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Abstract—This paper describes a method for planning six 
DOF trajectories for an underactuated unmanned airship 
and for computing the open-loop controls. Beginning with a 
smooth inertial 3D trajectory to be tracked by the center of 
mass of the vehicle, the proposed algorithm, based on the 
dynamics of the system, provides the 3D corresponding 
body-fixed linear and angular velocities and the vehicle 
orientation, yielding a feasible 6 DOF trajectory. The 
derived trajectory is further used to compute the three 
available open-loop controls. Since the variables of the 
trajectory are consistent with the vehicle’s dynamics, a 
closed-loop tracking controller can significantly improve its 
performance incorporating these variables. Furthermore, 
examining the resulting open-loop controls, the designer can 
judge about the capability of the actuators to meet the 
requirements of tracking the specific trajectory.  

I. INTRODUCTION 
Unmanned, robotic (autonomous) airships, see Fig. 1, 

belong to the category of Unmanned Air Vehicles (UAVs) 
that play an increasingly significant role in surveillance, 
monitoring, and transportation [1]. They are employed in 
various missions such as observation of urban areas or the 
battlefields, fire detection, rescue, science, even in 
planetary exploration [2]. They also present a useful 
experimental platform for testing inertial navigation, 
positioning, and visual sensors, actuators and complex 
control algorithms since almost always such vehicles are 
underactuated, i.e., they have more degrees of freedom 
than control inputs. Although robotic airships have some 
advantages against the rest of the UAVs at low speeds and 
low altitude applications [3], they too present a 
challenging control problem: underactuation imposes non-
integrable acceleration constraints. Furthermore, their 
kinematic and dynamic models are highly nonlinear and 
coupled, making control design a hard task. 
Underactuation rules out the use of customary control 
schemes e.g. full state-feedback linearization, and the 
complex (aero)dynamics excludes designs based solely on 
kinematic models. 

Trajectory tracking is a frequently assigned task to a 
robotic airship which requires the design of control laws 
that guide the vehicle to track an inertial trajectory, i.e., a 
3D path on which a time law is specified. The 
performance of trajectory tracking controllers is greatly 
improved when trajectory planning has been designed 
previously.  

The goal of trajectory planning is to generate the  
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Figure 1.  The robotic airship with the controls and motion variables. 

reference inputs to the motion control system which 
ensures that the vehicle executes the planned trajectory. 
While several researchers have addressed the hovering, 
visual, and trajectory tracking control problem for UAVs 
and robotic airships, see for example [4], [5], [6], to the 
best of the authors’ knowledge, there is no known work 
that studied the trajectory planning for underactuated 
UAVs in 3D motion. A first result on the subject of 
trajectory planning was presented in our previous works, 
[7] and [8], where we studied the problem of trajectory 
planning for an Autonomous Underwater Vehicle.  

In this paper, we describe a method for planning six 
DOF trajectories for an underactuated unmanned airship 
and for computing the open-loop controls. Beginning with 
a smooth inertial 3D trajectory to be tracked by the center 
of mass (CM) of the vehicle, the proposed algorithm, 
based on the dynamics of the system, provides the 3D 
corresponding body-fixed linear and angular velocities 
and the vehicle orientation, yielding a feasible 6 DOF 
trajectory. The derived trajectory is further used to 
compute the three available open-loop controls required to 
follow the trajectory. Finally, simulation results are 
presented to demonstrate the effectiveness of the 
algorithm. 

II. AIRSHIP DYNAMICS AND KINEMATICS 
In this section, the kinematic and dynamic equations of 

motion for a robotic airship moving in 3D space are 
presented. 

To describe the kinematics, two reference frames are 
employed, the inertial reference frame { }I  and a body-
fixed frame { }B , see Fig. 1. As shown in this figure, the 
origin of { }B  frame coincides with the airship center of 
mass (CM) while the center of buoyancy (CB) is on the 
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negative bz  body axis for static stability. Using the 
standard notation of aeronautical engineering, the general 
motion of the airship in 6 DOF can be described by the 
following vectors: 

 1 2 1 2

1 2 1 2

[ , ] ;    [ , , ] ;    [ , , ] ;

[ , ] ;    [ , , ] ;    [ , , ] ;

T T T T T

T T T T T

x y z

u w p q r

φ θ ψ
υ

= = =

= = =

η η η η η

v v v v v
 (1) 

