(θ1 +θ2))+cos(ωt)(sin(θ1 +θ2)+µ cos(θ1 +θ2))))/M−kxθ2/M (19)
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ẋrvr(θ) = − b e−
b θ

2 M ω (c3 cos γ + c4 sin γ)
2M

+ e−bθ/2M ω

(
c4
√
−b2 + 4kM cos γ

2M

− c3
√
−b2 + 4kM sin γ

2M

)

+
2mrω3 cos θ((k + ω(bµ − Mω)) cos(θ2 + θ1)

(bω)2 + (k − Mω2)2

+
(−kµ + ω(b + Mµω)) sin(θ2 + θ1))

(bω)2 + (k − Mω2)2

− 2mrω3((kµ − ω(b + Mµω)) cos(θ2 + θ1)+
(bω)2 + (k − Mω2)2

(k + ω(bµ − Mω)) sin(θ2 + θ1)) sin θ

(bω)2 + (k − Mω2)2 (21)

where c3 , c4 are coefficients related to the initial conditions of
(19) and are given in Appendix A.

The following mathematical equations should be satisfied for
steady-state operation to occur.

1) The forward displacement must be equal to the reverse
displacement:

xfwd(θ1) = xrvs(θ3). (22)

2) Motion toward the positive x-axis is impeding, i.e., friction
at the contact points has reached its Coulomb level:

2mrω2(sin θ1 − µ cos θ1) = kxfwd(θ1)+µ(M + 2m)g.
(23)

3) The maximum displacement during forward motion is de-
rived by setting θ = θ2 in (16):

xθ2 = xfwd(θ2). (24)

4) The platform velocity becomes zero when the deforma-
tion of the manipulator is equal to xθ2 . This condition is
expressed by setting θ = θ2 in (17):

ẋfwd(θ2) = 0. (25)

5) The maximum displacement during reverse motion is de-
rived by setting θ = θ3 in (20):

xθ3 = xrvs(θ3). (26)

6) The platform velocity becomes zero when the deformation
of the manipulator is equal to xθ3 . The condition is derived
by setting θ = θ3 in (21):

ẋrvs(θ3) = 0. (27)

It is convenient to write (22)–(27) in a functional form:

f1(xθ1 , xθ3) = 0

f2(xθ1 , θθ1) = 0

f3(xθ1 , xθ2 , θθ1 , θθ2) = 0

f4(xθ1 , xθ2 , θθ1 , θθ2) = 0

Fig. 11. (a) Manipulator minimum deformation versus stiffness. (b) Zoom-in.

Fig. 12. Impulse-free displacement and force response.

f5(xθ1 , xθ2 , xθ3 , θ1 , θ2 , θ3) = 0

f6(xθ1 , xθ2 , xθ3 , θ1 , θ2 , θ3) = 0. (28)

The system (28) of six nonlinear equations and six unknowns
is solved for a range of manipulator stiffness values k and a
range of actuation speed values ω. The rest of the parameters
are considered to be known. Fig. 11 demonstrates the results
of manipulator deformation versus manipulator stiffness k for
ω = 900 rad/s.

It is observed that there is a critical stiffness value kc =
980 N/m, below which the manipulator tip remains continu-
ously attached to the object throughout manipulation. The range
of stiffness values below kc is called the permissible range. This
result constitutes a design guideline for attaining the desired ma-
nipulation operation.

Next, a simulation is conducted for k < kc , and, in particular,
for k = 900 N/m. The simulation scenario is the same as the
one in Fig. 9, i.e., the manipulator pushes against a wall. Fig. 12
presents displacement and force results.
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Fig. 13. Phase plane diagram for the platform’s CM when k < kc .

Fig. 14. Phase plane diagram for the platform’s CM when k = kc .

Initially, the manipulator tip is not in contact with the object.
At t = 0.025 s, the manipulator tip comes into contact with
the object and remains attached to it throughout the rest of the
time. Evidently, the high impulses are eliminated and a forced
oscillation occurs. Fig. 13 presents the corresponding phase
plane diagram of the response of the platform’s CM.

