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Abstract

Friction is responsible for several servomechanism
problems, and their elimination is always a challenge
for control engineers. In this paper, feedback model-
based compensation of friction is used for
servomechanism set point and tracking tasks. Basic
friction models are tested and their influence on system
response is examined using describing function analysis.
Analytical predictions are compared to simulation and
experimental results. Various control laws using friction
compensation were compared experimentally. Results
showed that for both types of tasks, the best response is
obtained by a model-based control law with friction
compensation using the general kinetic friction model.

1. Introduction

Friction is one of the greatest obstacles in high precision
positioning systems. It can cause steady state and
tracking errors, while it may result in limit cycles.
Therefore, its influence on the response of systems, such
as a servomechanism, must be considered seriously.

A number of methods of friction compensation
have been proposed in the past including feedback and
feedforward compensation, [1]. These methods rely
upon the exact knowledge of the friction model and its
parameters making friction identification necessary.

Off-line identification of friction is described in [2],
[3] and [4]. In [2] a very simple technique is suggested
in which static friction is measured by a number of
breakaway experiments. This technique was applied to a
complex mechanism, with the addition of measuring the
static friction as a function of position, [3]. To find the
friction-velocity relationship, several constant velocity
motions were used in [3], [4].

Many friction models have been proposed that
differ on the friction effects that are modeled in
lubricated contact. These models can be divided into
three categories. The first one includes the steady state
friction models, where friction is a function of velocity,
[1], [5], [6], and [7]. The second one includes time-
dependent friction models, where friction effects, such
as rising static friction, are included, [1]. Finally, the
third one includes state friction models, which embody
the natural mechanism of friction generation, [1], [5].

Kinetic friction models, such as the classical or the
general kinetic friction models, are simpler than other
models, [1], [5], [7]. Although these do not include
dynamic friction effects, they tend to be sufficient for
large displacement tasks, [7]. In addition, because they
are simpler and not based on complex algorithms, they

do not require large computing power, [7].
A problem with friction compensation is that

always there may be a slight mismatch that may affect
positioning and tracking accuracy or cause oscillations.
Therefore, the effect of the mismatch to system response
must be studied. Single-Input Describing Function
Analysis (SIDF) is one of the basic tools for analyzing
systems with nonlinearities such as friction, [1].
According to [1], two methods exist in which describing
function analysis can be applied, i.e. the memoryless
element construction and the integrated friction/plant
construction. The conditions for limit cycle generation,
according to the first method, in the case of PID control
with Coulomb friction and with Coulomb plus static
friction are examined in [8]. The validity of these results
is also examined in [1], [8] and [10]. Moreover, the
conditions needed to avoid limit cycles resulting from
overcompensation when Coulomb friction is used as the
basis for friction compensation are examined in [9].

In this paper, the classic Coulomb friction model
and the general kinetic friction model are used for
reducing steady state and tracking errors in a
servomechanism control system. Steady state friction
parameters are identified experimentally as a function of
current position and velocity. Next, SIDF analysis is
employed to predict limit cycle generation due to
friction compensation, and design guidelines on the use
of friction compensation are established. The validity of
the quantitative predictions of this analysis is validated
with simulation and experimental results.

Finally, friction compensation is employed in servo
tasks such as step input and tracking commands.
Various classical, model-based and friction
compensating control laws are implemented and
compared experimentally. Results show that for both
types of commands, the best response is obtained by a
model-based control law with friction compensation
based on the general kinetic friction model.

2. Basic Friction Models

Steady state friction models, which are also called
Òstatic friction modelsÓ or Òkinetic friction modelsÓ,
compute friction torque as a function of slowly varying
velocity. The classical friction model is described by the
following equation:

T T bf C= ( ) +sgn ˙ ˙θ θ (1)

where TC  is the Coulomb friction level, b  is the viscous
friction coefficient, and
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If static friction is added to this model, the classical
friction model is complete. According to this model,
during stick, friction force can be modeled as a function
of the external force, i.e.,
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where Te  is the external torque, and Ts  is the breakaway
torque, which is the limit between static friction and
kinetic friction. The classical elements of friction can be
combined in different ways, as shown in Fig. 1(a). All
combinations are still considered classical models.

Fig. 1: (a) The classical friction model, (b) The General
Kinetic Friction (GKF) model.

