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SUMMARY
Increasing the energy autonomy of a hopping one-legged
robot is studied in this paper. For a particular passive gait,
of all those possible, the energy dissipated per unit length of
travel is shown to be less than for any other gait. This optimal
gait is identified analytically, by exploiting the commonly
used SLIP model to simplify real robot dynamics. Both
mechanical and electrical losses are considered. The accuracy
of the optimal gait analytical prediction is evaluated by
a numerical analysis of a realistic robot model. Finally,
restrictions imposed on executing the optimal gait due to
motor limitations are studied.

KEYWORDS: Hopping robot; SLIP model; Passive
hopping.

I. INTRODUCTION
Legged robots are now an area of intense research. The
limitations of wheeled vehicles are obvious, when it comes to
transversing the anomalous terrain present both on our planet
and others. Legged robots have the potential to handle steep
inclines and negotiate obstacles. The fact that legged robots
do not come into contact with all the points of the ground
they transverse, as in the case of wheeled vehicles, facilitates
their motion over rough terrain.

Legged robots may be categorized according to their
number of legs, their stability (static, dynamic), their passive
or active nature, and their type and number of actuators.
Robots with one,1,2 two,3−6 four,1,7,8 six9 and eight legs and
also robots combining legs and wheels have been studied.10

One-legged robots may move in three dimensions,1 or in the
plane,11 as in this work. Further, a legged robot is statically
or dynamically stable depending on whether it is always
statically balanced, or performs a motion that is stable as a
whole.

Legged robots may be active, using actuators to move, or
passive.12 In the past, hydraulic1,3 and pneumatic actuators11

have been used. In these cases, the robot is often connected
to a stationary power supply. This physical connection is a
constant disturbance to the robot and restricts its range. On
the other hand, electric motors have been used more recently,
powered by on-board batteries.7,9,13 Although electric motors
offer the means of autonomously driving the robot, it is
imperative that the robot moves in an optimum way from

* Corresponding author: E-mail: egpapado@central.ntua.gr

an energy consumption point of view, as powerful motors
and batteries are heavy.

The analysis in this paper is based on the SLIP (Spring
Loaded Inverted Pendulum) model.14,15 This model is often
used to study legged robots and is composed of a point mass
attached on a spring, free to rotate around its point of contact
with the ground. A similar model was used by Dummer and
Berkemeier to analyze the passive dynamics and control of
a one legged robot.16 An approximate map for the SLIP
has been found by Schwind and Koditchek.17 To date, little
if any work has incorporated energy losses into the SLIP
model. Only recently has reducing energy consumption been
the subject of research.18,19,20

Passive running has been studied by Raibert and
Buehler.1,12 Energy savings of 93% are reported, using
passive running.12 It is now generally accepted that passive
running leads to reduced energy consumption. However, this
paper differs from previous work, pointing out that various
passive gaits result in different dissipated energy, so simply
using a passive gait does not guarantee the least consumed
energy.

In this paper, it is analytically shown that there exists a
particular passive gait, of the many possible, which leads
to the least dissipated energy per unit length of travel,
while considering electromechanical losses. Using a SLIP
model to simplify the real robot dynamics, and making mild
assumptions, the optimal gait is analytically identified. To
verify the accuracy of the analytical finding on a real-world
robot, a realistic robot model is simulated. Finally, the effects
of a torque-limited actuator on the optimal gait are studied.

II. ROBOT DYNAMICS
The one-legged robot is a system comprised of a body and
a leg. The simplified dynamics of the robot, used for the
analytical study, are represented here using the SLIP physical
model, shown in Fig. 1. The model is comprised of a body
of point mass m, a massless leg with a rest length L and a
spring in the leg of stiffness k. The leg forms an angle θ with
the vertical, while the length of the leg at any moment is l.

For the analytical study, the body pitching and leg
inertia are ignored, and θ is thought to be small. Also,
no foot slipping is considered. To verify analytical results,
simulations using a full model with pitching and leg inertia
are employed.