In (1), 1η  denotes the inertial position of the CM and 

2η  the orientation of { }B  – in terms of Euler angles – 
with respect to the { }I  frame. Vector 1v  denotes the 
linear velocity of the CM and 2v  the angular velocity of 
{ }B  with respect to { }I  frame, both expressed in the 
body-fixed { }B  frame. In guidance and control 
applications, for the representation of rotations, it is 
customary to use the x − y − z  (roll-pitch-yaw) 
convention defined in terms of Euler angles adopted in the 
present work or quaternions. Hence, the velocity 
transformation between { }B  and { }I  frames is expressed 
as 

 1 1 2 1( )=η J η v  (2) 

where 

 1 2( )
c c s c c s s s s c c s
s c c c s s s c s s s c

s c s c c

ψ θ ψ φ ψ θ φ ψ φ ψ φ θ
ψ θ ψ φ φ θ ψ ψ φ θ ψ φ

θ θ φ θ φ

− + + 
 = + − +
 − 

J η  (3) 

The body-fixed angular velocities and the time rate of 
the Euler angles are related through 

 2 2 2 2( )=η J η v  (4) 

where 

 2 2

1
( ) 0

0 / /

s t c t
c s

s c c c

φ θ φ θ
φ φ

φ θ φ θ

 
 = − 
  

J η  (5) 

where sin( )s⋅ = ⋅ , cos( )c⋅ = ⋅ , tan( )t⋅ = ⋅ . 
The dynamic model of the airship used for the 

illustration of the method is taken from the study of [3] 
and [4]. It is a simplified model developed for control 
design tasks, which captures the main dynamical 
characteristics of an unmanned airship moving in 3D 
space, see Fig. 1. Modeling inaccuracies can be treated as 
small and bounded disturbances that along with external 
disturbances, such as air gusts, can be compensated for by 
a robust closed-loop tracking controller. The vehicle is 
underactuated, i.e., it has less control inputs than the 
number of DOF. Regarding the means of propulsion and 
actuation the following features are used: 

Aerodynamic control surfaces like rudders and 
elevators to control yaw and pitch motions respectively, 
Fig. 1. 

Vectored thrust, meaning the rotation of the propulsion 
units about an axis parallel to the body– by  axis so as to 
provide thrust in the direction required. In this way, pitch 
torque control is achieved, see Fig. 2a. To control yaw 
torque, differential thrust is used i.e., different magnitudes 
of the thrust of the side propellers cause a moment about 
the bz  body axis, Fig. 2b.  
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Figure 2.  (a) Rotation of the thrust by an angle γ  for surge force and 
pitch torque control. (b) Yaw torque control using differential thrust. 

Bow and/or stern thrusters are also used for landing 
and docking operations. 

Below a certain speed limit, aerodynamic surfaces are 
not effective for control purposes. Then, motion control is 
achieved by the appropriate use of the propellers: 
ascending or descending is realized by vectoring the thrust 
down or up, and heading change by using differential 
thrust in the port and starboard propeller. 

In the following equations of motion, the three control 
variables are propX  for surge propulsion, propM  for pitch 
torque, and propN  for yaw torque, [3]. A force propZ  in the 

bz  axis also appears but its magnitude is very small for 
normal operating conditions where γ  is small. In any case 
this is a small and bounded disturbance on the nominal – 
control – model that can be compensated for using a 
closed loop controller. These terms are functions of the 
geometrical arrangement of the propulsive units around 
the body axes as depicted in Fig. 2. The equations that 
describe the dynamic model are: 

 11 22 33

( )s
u

prop

m u m r m wq X u
B mg X

υ
θ

= − +
+ − +

 (6a) 

 22 33 11 ( )m m wp m ur Y mg B c sυυ υ θ φ= − + + −  (6b) 

 33 11 22 ( )wm w m uq m p Z w mg B c cυ θ φ= − + + −  (6c) 

 11 22 33 22 33( ) ( ) p

CB

I p I I qr m m w K p
z c s B

υ
θ φ

= − + − +

+
 (6d) 

 22 33 11 33 11( ) ( ) q

CB prop

I q I I pr m m uw M q

z s B Mθ
= − + − +

+ +
 (6e) 

 33 11 22 11 22( ) ( ) r propI r I I pq m m u N r Nυ= − + − + +  (6f) 
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A brief explanation of the various terms in (6) follows: 
m  is the vehicle’s mass and B  is the buoyancy force 
acting on the CB. The constant CBz  is the z − coordinate 
of the CB; iim , 1,...,3i =  are the combined mass and 
added mass terms; iiI , 1,...,3i =  are the combined 
moments and the added moments of inertia terms; uX , 
Yυ , wZ , pK , qM , and rN  are the drag, force and 
moment terms. The lack of control actuation in sway υ , 
heave w , and roll p  motions renders the system 
underactuated. 