However, the friction force which rises from the
breakaway level to the Coulomb level is not
discontinuous, but it is a function of velocity, [1]. This
continuous dependence of friction on velocity is usually
called the Stribeck curve or the General Kinetic Friction
(GKF) model, see Fig. 1(b), and is described by,
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A number of different parameterizations of this
curve are quoted in [1], one of which is given below,

T T T T bf C s C str
˙ exp ˙ ˙ sgn ˙ ˙θ θ θ θ θ( )= + −( ) −( )[ ]⋅ ( )+

2
(5)

In general, kinetic friction models cannot clearly
distinguish the region of zero velocity, which is of vital
importance during experiments. A solution to that
problem was proposed by Karnopp, [6]. In particular, he
developed a model, which specifies an interval in which
the velocity can be considered as zero, thus avoiding the
switching between sticking and sliding.

3. Friction Identification

To be able to test experimentally control laws in the
presence of friction, an experimental servomechanism
device was used. Motion is achieved by means of a
roller-screw driver with a fixed centered carriage, see
Fig. 2. A 48V, 70W DC motor with a torque constant of
K Nm AT = 0 105. /  is driven by a PWM current mode
amplifier with gain K A Vamp = 0 4. / . The motor is
equipped with a 500 count/rev encoder, resulting in a

42ím carriage positional accuracy. To avoid
differentiation problems, a small DC motor, with a
back-emf constant K V radgen = × −4 46 10 3. sec/ , is used
as a tachometer feeding back screw angular velocity,
filtered by a 4 Hz low pass filter. The encoder and
tachometer signals are read by a motion controller card
(GALIL DMC-1700), interfaced to a 500 MHz Pentium
III PC running the QNX real-time operating system.

Fig. 2: Servomechanism configuration, including
sensors, amplifier and controller.

Two different experiments were designed in order
to identify friction parameters as a function of carriage
position; the first one was designed to yield the
breakaway friction torque, while the second one to yield
the steady state friction parameters. The experiments
were conducted in an automated and unattended fashion
during servomechanism idling time.

In the first experiment, the carriage was positioned
at one of the sides of the roller-screw driver. Via a
control program, the control voltage was increased
gradually at a small step of 10 mV per 1 ms. When the
encoder read a very small displacement (set at 10
encoder counts) the position and static control voltage
were recorded. After the carriage came to rest for 20 s, a
new experiment was initiated. When the carriage
reached the other side of the roller-screw driver, the
direction of the motion reversed. In this way, the static
friction level for the other direction of motion was also
measured.

In the second experiment, the control voltage for a
constant carriage velocity motion was measured as a
function of carriage position. The constant velocity was
achieved with a simple PD controller. Several constant
velocities were used and the mean values are shown in
Fig. 3. The zero-velocity control voltages (currents)
were obtained by the previous experiment.

Fig. 3: Mean control voltage for several velocities.

Due to the low sensor accuracy, very low constant
velocities cannot be easily achieved and the friction rise
curve in this region (boundary and partial lubrication
regime, [1]) is not distinguishable. Nevertheless, the
friction fall can be considered to be exponential.

Plots such as the one in Fig. 3 were obtained for a
number of closely located carriage positions, by
measuring control voltages (currents) when the carriage
was passing through the position of interest. Curve
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fitting the experimental points, with the kinetic friction
models described in Section 2, can be done with the
minimum error only for velocities lower than
approximately 5000 count/sec because of a system
nonlinearity at this velocity. These parameters are
depicted as a function of carriage position accompanied
with the standard deviation, see Fig. 4. As shown in this
figure, friction parameters are slightly different between
the positive and negative directions of motion.

Fig. 4: Friction parameters and their standard
deviation versus position.

Finally, the effective inertia of the system was
estimated from its transient response. To a good
approximation, the open loop system is a first order
system when its output is velocity. When the input
signal is a step voltage, then the inertia can be measured
from the time constant of the system and its viscous
friction coefficient. Ten transient step response
experiments were executed which yielded the following
mean value of inertia,

ˆ .J Kg m= × −2 14 10 4 2 (6)

4. Limit Cycle Analysis and Prediction

Before using friction compensation, one must analyze
its effects in a closed-loop system and avoid situations
in which this compensation may result in adverse
response characteristics, such as limit cycles. To this
end, SIDF analysis is employed.

Fig. 5 depicts the block diagram of a typical closed-
loop servomechanism system in which friction
compensation has been added. In this system, feedback
consists of a state-feedback (PD) part and of an on-line
model-based friction compensation term, Tf .