The system has losses, due to viscous friction at the leg
with a viscous coefficient of b. To supplement energy loss,
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Fig. 1. The SLIP physical model at the flight apex and at a point of
the stance phase.
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Fig. 2. Phases of the robot motion.

the robot has a motor that actuates the leg axially. The robot
goes through a stance and a flight phase, see Fig. 2. During
stance, the robot center of mass (CM) covers a distance of xs ,
and a distance of xf during flight, reaching an apex height h.

The equations of motion during stance may be found using
a Lagrangian approach:

ml2θ̈ + 2ml · l̇ · θ̇ − mglsin θ = 0

ml̈ − mlθ̇2 + k(l − L) + mgcos θ + b · l̇ = f
(1)

where l is the leg length (l ≤ L) and f the force the actuator
exerts on the leg spring (see Fig. 1). During flight, the robot is
under the influence of gravity only. Denoting the acceleration
of gravity, g, and using the coordinates x, y, see Fig. 1, the
equations of motion become:

ẍ = 0
ÿ = −g

(2)

III. PASSIVE RUNNING AND DISSIPATED ENERGY
If the robot has no losses, then sets of initial conditions may
be found for which the robot executes a passive motion,
providing the leg is swung forward during flight.1 In this
ideal case, the robot moves with zero energy consumption.
However, in reality, friction does exist in the leg, so the robot
will not perform more than a few hops with these initial
conditions. Therefore a completely passive motion of the
robot is not possible, and a motor is required for the robot
to execute a sustainable gait. The motor exerts a force f on
the leg that exactly compensates friction. The force f that
compensates the friction force ffr is:

f = ffr = b · l̇ (3)

where l̇ is the axial leg velocity. The friction term in the
equations of motion, see Eq. (1), is now canceled by the

force f. Therefore, using initial conditions that yield a passive
motion for the lossless system, and a friction compensating
motor, the robot will execute an active gait, very close to the
passive gait. Then, the robot is studied as in the frictionless
case, and the only energy required to sustain the motion is
the amount dissipated due to leg friction.

It is has been well shown that passive running is the most
efficient type. However, depending on the initial conditions,
the characteristics of a passive gait, such as the stance
duration and the robot speed, will vary. Our work shows
that the energy dissipated during each passive gait varies and
that the differences between gaits are considerable. Hence,
it is necessary to identify the gait for which the dissipated
energy per meter of travel is least.

A gait is defined by a set of initial conditions, such as the
initial height h of the body from the ground, the horizontal
velocity ẋ0 of the CM and the leg angle θ0 at touchdown. For
given values of h and θ0, the velocity ẋ0 is uniquely defined
for a ‘passive’ gait, in a normal working range. If the value of
the apex height h is restrained, the robot may execute a wide
range of ‘passive’ gaits with different values of the velocity
ẋ0, for various values of the leg angle at touchdown θ0. It
will be shown that for a particular value of θ0,the losses of
the robot per unit length of travel are minimized, for a given
h and ẋ0.

The mechanical power losses due to leg friction are found
using Eq. (3) to be:

Pfr = b · l̇2 (4)

However, in addition to mechanical losses, electrical losses
due to motor ohmic resistance exist. These do not affect the
robot stability, but drain the battery and must be considered.
To this end, the force f exerted on the leg by the motor is:

f = ge · τm (5)

where ge is the transformation ratio of the mechanism that
converts the motor revolute motion to the linear leg motion,
and τm is the motor torque output. Neglecting mechanical
losses in the motor, the torque τm of the motor is:

τm = kT i (6)

where kT is the motor torque constant, i the motor current.
The motor ohmic losses are:

Pm = i2r (7)

where r is the motor resistance. Using Eqs. (3), (5), (6), the
ohmic power losses become:

Pm = b2 · r · l̇2
/(

g2
e k

2
T

)
(8)

Therefore, the total power losses are:

P = Pm + Pfr = btot l̇
2 (9)

where btot = b + b2r(gekT )2.