The free motion corresponds to the distance covered by the
platform before it comes into contact with the object. Also, it is
observed that the platform exhibits a transient response, during
which a few detachments take place.

In order to have no transient response, the stiffness must be
equal to kc . The results for k = kc are depicted in Fig. 14. In this
example the manipulator tip is initially attached to the object. It
is observed that the transient response has been eliminated. As
expected, for k = kc , the minimum deformation of the manip-
ulator is x0 = 0m.

Although forces imparted to the object are impulse-free, they
still suffer from a high amplitude ripple. Hence, the mean value

Fig. 15. Mean value of transmitted force as a function of actuation speed ω.

of the force transmitted to the object must be regulated and the
force amplitude ripple attenuated.

Regulation of force mean value: The forces transmitted to the
object through the manipulator Fm are given by

Fm =

{
Fm fwd = kxfwd(t) + bẋfwd(t), ẋ(t) ≥ 0

Fm rvs = kxrvs(t) + bẋrvs(t), ẋ(t) < 0.
(29)

The mean force exerted on the object over a single cycle of
operation is given by

Fm mean(ω)

=

(
ω/θ2

∫ θ2
0 Fm fwd(θ) dθ+ω/θ3

∫ θ3
0 Fm rvs(θ)dθ)

)
2

. (30)

Next, the desired mean value of the transmitted force
Fm mean des is set as a design requirement. This yields a seventh
equation to be satisfied when solving the system of equations
(28)

Fm mean des − Fm mean = 0 ⇒
f7(xθ1 , xθ2 , xθ3 , θ1 , θ2 , θ3 , ω) = 0.

(31)

The solution of the augmented system of equations provides,
among other solutions, the value for ω, for which Fm mean des
is attained. Solving for a range of Fm mean des results in the
graph depicted in Fig. 15.

A simulation is conducted for ω = 947 rad/s and the force
response is presented in Fig. 16. This response verifies the pre-
dictions of Fig. 15. Hence, we conclude that the mean value of
the force transmitted to an object can be controlled by selecting
appropriate actuations speeds. The next step is to reduce the
ripple to an acceptable level.

Ripple attenuation: Appropriate values for k and ω are as-
signed so that the manipulator tip remains attached to the object
and imparts to it a desired force mean value. Simulations are
performed for a range of values of damping b. It is observed
that the smaller the value of b is, the smaller the force ripple is.
Fig. 17 depicts the force exerted on the object, when stiffness is
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Fig. 16. Mean value of force transmitted to the object.

Fig. 17. Attenuated force ripple.

k = 150 N/m, actuation speed is ω = 947 rad/s, and damping
value b = 0.01 (N·s)/m.

It is observed that the ripple has been substantially reduced
compared to the one in Fig. 16. It is also observed that the mean
value of the force remains approximately 30 mN.

Hence, throughout the aforementioned analysis, it was
demonstrated that appropriate selection of ω, k values and set-
ting b as small as possible results in an impulse-free manipula-
tion with low ripple and controlled mean value of the transmitted
force.

IV. FORCE GENERATION EXPERIMENTS

A prototype of the microrobotic platform, shown in Fig. 18,
was constructed and experiments were conducted in order to
verify the previous analysis and evaluate the force capabilities
of the platform. During the experiments, the manipulator of the
platform exerts forces on a stiff and static force sensor.

The experimental setup is presented in Fig. 19. It comprises a
cylindrical ATI17 NANO six-axis force sensor, connected to a
PC equipped with a NI DAQ Card 6036E, which performs A/D
conversion, measuring the applied force.

Fig. 18. Microrobot used in the experiments.

Fig. 19. Experimental setup for evaluation of the force capabilities of the
platform.

A. Experiment 1: Manipulator Stiffness k is Greater Than kc

In this experiment, the manipulator’s stiffness is greater than
the critical value kc = 980 N/m given by (28). The manipulator
is implemented using a steel pin having k > 10 kN/m. The steel
pin is directly mounted on the platform as shown in Fig. 19.