It is assumed here that both the plant friction, Tf ,
and the friction compensation term, Tf , are described by
the classic Coulomb friction model, given by Eq. (1).

To test for the existence of limit cycles, a SIDF
approximation for the friction nonlinearity is used,

N X X( ) /= 4 π (7)

where N X( )  is the describing function of sgn( )θ , and X
is the associated amplitude of oscillation, [11]. Using
Eq. (7) and the block diagram in Fig. 5, the closed-loop
characteristic equation is found to be

Js b T N X K K K s K K KC d amp T p amp T
2 0+ + ( ) +( ) + =∆ ∆ (8)

with, ∆ ∆T T T b b bC C C= − = −ˆ , ˆ (9)

where ∆TC  is the parametric error in the level of
Coulomb friction, and ∆b  is the parametric error in the
viscous coefficient of friction.

Fig. 5: Block diagram of the system with friction
compensation and PD control.

Applying the memoryless element construction, see
[1], the non-linear part of the characteristic equation is
separated from the linear part to yield,
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If Eq. (10) is satisfied for some oscillation
frequency ω  and some amplitude X, then a limit cycle
will occur. Replacing s  with jω , and separating the
real and imaginary parts yields,
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Since the left hand-side term in Eq. (10) is always a
negative real number, and since

K K K K Jp d T amp, , , , > 0 (13)

a limit cycle will be generated if and only if

Re G T b K K Klin C d amp T{ } < ⇔ +( ) <0 0∆ ∆ (14)

According to the Routh-Hurwitz stability criterion,
the same closed loop system but without friction, is
unstable if and only if

∆b K K Kd amp T+ < 0 (15)

Thus, we may conclude that when there is no
Coulomb friction compensation or when ∆TC > 0 , a
limit cycle will be generated if and only if the system
without the non-linear part of friction is unstable. This
result applies not only in the presence of plant friction,
as suggested in [8], but also in the presence of friction
compensation terms included in Tf . Based on Eq. (14),
Table 1 is generated summarizing the conditions under
which a limit cycle will be generated.
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According to Eqs. (10), (11), and (12), the
amplitude XLC  and frequency ω LC  of the generated
limit cycle will be,

X
T

b K K K

K K K

JLC
C

d amp T
LC

p amp T= − ⋅
+( ) =4

π
ω∆

∆
, (16)

Table 1: Limit cycle generation map.

∆b > 0 ∆b < 0

∆TC > 0 Never If K b K Kd amp T< −∆ /

∆TC < 0 Always If K b K Kd amp T> −∆ /

However, according to the conditions for the
validity of the describing function predictions, see [11],
Eqs. (16) yield satisfactory results if and only if the
linear part of the system attenuates adequately the
higher harmonics.

This suggests that before drawing conclusions
regarding the behavior of the system using a SIDF, the
range of validity of the criterion must be established. To
this end, note that since the non-linearity in Eq. (7) is an
odd function, the ratio of two neighboring harmonics
will be three. This observation allows us to define a
criterion for applying the SIDF method. We define a
measure ∆G  which is equal to the difference in the
logarithmic magnitude of the linear part, given by Eq.
(11), evaluated at the basic harmonic of a limit cycle,
ω LC , and the same magnitude evaluated at the next
higher harmonic, 3ω LC ,

∆G G j G jL LC L LC= ( ) − ( )( )20 3log logω ω (17)

To examine the correlation of this measure to SIDF
predictions, extensive simulations and experiments were
carried out. Simulations took place in Matlab / Simulink
where the mean experimental values for friction
parameters were used. The input command was a step of
4000 counts. In simulations, the various values of
K K b Tp d C, , ,∆ ∆  used as well as the resulting values for
the value of the measure ∆G  were recorded. Estimates
for the real values of b  and TC  used were obtained by
multiplying the mean experimental estimates b̂  and TC ,
with a number greater than one. However, this may
result in discrepancies between the real ∆b  and ∆TC ,
and the ones used in simulation.

Table 2 displays the theoretical values for limit
cycle amplitudes and frequencies for various
combinations of K K b Tp d C, , ,∆ ∆ .

The simulation runs were also tried experimentally.
A comparison between simulation and experiments is
given in Table 3. Based on the results in Table 3, the
error of evaluating the theoretical limit cycle amplitude
and frequency for both simulation and experiment is
plotted as a function of ∆G  in Fig. 6. Table 3 and Fig. 6
show that the describing function analysis predicts well
limit cycle amplitude and frequency as long as the
logarithmic difference ∆G  is greater than 20 dB.