IV. ANALYTICAL APPROACH
The optimal operating gait, from an energy consumption
point of view, is analytically found. The gait is defined by
the leg touchdown angle θ0,for a given apex height h. For
the optimal gait, the quantity ê, defined as the total energy
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loss during one stance, es , over the distance covered during
one stance and one flight period, is minimized. Note that the
flight energy losses are zero, as the leg is brought forward
with zero torque. Therefore:

ê = es/(xs + xf ) (10)

For the optimum angle θ0,opt, for which the losses per unit
length will be minimized, the derivative of ê with respect to
θ0 will be equal to zero, therefore:

dê/dθ0 = 0 (11)

Eq. (11) is the equation which will provide the optimum θ0.
Below, (′) denotes the derivative with respect to θ0. Taking
Eq. (10) into account, Eq. (11) becomes:

e′
s(xs + xf ) − es(x ′

s + x ′
f )

(xs + xf )2
= 0 or

e′
s

es

= x ′
s + x ′

f

xs + xf

(12)

Since the motor of the robot exactly compensates the friction
force in the leg, the robot’s movement is described by the
unperturbed equations of motion:

ml2θ̈ + 2ml · l̇ · θ̇ − mglsin θ = 0

ml̈ − mlθ̇
2 + k(l − L) + mgcos θ = 0

(13)

The energy lost during stance is:

es =
∫ Ts

0
Ptot dt = btot

∫ Ts

0
l̇2 dt = btotp (14)

where Ts is the duration of the stance phase and:

p =
∫ Ts

0
l̇2 dt (15)

Using Eqs. (14), and (15), Eq. (12) which will provide θ0,opt,
is written as:

p′/p = (x ′
s + x ′

f )/(xs + xf ) (16)

Eq. (16) shows the optimum touchdown angle to be
independent of leg damping. To find θ0,opt from Eq. (16),
the distances xf and xs must be functions of the touchdown
angle θ0.

A. Expressing x f as a function of θ0: The gaits consi-
dered have the same apex height h. The height of the body
of the robot at liftoff, see Fig. 2, is:

y0 = Lcos θ0 (17)

If the liftoff angle is considered to be small, then:

y0 ≈ L (18)

The flight phase duration, as the robot is under the influence
of gravity only, is:

Tf = 2
√

2hd/g (19)

where hd is the clearance at the apex point, defined as:

hd = h − y0 ≥ 0 (20)

At liftoff, the speed of the robot body in the horizontal
direction is, see Fig. 1:

ẋlo = θ̇loLcos θ0 − l̇losin θ0 (21)

where the subscript (lo) denotes a quantity at liftoff and θ̇ is
the leg angular velocity.

It is presumed that the leg linear velocity l̇ does not
contribute significantly to the horizontal velocity at liftoff.
Mathematically, the second term of Eq. (21) is small in
comparison to the first. As θ0 is small, and θ̇lo = θ̇0 for a
symmetric gait, Eq. (21) becomes:

ẋlo = θ̇0L (22)

Since the robot travels with a constant horizontal speed
of ẋlo during flight, using the flight duration in Eq. (19), the
distance xf it covers during flight is:

xf = 2Lθ̇0

√
2hd/g (23)

From the linearized equations of motion, it is approximately
(see Appendix B):

θ̇0 = −θ02
√

k/(mπ2) (24)

Taking into account Eq. (24), Eq. (23), the distance xf cove-
red during flight is:

xf = −θ04L
√

2khd/(π
√

mg) = a1 · θ0 (25)

where a1 does not depend on θ0.

B. Expressing xs as a function of θ0: From Fig. 2, the
distance covered in stance is:

xs = −2Lsin θ0 = a2θ0 (26)

where a2 does not depend on θ0.

