
  

  

ABSTRACT 

Space debris removal and mitigation using space robots are 
complex missions, which require extensive analysis prior to 
launch. An important aspect during such a mission is the 
capturing task; any unsuccessful attempt may create more 
problems than solve. In this paper, the modelling of the 
impact docking between two multibody systems is studied. 
The effects of mass ratios on the resulting changes of relative 
velocities are analysed and discussed. An extension of the 
rigid body impact theory to multibody systems is developed, 
where the effect of system mass ratios to the change of the 
relative velocities is quantified, and its significance is 
discussed. Velocity requirements leading to a successful 
latching at first impact will be identified. Simulation results 
are presented that validate the proposed analytical approach. 
Future work is discussed. 

1 INTRODUCTION 

Space exploration and exploitation require strengthening of 
the human and robotic infrastructure on orbit and beyond. To 
this end, tasks like satellite servicing, orbital debris removal 
and construction of large assemblies on Earth or other 
planetary orbits will be of critical importance in the near 
future. Since On-Orbit Servicing (OOS) is expected to play a 
critical role in future of space programs, space agencies have 
already incorporated OOS activities in their roadmaps, with 
notable examples JAXA’s ETS-VII program, NASA’s 
Orbital Express and Robotic Refuelling Mission (RRM), as 
well as in a number of research activities in the Clean Space 
initiative and the Automation and Robotics group of ESA. 

However, to achieve these goals, prior extensive analysis of 
any OOS mission is required. An important part of any 
robotic servicing mission is reaching and capturing a target 
(satellite or debris). Assuming a space robot already on orbit, 
this procedure includes the phases of far and close 
rendezvous, mating (docking or berthing) - which 
incorporates capturing of some kind - and servicing, [1]. Of 
those, docking to a target by a space robotic system, 
consisting of a satellite base and of one or more manipulators 
mounted on it, is an especially demanding task, due to the 
dynamic coupling between the base and the manipulator, [2]. 

Additionally, docking and capturing procedures inevitably 
are associated with impact forces as the chaser and the target 
come into contact. This task is more challenging when the 
robotic system and the target have comparable masses. To 
 
 

minimize these forces, body impulses are minimised using 
the Extended Inertia Tensor [3]. The concepts of virtual mass 
and impedance matching of systems were studied [4]. 
Notable works focus on the problem of taking into account 
the system dynamics, post impact, e.g. [5], or prior to impact, 
e.g. by incorporating an optimal approach method [6].  

In the common case of passive docking, known as impact 
docking, impact forces are inevitable, as the chaser and the 
target come into contact in order to latch. Unsuccessful 
impacts may separate the servicer from the target, or damage 
critical subsystems. Thus the study of the behaviour of the 
participating systems under impact is vital. Therefore, two 
aspects need thorough examination: (a) adequate impact 
modelling of the procedure and (b) effects of mass and 
compliance parameters to the latching performance. 

Various modelling approaches exist in studying impacts, [7]. 
However, as the computational systems in space have limited 
capabilities, while the impact is a fast process, simplified but 
relatively accurate models are necessary. Additionally, a 
method that could predict the performance with low 
computational effort prior to the contact, should lead to 
useful insights. In view of the above, the lumped body 
analysis constitutes a useful approach; however until now its 
use was restricted to cases in which the impacting systems 
can be considered as two rigid bodies, [8], [9]. Modelling 
multibody systems during impact is still a complicated 
problem, in which the existing approaches sometimes result 
in chaotic responses, not to mention the ambiguous problem 
of multiple or simultaneous impacts, e.g. [10], [11] and [12]. 
An approach similar to the one in this paper has been 
proposed in [13]; however the authors have not recognised 
the importance of the mass ratios of the bodies involved, 
especially when all systems are free-floating and not attached 
to a solid base. 

In this work the impact docking is modelled as impact 
between two multibody systems. The effect of the masses 
during the impact is analysed to determine the post impact 
behaviour of the systems. A coefficient of effective masses is 
proposed which can help in the identification of the post 
impact behaviour prior to impact. A number of interesting 
impact cases are examined. Accordingly, the minimum 
impact velocity is determined in order to achieve latch at first 
impact; a typical mechanism for docking includes the 
existence of a spring-loaded latch. This could enable the 
design of mechanisms allowing simpler docking procedures, 
especially during autonomous OOS. Simulations are 
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presented. The integration of theory with future work is 
discussed. 