Experimental measurements support this conclusion
for amplitudes lower than almost 5000 count/sec or 62.8
rad/sec, where friction has been modeled with good
approximation.

Table 2: Limit cycle amplitude and frequency values
according to the describing function analysis.

Case

No
Kp

V
rad
× −10 1

Kd

V
rad

s

× −10 2

∆TC

Nm
× −10 2

∆b
Nm
rad

s

× −10 4

∆G
dB

XLC

rad
sec

ω LC

rad
sec

1 3.98 15.9 -4.14 -4.36 2.18 8.43 8.84

2 3.98 11.9 -4.14 -4.36 3.45 11.5 8.84

3 3.98 7.96 -4.14 -4.36 6.03 18.1 8.84

4 3.98 6.37 -4.14 -4.36 7.83 23.5 8.84

5 3.98 4.78 -4.14 -4.36 10.5 33.6 8.84

6 3.98 2.39 -4.14 -1.01 15.1 58.5 8.84

7 3.98 1.59 -4.14 -1.01 19.0 92.9 8.84

Table 3: Simulation and Experimental values of limit
cycle amplitude and frequency

Case

No

Simulation Experiment

XLC eX

(%)

ω LC eω
(%)

XLC eX

(%)

ω LC eω
(%)

1 11.1 31.6 1.10 87.6 11.3 34.1 6.12 30.8

2 14.0 21.7 1.76 80.1 14.6 27.0 5.84 33.9

3 18.8 3.87 5.67 35.9 21.6 19.3 6.18 30.1

4 24.5 4.26 7.18 18.8 22.9 2.55 7.11 19.6

5 31.9 5.06 8.01 9.39 27.9 17.0 8.50 3.85

6 56.1 4.10 8.59 2.82 62.9 7.52 10.4 17.6

7 90.6 2.48 8.74 1.13 127 36.7 11.2 26.7

Fig. 6: Simulation and Experimental SIDF prediction
errors for limit cycle amplitude and frequency.

It can be shown and was demonstrated
experimentally that the conditions for limit cycle
generation do not depend on the inclusion of static
friction in the friction model used. Static friction, as
described by Eq. (3), is important during the beginning
of system motion, [12].

5. Model-Based Control with Friction Models

Having the friction models and their experimentally
obtained parameters, various control laws were set-up
and evaluated for steady state and tracking response
tasks. For these laws, friction parameters in the control
laws were chosen such that limit cycles would never
occur. The first friction model employed is the Coulomb
plus viscous friction (CV) model, described by Eqs. (1)
and (2), slightly modified to deal with the difficulty of
identifying zero velocities,

ˆ ˆ ( ˙) ˆ ˙
,T T f bf cv C= +θ θ (18)
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and ∆ / sec . / secθ = =40 0 503counts rad , i.e. a very
small velocity.

The second friction model is the GKF model,

ˆ ˆ ˆ ˆ exp ˙ / ˆ̇ ˙ ˆ ˙
,T T T T f bf gk C s C str= + −( ) −











( )+θ θ θ θ
2

(20)

where f ( )θ  is defined by Eq. (19). In both models, all
parameters are functions of carriage position.

5.1 Steady-state position error

Three control schemes were used to study the reduction
of steady state position error that friction compensation
causes. These include,

� Proportional-Derivative/state feedback (PD),

T K K K e Kpd p d d p d= −( ) − = −θ θ θ θ˙ ˙ (21)

� PD with Coulomb and viscous friction model
given by Eq. (18), (PDCV),

T T Tpdcv pd f cv= + ˆ
, (22)

� PD and General Kinetic Friction model given
by Eq. (20), (PDGK),

T T Tpdgk pd f gk= + ˆ
, (23)

All control algorithms were written in C and
executed at a 4 ms loop-time under QNX. To be able to
use model-based friction compensation the controller
card PID controller was by-passed and the card was
only used for reading current position and velocity from
the encoder and tachometer, respectively, and for
sending the appropriate control voltage to the amplifier.

The PD gains for the PD law have been chosen so
that the closed-loop system is critically damped with a
closed-loop frequency equal to 17.67 rad/s,

ω ζ
ωcl

T amp p
cl

T amp d

cl

K K K

J

rad b K K K

J
= = =

+
=ˆ .

sec
,

ˆ

ˆ17 67
2

1 (24)

This yields the following gains,

K V rad K V radp pd d pd, ,. / , . sec /= =1 592 0 175 (25)

The PD gains for the other two algorithms were
selected so that, if friction is perfectly compensated, the
closed-loop system is critically damped, and the control
voltage level is about the same for all three schemes.
These constraints yielded the following gains,

K V rad K V radp d= =1 592 0 180. / , . sec / (26)

For all three schemes, the desired displacement was
θd counts= 6000  and was achieved by a triangle
velocity profile.