C. Expressing p as a function of θ0: Using Eqs. (25) and
(26), Eq. (16) gives:

p′

p
= a2 + a1

(a2 + a1)θ0
= 1

θ0
(27)

The leg speed, derived from the linearized leg equation
(see Appendix A), is:

l̇(t) = l̇0cos(
√

k/m · t) − g
√

m/ksin(
√

k/m · t) (28)

where l̇0 is the leg speed at touchdown. Using Eq. (28), (14b),
p may be calculated as:

p = 1

4a3
3

[
2a3

(
Ts

(
g2 + a2

3 l̇
2
0

) − gl̇0(1 − cos(2a3Ts))
)

+ (−g2 + a2
3 l̇

2
0

)
sin(2a3Ts)

]
(29)

where a3 = √
k/m. From Eq. (28), the stance time is approx-

imately (see Appendix A):

Ts ≈ π
√

m/k (30)
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Taking into account Eq. (30), the following are true:

cos(2a3Ts) ≈ cos(2π) = 1

sin(2a3Ts) ≈ sin(2π) = 0
(31)

Substituting Eq. (30), (31), into Eq. (29), the integral p is
given by:

p = 1

2
(m/k)3/2

(
g2 + l̇2

0k
/
m

)
(32)

To calculate the optimum touchdown angle θ0,opt from
Eq. (27), l̇0 must be a function of θ0.

D. Expressing l̇0 as a function of θ0: If ẏ0 is the vertical
speed of the CM at touchdown, then the duration of flight
Tf is:

Tf = −2ẏ0/g, so ẏ0 = −gTf /2 (33)

From Fig. 1, the vertical speed at touchdown ẏ0 is:

ẏ0 = l̇0cos θ0 − θ̇0Lsin θ0 (34)

or, assuming again that θ0 is small:

ẏ0 = l̇0 − θ̇0Lθ0 (35)

From Eqs. (33) and (35) it can be found that:

l̇0 = a4θ
2
0 + a5 (36)

where a4 = −2L
√

k/m/π , a5 = −√
2ghd .

E. Calculation of optimal touchdown angle θ0: Sub-
stituting Eq. (36) into Eq. (32), the quantity p becomes a fun-
ction dependent only on θ0. Eq. (27), from which the optimum
θ0 will be determined, then takes the form of a fourth order
equation:

nθ4
0 + qθ2

0 + w = 0 (37)

where

n = −12k2L2/(π2m2), q = −(k/m)3/2 4L
√

2ghd/π,

w = g2 + 2ghdk/m.

From Eq. (37), θ0,opt is calculated:

θ2
0,opt = (−q ± d)/(2n) (38)

where:

d2 = q2 − 4nw = 160

π2
L2

(
k

m

)3

ghd + 48

π2
L2

(
k

m

)2

g2

(39)

In Eq. (39), the second term is smaller than the first by a
factor ranging from about eight to one hundred and thirty,
for the parameter values studied (see Table I). So:

d ∼= L
√

160ghd (k/m)3/2
/
π

From Eq. (38), the optimum angle of touchdown θ0,opt is:

θ0,opt = 0.96 · 4

√
mghd

kL2
∼= 4

√
mghd

kL2
(40)

Table I. Analytical approximation of relative errors.

Robot parameters Optimal angle prediction error s (%)

m (kg) k(kN/m) L (m) hd = 0.05 m hd = 0.1 m hd = 0.2 m

10 5 0.3 23.61 19.55 16.13
10 10 0.3 21.83 19.14 16.36
10 20 0.3 23.23 17.35 17.71
10 5 0.5 25.18 23.25 18.56
10 10 0.5 22.68 20.24 18.08
10 20 0.5 20.91 18.06 16.46
10 5 0.7 25.84 22.40 21.09
10 10 0.7 24.71 20.71 19.02
10 20 0.7 22.97 18.34 16.11

Eq. (40) provides a simple form for the optimal angle θ0,opt

for a given apex height h. This angle minimizes power losses
and can be considered in robot design. Specifically, having
chosen a desired height h, the robot parameters m, k, L, can
be chosen so that θ0,opt has an acceptable value, i.e. the foot
does not slip and the resulting motion is not too fast.