2 MODELLING BODIES UNDER IMPACT 

Although the impact docking has mainly to do with systems 
where the probe-drogue mechanisms are not connected to 
appendages (e.g. ATV docking on ISS), in this more general 
case, it is assumed that they can be attached to manipulators. 
By reference to Figure 1a, suppose that the probe and drogue 
are both connected to a manipulator, and each manipulator to 
a free-floating base. This can be simplified if examined as a 
1D case, see Figure 1b. 

More specifically, the Chaser is a two-body system, where 
mass, m1 , represents the Chaser body and mass m2 , its 
manipulator with the probe. These are connected via a 
lumped parameter system, (a spring and a damper), 
modelling the internal compliance of the system; for example 
this is the case when the manipulator is controlled by an 
impedance controller. Similarly for the Target, a system of 
two masses (m3  and m4 ) connected by lumped parameters is 
employed. Specifically for the 1D case, the latching 
mechanism is regarded to be a spring-latch system, which is 
normal to the motion of the bodies under impact. This 
method of modelling is similar to known approaches such as 
those in [1] and [12]. 

 
Figure 1. Model rationale of impact docking between 

multibody systems. 

3 EFFECT OF MASSES DURING IMPACT DOCKING 

3.1 ASSUMPTIONS 

In our analysis, the following assumptions apply, see also 
[14]: (a) Impacts are between rigid bodies. The contact area 
remains small in comparison to other dimensions. Thus the 
compliance of the contact area can be represented by using 
lumped elements of springs and dampers, (b) Impact forces 
are very high and for short duration, therefore the impulse of 
forces like gravity is negligible, (c) During an impact, it is 
assumed that there is no considerable change in the system 
configuration. This applies also in zero-g even if there is no 
fixed base, because each joint appears as fixed in a position 
during impact (“quasi-fixed”), (d) Usually the probes and 
latching mechanisms are made from metallic materials. As 
such it can be considered that the impact stiffness is at least 
one order of magnitude stiffer than the lumped parameters of 

the Chaser and the Target. (e) The elastic wave speed of the 
impact for aluminium or steel is more than 5000m s  
meaning that for an impact duration of 5 ms or more, the 
impact wave will travel more than 25m. Thus for two 
multibody systems which come into contact, this is more than 
enough to assume that the entire systems are affected by the 
impact simultaneously. 

3.2 RIGID MULTIBODY IMPACT 

The common multibody impact models use techniques, 
which are by design computationally cumbersome. Even 
though novel algorithms and current increased computational 
power can help, the computation of the impact behaviour of a 
n-body system takes time and is avoided for predicting 
impact behaviour in space systems. This is true especially in 
the case in which two multibody systems come into contact. 
For this reason a different approach is proposed which makes 
use of the rigid body theory approach, termed Rigid 
Multibody Impact (RMI). A difference from other multibody 
impact approaches is that in this one, the bodies are 
considered both as entire systems (Chaser and Target) and as 
multibody systems (two masses for Chaser, two masses for 
Target) simultaneously, see Figure 2. 

During an impact, the masses m2  and m3  come into contact, 
thus the impact characteristics are inevitably connected with 
these two bodies. However, at the same time the impact 
occurs between the total masses of the two multibody 
systems, mc  and mt  which include the masses under impact 
m2  and m3 . In other words during impact there is an 
interaction which exchanges energy between both the masses 
under impact as well as the total masses, [15]. The challenge 
is how to develop a fast procedure, with the help of which 
one can find the behaviour of the systems after impact, 
without large computational requirements. 

 
Figure 2. Concept for Multibody Contact Model. 

With the help of Figure 2, four different effective masses are 
defined. More specifically, the effective mass of the total 
Chaser and Target systems (total system effective mass) is: 

 mi,ef = mc ⋅mt (mc +mt )   (1) 
the effective mass of the bodies under impact (the masses that 
come first into contact) is 

 µi,ef = m2 ⋅m3 (m2 +m3)   (2) 
and the effective masses of each of the Chaser and Target are 

 µc = m1 ⋅m2 (m1 +m2 )   (3) 
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 µt = m3 ⋅m4 (m3 +m4 )   (4) 
By considering an impact as a half-period oscillation, (i.e. 
[1], [4]) the impulse Pimp

i  during the impact instant “i” is 
given by, 

 Pimp
i = 1+ e*( ) ⋅Urel ,i

i− ⋅µi,ef   (5) 

where Urel ,i
i−  is the relative velocity of the bodies under 

impact prior to impact “i”, and e*  is the coefficient of 
restitution – any damping characteristic and loss of energy 
during impact is connected with the latter. Note that the signs 
used in superscripts have the following meaning: “-“ 
represents a value just prior to impact and “+” represents a 
value just after the impact. Additionally, the same impulse 
Pimp
i  is developed between m2  and m3 , and between mc  

and mt ; this is due to the fact that this impulse represents the 
energy exchange which occurs between the two masses under 
impact, which also are parts of their corresponding systems 
(Chaser or Target). 