Typical error responses of these control schemes
accompanied with the respective control voltages are
shown in Fig. 7. Repeating the same experiments for ten
consecutive times, the mean steady-state errors for each
algorithm were computed and are shown in Table 4.

Comparing these results, it is obvious that the
PDGK control scheme is superior to the PDCV and the
classic PD control laws. In particular, the PDGK

reduces the steady state error almost 10 times compared
to a classical PD law. Also, it was observed that the
introduction of the breakaway torque to a friction model
reduces the steady state error.

Table 4: Mean value and standard deviation of steady-
state position error for the control schemes in Sect. 5.1.

PD PDCV PDGK
Mean Value 25.2 13.7 2.70

Standard Deviation 5.07 5.83 2.54

Fig. 7: Typical error responses with the respective
control voltage.

5.2 Tracking error

In order to examine the improvement of tracking error
response with friction compensation, five control
schemes were employed. The command was based on a
triangle velocity profile. Except the PD and PID, the
other laws include additional model-based estimates of
the carriage inertia to improve the tracking response
without the use of large control gains. The PD law is the
same as in Section 5.1. The remaining the laws include,

� Proportional-Derivative-Integral, (PID),

T K e K e K e t dtpid p d i

t

= + + ( )∫˙
0

(27)

� Model-Based Control, (MB),

T J K K

J K e K e

mb d d d p d

d d p

= + −( ) + −( ) =

= + +

ˆ ˙̇ ˙ ˙

ˆ ˙̇ ˙

θ θ θ θ θ

θ
(28)

� MB and Coulomb and Viscous Friction model,
(MBCV),

T T Tmbcv mb f cv= + ˆ
, (29)

� MB and General Kinetic Friction model,
(MBGK),

T T Tmbgk mb f gk= + ˆ
, (30)

The block diagram of the closed-loop system with the
various model-based schemes is shown in Fig. 8. The
PD, MB, MBCV and MBGK laws are executed under
QNX, as described in Section 5.1. The gains K Kp d,
have been chosen for critical closed-loop damping, and
for a frequency equal to 17.67 rad/s. The PID control
was executed by a loop implemented on the motion
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controller card. The PD and PID gains were chosen so
that the bandwidth and the control voltage level is at the
same level with that of the other controllers.

Fig. 8: Model-Based Control with compensation of
friction.

Typical tracking errors and control voltages are
given in Fig. 9. As shown in this figure, the PD law
results in excessive tracking errors, as expected. The
PID law tracking error is of the order of 20 counts and
shows poor tracking during the acceleration and
deceleration phases. However, it drives the steady state
error to ±1 counts, due to the integral action.

The MBGK reduces the tracking error below 10
counts throughout the motion, which is 10 times better
than the PD performance. This law is better in
comparison to MBCV at the beginning and at the end of
the trajectory because it includes the breakaway torque.
Although these laws include no integral action, they
exhibit very good performance even at the steady state.
Adding integral action to these algorithms can eliminate
the steady-state error to the level of the PID law.

Fig. 9: Typical error responses and the corresponding
control voltage.

These results show that model-based control laws
with friction compensation are beneficial for both steady
state and tracking response. Undesirable limit cycles
were eliminated by the proper choice of friction
parameters. The fact that they do not require additional
feedback makes them attractive for improving system
response with software components only.

6. Conclusions

In this paper, the classic Coulomb friction and the
general kinetic friction models as a function of position

were used for reducing steady state and tracking errors
in a servomechanism control system. Steady state
friction parameters were identified experimentally as a
function of current position and velocity. Next, SIDF
analysis was employed to predict limit cycle generation
due to friction compensation, and guidelines on the use
of friction compensation were established. The validity
of the quantitative predictions of this analysis was
demonstrated with simulation and experimental results.
Friction compensation was employed in servo tasks
such as steady-state response and tracking. Various
classical, model-based and friction compensating
control laws were implemented and compared
experimentally. Results showed that for both types of
commands, the best response was obtained by a model-
based control law with friction compensation based on
the general kinetic friction model.
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