V. NUMERICAL APPROACH
To verify the expression for θ0,opt in Eq. (40), simulations
were carried out in MATLAB by numerically solving the
full nonlinear dynamics of the SLIP model presented in
Section II. A wide range of parameters was used, specifically,
for clearance, hd , values in the range of (0.05 m, 0.2 m), for
spring stiffness in the region k = (5,000 N/m, 20,000 N/m),
and for the leg rest length in the region L = (0.3 m, 0.7 m).
The robot body mass parameter was kept as m = 10 kg.
In Table I, the relative error s of the analytical formula in
Eq. (40) against the numerical result, is shown, for various
sets of parameters.

In Table I the error deviates little from the average value
of 20.4%. Since the error is approximately constant for a
wide parameter range, a corrective factor is used to increase
the accuracy of Eq. (40). The factor is chosen so as to shift
the average prediction error, over the above parameter range,
close to zero, which occurs for a factor of 1.27. Therefore,
the modified formula for the optimum touchdown angle for
a given apex height is:

θ0,opt = 1.27 · 4

√
mghd

kL2
(41)

The optimal angle prediction, using Eq. (41), is compared
with the exact value from the simulations, for the above
parameter range. In Fig. 3 the average losses of energy per
unit length of travel, ê, as calculated in simulations, are
plotted versus the touchdown angle θ0.

Every curve in Fig. 3 corresponds to a constant value of
the clearance hd . On each curve the touchdown angle for
which ê takes its minimum value is shown, as well as the
touchdown angle analytically predicted to give the minimum
by Eq. (41). As seen in Fig. 3, the errors are now significantly
smaller and do not surpass 7% in any case.

Till now the SLIP model case was studied. To show the
validity of our approach to energy saving for real robots, a
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Fig. 3. Comparison of optimum point from simulation and analytical prediction. The “x” marker shows the exact minimum calculated
numerically, while the “⊕” marker shows the analytical approximation of the optimal touchdown angle.

Table II. Full model parameters.

Parameter Symbol Value Units

body mass m 10 kg
body inertia ib 0.5 kg m2

spring constant k 5000 N/m
leg friction b 25 kg/s
leg inertia ii 0.05 kg m2

leg length L 0.5 M
motor constant kT 0.1 Nm/A
gear ratio hip geh 100 –
transmission ratio ge 30 rad/m
resistance r 3 �

full realistic model is simulated, consisting of a body and leg,
both with inertia, with realistic parameters. As the leg and
body have inertia, a motor is used to drive the leg forward
to the touchdown angle during flight. Using the full model
parameters in Table II, the simulation results are shown in
Fig. 4. The total energy per meter of travel is shown, as well
as that used by the leg and hip motors individually.

Obviously, the optimal angle with respect to the total
energy is shifted compared to the optimum angle with respect
to the energy of the leg motor. However, the energy used
by the hip motor is significantly smaller than the energy
needed to complement leg friction losses, across the entire
touchdown angle range, which explains why the optimum is
not shifted far. To validate the accuracy of the full robot model
simulations, the simulation software Working Model 3D was
also used. In Fig. 5 snapshots are shown, together with time
plots of θ, l, for the optimal angle gait at an apex height of
h = 0.57 m, while in Fig. 6 for h = 0.7 m. The optimal angle
is visibly larger in the second case, as predicted by Eq. (41).

10 12 14 16 18 20 22 24 26 28 30
0

20

40

60

80

100

120

140

160
ê (J/m) total

leg motor

hip motor

θ (deg)

Fig. 4. Optimum working point in case of full model.

To conclude, due to the approximations made, it is ex-
pected that Eq. (41) predicts θ0,opt approximately. However,
it correctly predicts the qualitative effect of m, k, L and the
apex height h on the optimum angle, as shown in Fig. 3, for
a wide parameter range.