The initial position of the platform allows for a 2 mm distance
between the manipulator’s tip and the force sensor. At t = 0 s,
the microrobot commences linear motion and moves toward
the force sensor. The two actuators operate synchronously at
an angular speed ω1 = 900 rad/s. At t1 = 2.5 s, the tip of the
pin comes into contact with the surface of the force sensor, and
exerts forces along the sensor’s z-axis. At t = 6.5 s, the actuator
speeds are reduced to ω2 = 800 rad/s. At t = 11 s, actuation
stops. The forces measured during this experiment are presented
in Fig. 20.

The first plot presents the forces that the manipulator exerted
on the z-axis of the force sensor. The second plot depicts a
zoom-in on these forces. We observe the following.

1) As predicted by the analysis in Section III, the forces
exerted on a static object by a high stiffness manipulator
are impulsive.

2) It is observed that the magnitude of the force exhibits
random variations about a mean value. The randomness,
which is related to the speed of the platform at the instant
of the impact, was also observed in the simulation results,
albeit the standard deviation about the mean value was
smaller.

3) Furthermore, the experimental results demonstrate that the
mean value of the impulses is related to the value of the
actuators’ rotation speed. The larger the speed ω is, the
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Fig. 20. First plot presents forces exerted on the object by the manipulator.
The second plot depicts a magnified detail of the first plot.

greater the forces exerted on the object by the platform
are.

4) It should also be noted that as shown in the first plot
of Fig. 20, the impulses do not reduce instantly at t =
6.5 s, but, instead, they reach their new mean value at
approximately t = 7 s. This delay reflects the settling time
of the dc motors response, which is approximately 400 ms.

5) The impulse frequency is approximately one third of the
actuation frequency. In other words, the platform bounces
to the wall every three cycles of operation. This exper-
imental result was also predicted by the simulation pre-
sented in Fig. 9.

B. Experiment 2: Manipulator Stiffness k is Less Than kc

The goal of the second experiment is to test the force capabil-
ities of the platform when its manipulator has stiffness k < kc .
The manipulator now is composed of a needle mounted on a
base. This type of manipulator can be used to perform injec-
tion into cells, such as the Zebrafish embryo, whose diameter
is approximately 800–1000 µm. In addition, the needle can be
used for a variety of pushing operations on either static or mov-
ing objects. The needle, whose body diameter is approximately
300 µm and its tip diameter is approximately 30 µm, has stiff-
ness much higher than kc . Therefore, the first step is to design
appropriately the base so that the needle–base system exhibits
stiffness less than kc . To this end, the base is an aluminum
sheet onto which the needle is mounted. A local frame x–y–z is
attached to the base as shown in Fig. 21.

When the needle imparts a force P on an object, the aluminum
base exhibits a tip elastic deflection equal to ∆z. The relation
between P and ∆z is given by

P =
3EI

�3 ∆z (32)

where E is Young’s modulus of aluminum, � is the length of the
sheet, and I is the area moment of inertia of the sheet about its

Fig. 21. Needle assembly design and dimensions.

TABLE III
PARAMETERS OF THE ALUMINUM BASE

Fig. 22. (a) Platform underside. (b) Needle tip as seen with a microscope.

x-axis, given by

I =
bt3

12
(33)

where b is the aluminum sheet width and t its thickness. Equation
(32) can be written as

P = k∆z (34)

where

k =
Ebt3

4�3 (35)

is the stiffness of the needle assembly. The values of the param-
eters in (35) are selected so that k = 130 N/m, and are presented
in Table III.

A strain gauge was attached on the base to measure the 1 DOF
compressive forces on the needle. The base–needle installation
together with the strain gauge are depicted in Fig. 22(a). Note
that the three contact points of the platform are not visible in
Fig. 22(a) because the underside cover has been removed to
facilitate the examination of the interior of the body. Fig. 22(b)
shows the tip of the needle.