III. TRAJECTORY PLANNING 
In this section, we describe the trajectory planning 

methodology, i.e., the algorithm that maps an inertial 
trajectory of the 3D space to body-fixed velocities and 
orientation. The only restriction on the inertial trajectory is 
that it must be sufficiently “smooth”, i.e., three times 
differentiable with respect to time. 

A. Inertial Trajectory Geometry 
We choose the CM of the vehicle as the point of 

interest. Let us assume that the trajectory which must be 
tracked by this point is given as a time function of the 
inertial variables Rx , Ry , Rz  and their time derivatives up 
to the third order. The subscript “R” indicates a reference 
variable. The position and the magnitude of the velocity 
vector of a point P  on the trajectory are given by 

 [ , , ]T
P R R Rx y z=s  (7) 

 2 2 2|| || || ||p p P R R Rv x y z= = = + +v s  (8) 

Of great importance in the derivation is the concept of 
an orientation frame associated with the curve 
corresponding to the desired trajectory. To every point of 
the above curve, we can associate an orthonormal triad of 
vectors, i.e., a set of unit vectors that are mutually 
orthogonal, namely, the tangent te , the normal ne , and the 
binormal be , see Fig. 3. Properly arranging these vectors 
in a 3 3×  matrix, we obtain a description of the curve 
orientation, [9]. The corresponding reference frame is the 
Frenet-Serret one. The unit vectors are then defined as 

 /t P Pv=e s  (9a) 

 ( ) / || ||b P P P P= × ×e s s s s  (9b) 

 ( ) / || |||| ||n b t P P P P P P= × = × × ×e e e s s s s s s  (9c) 

In the definition of a frame associated with the curve, 
we use the original definition of the Frenet frame for 
counterclockwise “rotating” curves; in the case of a 
clockwise rotating curve, the z − axis of the Frenet frame 
points in the opposite direction – upwards – than the 
inertial { }I  frame. So, in order to define small relative 
rotation angles for the orientation of a vehicle rotating 
clockwise and having its bz −  axis pointing downwards, 
we define a reference frame, associated with the curve as  
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Figure 3.  The inertial, the Frenet, the body and the curve frames. 

previously, but rotated with respect to the Frenet by an 
angle of 180  about the x − axis of the Frenet frame, Fig. 
3. Collectively, we denote the Frenet and the rotated frame 
as the “curve” frame { }C . 

According to the notation of rotational transformations 
used in robotics literature [10], we can express the 
coordinates of a vector given in the curve frame { }C  to 
the { }I  frame with the matrix 

 [ ]I
C t n b=R e e e  (10a) 

for a counterclockwise rotation, and the matrix 

 (180 )[ ]I
C x t n b=R R e e e  (10b) 

for clockwise rotation. Also, we shall use the fact that 

 ( )C I T
I C=R R  (11) 

In aeronautical applications, it is more convenient to 
express the various velocities in the current – body – 
frame, [11]. Thus, the angular velocity of the { }C  frame 
with respect to the { }I  frame expressed in { }C  frame is 
given by 

 C C I
I C=Ω R R  (12a) 

where CΩ  is a skew-symmetric matrix containing the 
components of the angular velocity vector, and defined as 
follows: 

 
3 2

3 1

2 1

0
0

0

C C

C C C

C C

ω ω
ω ω
ω ω

 −
 = − 
 − 

Ω  (12b) 

From (12b), we collect the components in a vector: 

 1 2 3[ , , ] (traj., variables)C
C C C C T
I ωω ω ω= =ω f  (13) 

where “ (traj., variables)Cωf ” means a vector function of 
the first, second, and third derivatives of the trajectory 
variables Rx , Ry , Rz . 
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B. Airship’s Dynamics During Tracking 
Consider next the dynamics of the robotic airship when 

its CM tracks accurately the motion of the point P , and 
let Ru , Rυ , Rw , Rp , Rq , Rr  denote the reference body-
fixed velocities. The magnitude of the total linear velocity 
vector of the CM is given by 

 2 2 2|| || || [ , , ] ||T
R R R R R R R Rv u w u wυ υ= = = + +v  (14) 

As far as the reference orientation [ , , ]T
R R Rφ θ ψ  of the 

body-fixed { }B  frame with respect to the inertial { }I  
frame is concerned, we have the following: Due to the 
dynamics, the vehicle { }B  frame does not coincide with 
the curve frame { }C , but undergoes a further rotation 
with respect to the latter, see Fig. 3, to eventually 
coincide with the reference – desired – { }R  frame that 
provides the orientation consistent with the airship 
dynamics. Therefore, when the airship CM tracks the 
curve, the body frame { }B  coincides with the reference 
frame { }R .  