VI. ACTUATOR – INDUCED LIMITATIONS
The motor used on the robot is described by the following
torque-speed characteristic:

τm = (
V km − ωk2

T

)/
r (42)

where ω is the motor angular speed, and V is the applied
motor voltage. The torque – speed characteristic is shown in
Fig. 7, for the applied voltage at touchdown V0 and for the
maximum allowed Vmax. Due to the transformation constant
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Fig. 7. Torque – speed characteristic of motor and friction com-
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ge, the motor speed is:

ω = gel̇ (43)

From Eqs. (3), and (5), the required motor torque τfr to
compensate friction is:

τfr = b · l̇/ge (44)

and is shown in Fig. 7. Further, from Eqs. (42), and (43), the
motor torque at any point is:

τm(l̇, V ) = (
V kT − gel̇ · k2

T

)/
r (45)

During normal operation, the motor supplies a torque given
by Eq. (45), which must be equal to the torque required to
compensate friction, see Eq. (44). Therefore:

l̇ = V kT ge/(b · r + (kT ge)2) (46)

Eq. (46) expresses the relationship between the leg velocity
l̇ and the applied motor voltage V , when friction is
compensated. Since the leg velocity is greatest at touchdown,
the friction force will also be greatest then, so if the motor
can compensate friction at touchdown, it will be capable of
compensating friction always. At touchdown, Eq. (46) gives:

l̇0 = V0kT ge/(b · r + (kT ge)2) (47)

Eq. (47) expresses the leg velocity the robot can have at
touchdown, for a touchdown voltage V0, so that the motor
may always compensate friction. In Fig. 7 this is the leg
velocity for which the friction compensating torque intersects
the motor torque – speed characteristic for an applied voltage
of V0. From Eq. (47), the greatest leg velocity the robot may
have at touchdown is that which corresponds to the maximum
available voltage Vmax:

l̇0,max = VmaxkT ge/(b · r + (kT ge)2) (48)

In Fig. 7, this is the leg velocity that corresponds to the
intersection of the friction compensating torque with the
torque – speed characteristic of the motor for the voltage
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Vmax. This means that for a gait with leg velocity l̇0 greater
than the critical value l̇0,max, the motor will be unable to
supplement the friction force. Due to the symmetric stance
phase condition, the critical value l̇0,max corresponds to a
critical gait with an angle θ0,crit, for a given apex height h.

Therefore, the leg motor is unsuitable for any gait with θ0 >

θ0,crit for the apex height h. This is because, for a given apex
height h and a symmetric stance phase, a gait with a greater
angle θ0 requires a greater l̇0, as is evident from Eq. (36).

The critical angle θ0.crit may be smaller than the angle that
would be optimal with an unlimited torque motor. In such
cases θ0,crit is the optimal θ0, as larger values of θ0 are not
feasible. In Fig. 8, this can be seen for a robot with k =
10000 N/m, m = 10 kg, b = 5 kg/s, kT = 0.04 Nm/A, ge =
20 rad/m, r = 4 �, Vmax = 48 V, for h = 0.57 m.

VII. CONDITION OF MOTOR SUITABILITY
A condition is derived that determines whether a given
motor is capable of supplementing the friction force for
the optimum gait predicted by Eq. (41). Eq. (36) gives the
quantity l̇0 as a function of the leg angle at touchdown θ0,

for a symmetric stance phase. For the optimum angle θ0,opt,
l̇0 has the value given by Eq. (36):

l̇0,opt = −
√

2ghd − 2
√

k/mLθ2
0,opt/π (49)

Generally, for a motor to be capable of supplementing
friction for the optimum gait, the leg velocity at touchdown,
given by Eq. (49), must be smaller than the maximum leg
velocity at touchdown l̇0,max, given by Eq. (48), for which
the motor can supplement the leg friction force. Beacause of
this, and using Eqs. (41), (48) and (49), it may be found that:

VmaxkT ge

/(
btotr + k2

T g2
e

) ≥ 2.33
√

ghd (50)

Eq. (50) is the condition the motor parameters must meet,
for the optimum gait to be feasible, for a given clearance
hd. Note that the condition does not include the parameters
k, m. This may be explained by the fact that the critical
factor for the motor’s ability to supplement friction is the leg
velocity at touchdown. However, at touchdown the spring

is uncompressed, so the spring stiffness k does not appear.
Also, Eq. (50) holds for a given apex height, for which
the leg velocity at touchdown is independent of the robot
mass m.