As in Experiment 1, the platform was driven toward the force
sensor. The actuation speed was ω = 900 rad/s. The needle tip
reached the force sensor and started pushing. Fig. 23(a) presents
the forces exerted on the object. The experiment is repeated with
ω = 800 rad/s. The results are demonstrated in Fig. 23(b).

As predicted by the developed analysis, for k < kc , the ma-
nipulator remains attached to the object during operation, the
forces exerted on the object are continuous, and the impulsive
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Fig. 23. Forces exerted on a static object when manipulator stiffness is less
than kc . (a) ω = 900 rad/s. (b) ω = 800 rad/s.

forces are eliminated. The ripple of the imparted forces has
been substantially suppressed to approximately 10% of the force
mean value. Furthermore, it is observed that the greater the ac-
tuation speed ω is, the greater the forces applied to the object
are.

Hence, designing a manipulator according to the design
guidelines presented in Section III results in impulse-free, con-
tinuous and controllable forces. A set of further experiments
demonstrated that the range of forces the platform exerts on a
static object lies within the range [0.01–0.3 N].

V. CONCLUSION

In this paper, the application of forces by a microrobot em-
ploying a novel motion mechanism based on vibration minimo-
tors was studied. Theoretical results and simulations based on
a single-dimensional model of the platform–manipulator object
system demonstrated the following.

1) The motion mechanism can be used to impart forces on
microobjects.

2) The actuator rotational speed can be used as a control
variable to regulate the mean value of the force magnitude
imparted on an object.

3) The forces exerted on an object can be impulsive or smooth
depending on the values of certain structural parameters
such as the manipulator stiffness and damping.

4) It was proved mathematically that if certain conditions
are met, the manipulator will perform ideal force trans-
mission, i.e., impulse-free, low ripple controllable gen-
eration of manipulation forces. These conditions led to
corresponding design guidelines.

Force experiments were conducted and the experimental re-
sults verified the theoretical results. The experiments demon-
strated that the forces, generated by a manipulator designed for
ideal force transmission, lie within the range [0.01–0.3 N], and

are subject to low ripple, impulse-free and controllable, and
thus, applicable to a broad range of micromanipulations.

One may note that there are cases that require forces with an
impulsive behavior. Such a case might be the penetration of a cell
by a needle-type manipulator. Therefore, as a future work, we
intend to design a variable stiffness manipulator, which would
lend itself to a broader range of microapplications.

APPENDIX A

In this Appendix, expressions for variables c1 , c2 , c3 , and c4 ,
used in Section III are presented

c1 = (kx0 + g(2m + M)µ)((bω)2 + (k − Mω2)2)

+ 2kmrω2((kµ + ω(b − Mµω)) cos θ′′s

+ (−k + ω(bµ + Mω)) sin θ′′s ))

/(k((bω)2 + (k − Mω2)2)) (A1)

c2 = (b(kx0 + g(2m + M)µ)((bω)2 + (k − Mω2)2)

+ 2kmrω2((b2ω + 2Mω(−k + Mω2)

+ bµ(k + Mω2)) cos θ′′s

+ (b2µω + 2Mµω(−k + Mω2) − b(k + Mω2)) sin θ′′s ))

/(k
√

−b2 + 4kM((bω)2 + (k − Mω2)2)) (A2)

c3 = ((k(x0 + x1) − g(2m + M)µ)((bω)2 + (k − Mω2)2)

+ 2kmrω2((−kµ + ω(b + Mµω)) cos(θ′′f + θ′′s )

− (k + ω(bµ − Mω)) sin(θ′′f + θ′′s )))

/(k((bω)2 + (k − Mω2)2)) (A3)

c4 = (b(k(x0 + x1) − g(2m + M)µ)((bω)2 + (k − Mω2)2)

+ 2kmrω2((b2ω + 2Mω(−k + Mω2) − bµ(k

+ Mω2)) cos(θ′′f + θ′′s ) − (b2µω + 2Mµω(−k + Mω2)

+ b(k + Mω2)) sin(θ′′f + θ′′s )))

/(k
√

−b24kM((bω)2 + (k − Mω2)2)). (A4)
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