The rotation of the { }B  frame from the { }C  frame to 
the { }R  frame can be expressed using customary 
aeronautical notation by considering the sideslip angle β  
and angle of attack α , [12]: 

 1sin ( / )R Pvβ υ−=  (15) 

 1tan ( / )R Rw uα −=  (16) 

The overall rotation is composed by a rotation about 
body- bz  axis through the angle β− , followed by a 
rotation about body- by  axis through the angle α  and is 
expressed by the matrix. 

 ( ) ( )R T T
C y zα β= −R R R  (17) 

where the matrix R
CR  represents the rotation between the 

{ }C  and the reference or desired frame { }R . The angular 
velocity of the { }R  frame with respect to the { }C  frame, 
expressed in { }R , is computed by  

 R R C
C R=Ω R R  (18) 

The associated angular velocity vector is as before  

 1 2 3[ , , ] (traj., body variables)R
R R R R T
C ωω ω ω= =ω f  (19) 

where “ (traj., body variables)Rωf ” means a function of 
the derivatives of Rx , Ry , and Rz  up to the second order 
as well as of velocities Ru , Rυ , Rw  and their first order 
derivatives. 

Finally, the reference orientation between the inertial 
{ }I  frame and the reference { }R  frame is given by  

 R R C
I C I=R R R  (20) 

From (20), we can extract the reference angles using the 
following, [10] 

 23 33atan2( , )R r rφ =  (21a) 

 2 2
13 23 33atan2( , )R r r rθ = − +  (21b) 

 12 11atan2( , )R r rψ =  (21c) 

where ijr  denotes the ij  element of R
IR . 

During tracking, the magnitude of the tangent vector to 
the trajectory Pv  equals the magnitude of the vehicle’s 
velocity vector Rv . From (8) and (14) it is: 

 2 2 2 2 2 2
P R R R R R R Rv v x y z u wυ= ⇒ + + = + +  (22) 

From (22) and (8), the reference surge velocity is  

2 2 2 2 2 2 2 2
R R R R R R P R Ru x y z w v wυ υ= ± + + − − = ± − −  (23) 

where “ ± ” indicates that Ru  may be positive or negative 
depending on the direction of the motion; for the 
remainder we assume forward motion with 0Ru > .  

Differentiating (23) with respect to time yields,  

 2 2 2( ) /R P P R R R R P R Ru v v w w v wυ υ υ= ± − − − −  (24) 

where Pv  is given by a simple differentiation of (8). In 
this way, we have also expressed Ru  and Ru  by the 
trajectory variables and by Rυ , Rυ , Rw , Rw .  

Now, the reference angular velocities are obtained by 
the succession of the angular velocity of the { }C  frame 
with respect to the { }I  frame and the angular velocity of 
the reference orientation frame { }R  with respect to { }C , 
all expressed in { }R : 

 [ , , ]R R R C T
I C C I R R Rp q r= + =ω ω R ω  (25) 

Substituting in (25), the quantities from (13), (17) and 
(19) and taking into account (23) and (24), we obtain to 
express the body-frame reference angular velocities as 
functions of the trajectory variables as well as of the body-
fixed variables Rυ , Rυ , Rw , Rw .  

Considering now the two unactuated dynamical 
equations (6b) and (6c) during tracking, and substituting 
in them the expressions (23), (24), and (25) that give Ru , 
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Ru , Rp , Rq , and Rr , a system of two coupled nonlinear 
time-varying differential equations results: 

 

,

( , , , , , , , ,
, , , , , ),

( 0)

R R R R R R R R R

R R R R R R

R o R

f x x x x y y y y
z z z z w

t

υυ
υ

υ υ

=

= =
 (26) 

 

,

( , , , , , , , ,
, , , , , ),

( 0)

R w R R R R R R R R

R R R R R R

R o R

w f x x x x y y y y
z z z z w

w w t
υ

=

= =
 (27) 

Since the time-varying inputs Rx , Ry , Rz , and their 
derivatives are known, numerical integration of (26) and 
(27) yields the values of Rυ  and Rw  as functions of time. 
The actual time needed for a simulated time of 1000 s is 
very fast, about 3 min , and the convergence to the 
reference values is smooth and fast depending on the 
initial conditions.  