VIII. CONCLUSIONS
In this work, increasing the energy autonomy of a one-legged
robot was studied. It was shown that there exists a particular
passive gait, of all those possible, that leads to the least
dissipated energy per meter of travel. Using the SLIP model
to approximate robot dynamics, an optimal gait analytical
prediction was found. Both mechanical and electrical losses
were considered. The analytical prediction for the optimal
gait is fairly accurate, with a simple form that correctly
predicts the qualitative effect of all parameters. The accuracy
of the prediction has been verified with full realistic robot
model simulations. A model of a torque-limited actuator was
included, to predict which gaits are possible in practice and
to determine whether the optimal gait can be achieved with a
given motor. Finally, a condition was derived that describes
motor suitability for a given apex height and optimum gait.

Acknowledgements
Support by the State Scholarships Foundation (IKY), and the
PENED 03 Program of the Hellenic Secretariat for Research
and Technology is acknowledged.

References
1. M.H. Raibert, Legged Robots That Balance (MIT Press.

Cambridge, MA, 1986).
2. W.J. Schwind and D.E. Koditchek, “Control of Forward

Velocity for a Simplified Planar Hopping Robot”, Proc. of
the 1995 IEEE Int. Conf. on Robotics & Automation, Nagoya,
Aichi, Japan (1995) pp. 691–696.

3. J. Hodgins, “Legged Robots on Rough Terrain: Experiments
in Adjusting Step Length”, Proc. of the 1988 IEEE Int. Conf.
on Robotics & Automation, Philadelphia, Pennsylvania (April,
1988) pp. 824–825.

4. T. McGeer, “Passive dynamic walking”, Int. J. Robotics
Research 9(2), 62–82 (April, 1990).

5. J.H. Park and K.D. Kim, “Biped Robot Walking Using Gravity-
Compensated Inverted Pendulum Mode and Computed Torque
Control”, Proc. IEEE Int. Conf. on Robotics & Automation,
Leuven, Belgium (1998) pp. 3528–3533.

6. S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi and H. Hirukawa,
“The 3D Linear Inverted Pendulum Mode: A simple modeling
for a biped walking pattern generation”, Proc. of the 2001
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Maui,
Hawaii, USA (Oct.-Nov., 2001) pp. 239–246.

7. S. Talebi, I. Poulakakis, E. Papadopoulos and M. Buehler,
“Quadruped Robot Running With a Bounding Gait”, Proc.
of the Seventh Int. Symposium on Experimental Robotic
(ISER’00), Honolulu, Hawaii (2000) pp. 281–289.

8. I. Poulakakis, E. Papadopoulos and M. Buehler, “On the Stable
Passive Dynamics of Quadrupedal Running”, Proc. of the 2003
IEEE Int. Conf. on Robotics & Automation, Taipei, Taiwan
(Sept., 2003) pp. 1368–1373.

9. R. Simmons and E. Krotkov, “An Integrated Walking System
for the Ambler Planetary Rover”, Proc. of the 1991 IEEE
Int. Conf. on Robotics & Automation, Sacramento, California
(April, 1991) pp. 2086–2091.

10. M. Buehler, “Dynamic Locomotion with One, Four and Six-
Legged Robots”, Journal of the Robotics Society of Japan
20(3), 15–20 (2002).



498 Hopping robot

11. M. Buehler and E. Koditchek, “Analysis of a Simplified
Hopping Robot”, Proc. of the 1988 IEEE Int. Conf. on Robotics
& Automation, Philadelphia, Pennsylvania (April, 1988)
pp. 817–819.

12. M. Ahmadi and M. Buehler, “Stable Control of a Simulated
One-Legged Running Robot with Hip and Leg Compliance”,
IEEE Transactions on Robotics & Automation 13, No. 1, 96–
104 (February, 1997).

13. D. McMordie, C. Prahacs and M. Buehler, “Towards a dynamic
actuator model for a hexapod robot”, Proc. of the 2003
IEEE International Conf. on Robotics and Automation (2003)
pp. 1386–1390.

14. R.M. Ghigliazza, R. Altendorfer, P. Holmes and D.E.
Koditchek, “A Simply Stabilized Running Model”, SLAM-
Journal of Applied Dynamical Systems 2, No. 2, 187–218
(2003).

15. R.J. Full and D.E. Koditchek, “Templates and Anchors:
Neuromechanical Hypotheses of Legged Locomotion on
Land”, Journal of Experimental Biology 202, 3325–3352
(1999).

16. R. Dummer and M. Berkemeier, “Low-Energy Control of a
One-Legged Robot with 2 Degrees of Freedom”, Proc. of the
2000 IEEE Int. Conf. Int. Conf. on Robotics & Automation,
San Francisco, CA (April, 2000) pp. 2815–2821.

17. W.J. Schwind and D.E. Koditchek, “Approximating the Stance
Map of a 2-DOF Monoped Runner”, Journal of Nonlinear
Science 10, 533–568 (2000).

18. Kees van den Doel and D.K. Pai, “Performance Measures for
Locomotion Robots”, Journal of Robotic Systems 14(2), 135–
147 (1997).

19. M.F. Silva, J.A.T. Machado and A. M. Lopes, “Energy Analysis
of Multi-Legged Locomotion Systems”, Proc. CLAWAR’
2001 – 4th International Symposium on Climbing and Walking
Robots (2001) pp. 143–150.

20. A. Muraro, C. Chevallereau and Y. Aoustin, “Optimal
Trajectories for a Quadruped Robot with Trot, Amble and
Curvet Gaits for Two Energetic Criteria”, Journal of Multibody
System Dynamics 9, 39–62 (2003).

APPENDIX A
For small θ , the equations of motion in Eq. (13) may be
linearized:

Lθ̈ − gθ = 0

ml̈ + k(l − L) + mg = 0
(A1)

The solutions to Eqs. (Al) are:

θ = cle
a6t + c2e

−a6t

l(t) = mgcos(
√

k/m · t)/k + l̇0
√

m/k · sin(
√

k/m · t)

+ L − mg/k
(A2)

where:

a6 = √
g/L

c1 = θ0/2 + θ̇0/2a6

c2 = θ0/2 − θ̇0/2a6

(A3)

Differentiating l(t) in Eq. (A2), yields:

l̇(t) = l̇0cos(
√

k/m · t) − g
√

m/ksin(
√

k/m · t) (A4)

Halfway during a symmetric stance phase, it is:

l̇(Ts/2) = 0 (A5)

Solving Eq. (A5) for Ts by using Eq. (A4), yields:

Ts = 2
√

m/k(−arctan(−l̇0
√

k/m/g) + π) (A6)

Because k/m 	 1s−2, the following are true:

arctan(−l̇0
√

k/m/g) ∼= π/2 (A7)

Ts = π
√

m/k (A8)

APPENDIX B
For a symmetric motion, the following is true:

θ(Ts/2) = 0 (B1)

Taking into account Eq. (A2) and Eq. (Bl), we have:

a6θ0/θ̇0 = (
1 − e2 · a6Ts/2

)/(
1 + e2 · a6Ts/2

)
(B2)

Taking into account Eq. (A8), Eq. (B2) is of the form:

a6θ0/θ̇0 = (1 − e2x)/(1 + e2x) = f1(x) (B3)

where x = π
√

mg/(4kL). For realistic cases, the max value
of x is 0.35. Plotting f1(x) and f2(x) = −x in Fig. 9, it is
seen that f1(x) ≈ f2(x). Due to this, and substituting for x,
it is:

θ̇ = −θ02
√

k/(mπ2) (B4)
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Fig. 9. Functions f1 and f2.