Having now these functions, we can go back and 
compute the rest of the reference variables: Ru  from (23), 

Rp , Rq  and Rr  from (25), and Rφ , Rθ , and Rψ  from 
(21). Therefore, at this step, all feasible trajectory 
variables are known. 

IV. OPEN-LOOP CONTROL AND SIMULATIONS 
In this section, we design an open-loop controller in 

order for the robotic airship to track a reference trajectory. 
Then, simulation results are presented to illustrate the way 
the above planning methodology applies. 

A. Open-Loop Control Inputs 
Once the body-fixed variables, i.e., linear and angular 

velocities and Euler angles, required for the airship to 
track the reference trajectory have been computed, it is 
straightforward to construct the corresponding open-loop 
controls using the dynamic model. Indeed, from (6a), (6e), 
and (6f) it is respectively: 

 , 11 22 33

( )
prop R R R R R R

u R R

X m u m r m q w
X u mg B s

υ
θ

= − +

− + −
 (28a) 

 , 22 11 33

11 33

( )

( ) ]
prop R R R R

R R q R CB R

M I q I I p r

m m u w M q z s Bθ
= + − +

− − −
 (28b) 

 , 33 22 11

22 11

( )
( )

prop R R R R

R R r R

N I r I I p q
m m u N rυ

= + − +

− −
 (28c) 

In the case of tracking with constant reference 
velocities Ru , Rq , and Rr  are zero; else, one must take 
surge acceleration from (24), and differentiate Rq  and Rr  
from (25). 

The presented trajectory planning algorithm and the 
direct resulted open-loop controller may be incorporated 
in a two-step, closed-loop, trajectory-tracking controller 
design. Forward feeding the actuators of an airship with 
the above computed open-loop controls, consistent with 

vehicle dynamics, one can design a feedback controller to 
take care of the small remaining errors. Such a controller 
will not require high gains and, hence, will have an 
improved performance. A further advantage of the method 
is the ease of checking the possibility that the computed 
controls result in actuator saturation; if this is the case, the 
designer can replan the trajectory choosing slower 
functions of time for the representation of the inertial 
curve. Moreover, we observe that this methodology can be 
applied to vehicles with similar dynamic models and 
actuation, such as unmanned airplanes and helicopters, 
moving in 3D space. 

B. Simulation Results 
In this section, we present an example of trajectory 

planning and open-loop controlled motion. The CM 
inertial trajectory is a helix given by: 

 ( ) 30cos(0.01 )Rx t t=  (29a) 

 ( ) 30sin(0.01 )Ry t t=  (29b) 

 ( ) 0.025Rz t t=  (29c) 

Differentiating (29) three times and following the above 
designed trajectory planning procedure, provides the 
reference variables which are depicted in the following 
diagrams in dotted lines; the actual variables are given in 
solid lines. Since there is no error feedback in the open-
loop controls, we must start the simulation using the 
reference initial values for the airship dynamics in order 
for the application to make sense. 

In Fig. 4, the planned reference and the generated path 
are depicted. In Fig. 5, the angles α  and β  computed 
from (15) and (16) are shown. In Fig. 6, the constant 
values of the surge force and the torques in pitch and yaw 
motions computed from (28) are shown. Fig. 7 shows a 
perfect inertial path following of the reference position for 
the CM of the airship. As far as the reference orientation 
concerns, negligible errors are only present in the roll 
Euler angle. Such errors are attributed to numerical errors 
and to inaccurate setting the initial values for the 
simulation. Fig. 8 depicts reference and resulting linear 
and angular velocities. It can be seen that they match each 
other very well. 
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Figure 4.  The actual and the reference 3D path. 
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Figure 5.  The angles α  and β . 
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Figure 6.  Open-loop control inputs. 
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Figure 7.  Inertial position variables of the CM and the Euler angles. 
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V. CONCLUSIONS 
In this paper, we described a method for planning six 

DOF trajectories for an underactuated unmanned airship 
and for computing the open-loop controls. Beginning with 
a smooth inertial 3D trajectory to be tracked by the center 
of mass of the vehicle, the proposed algorithm, based on 
the dynamics of the system, provides the 3D 
corresponding body-fixed linear and angular velocities 
and the vehicle orientation, yielding a feasible 6 DOF 
trajectory. The derived trajectory is further used to 
compute the three available open-loop controls required to 
follow the trajectory. Finally, simulation results are 
presented to demonstrate the effectiveness of the 
algorithm. 

For future work, we consider the design of a robust 
closed-loop controller in order to counteract parametric 
uncertainties and environmental disturbances. Also, to 
avoid Euler angle representational singularities, the 
representation of kinematics by means of quaternions will 
be considered. 
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