Let us now define the relative velocity between the systems 
Urel ,s

i±  before or after impact “i” (according to the sign) as, 

 Urel ,s
i± =Vc

i± −Vt
i±

  (6) 
where Vj

i± , j = c,t  is the absolute velocity of the Chaser (c) 
or Target (t) before or after impact instant “i” with respect to 
the same inertia coordinate system. The following 
relationships apply, [8], 

 
Pimp
i = mc ⋅ Vc

i− −Vc
i+( )   (7) 

 
Pimp
i = mt ⋅ Vt

i− −Vt
i+( )   (8) 

Therefore the relative velocity of Chaser and Target CoMs 
after the impact is 
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Using Eq. (5), we obtain the following expression, 

 Urel ,s
i+ =Urel ,s

i− −
Pimp
i

mi,ef

=Urel ,s
i− −

1+ e*( ) ⋅Urel ,i
i− ⋅µi,ef

mi,ef

  (10) 

It is important to distinguish the difference between the two 
relative velocities Urel ,s

i−  and Urel ,i
i− : The first refers to the 

relative velocity of the total masses mc  and mt , while the 
second refers to the relative velocity of the bodies under 
impact, namely of m2  and m3 . Generally, these two relative 
velocities are not equal. For example in the case we examine, 
if m2  and/or m3  are oscillating with respect to their body 
coordinate system these differ. In order for  

 Urel ,s
i− =Urel ,i

i−   (11) 

to apply, there must be no internal relative motion between 
the bodies of Chaser and between the bodies of Target. This 
means that Chaser masses have the same velocity (and 
therefore the same velocity with their system CoM); also that 
Target masses have the same velocity (and therefore the same 
velocity with their system CoM). Thus the internal springs of 
Chaser and Target are at their free lengths. This case is 
usually reasonable prior to first impact. 

Generally the relative impact velocity Urel ,i
i−  can be expressed 

as 

 Urel ,i
i− =Urel ,s

i− +δUrel
i−   (12) 

where δUrel
i−  is the relative difference of velocities between 

the impact bodies (m2  and m3 ) due to their motion within 
their systems (i.e. oscillations), when the relative velocity of 
the systems has been subtracted. Using Eqs. (10) and (12), 
one can find 

 Urel ,s
i+ = 1−

1+ e*( ) ⋅µi,ef

mi,ef

⎛

⎝
⎜

⎞

⎠
⎟Urel ,s

i− −
1+ e*( ) ⋅µi,ef

mi,ef

⋅δUrel
i−   (13) 

Applying the notation eI  for the ratio of effective masses 
between bodies under impact and total system 

 eI = µi,ef mi,ef   (14) 
and combining with the coefficient of restitution in Eq. (13) 

 eI
* = 1+ e*( ) ⋅eI   (15) 

one can write Eq. (13) as 

 Urel ,s
i+ = 1− eI

*( )Urel ,s
i− − eI

* ⋅δUrel
i−   (16) 

Assuming no oscillation prior to first impact, Eq. (11) 
applies, therefore 

 δUrel
i− = 0   (17) 

and dropping “i"” for clarity in the rest of this paper, Eq. (16) 
is simplified to 

 Urel ,s
+ = 1− eI

*( )Urel ,s
−   (18) 

If Eq. (14) is analysed one can find 

 
eI =

µi,ef

mi,ef

= m2 ⋅m3 / (m2 +m3)
mc ⋅mt / (mc +mt )

⇒

⇒ 0 ≤ eI =
A

A + B
≤1

  (19) 

where m1,m2,m3,m4 ≥ 0  and 

 
A = m1 ⋅m2 ⋅m3 +m2

2 ⋅m3 +m2 ⋅m3
2 +m2 ⋅m3 ⋅m4

B = m1 ⋅m3
2 +m1 ⋅m2 ⋅m4 +m1 ⋅m3 ⋅m4 +m2

2 ⋅m4

 (20) 

Thus 

 0 ≤ µi,ef ≤ mi,ef   (21) 
The coefficient eI  plays a significant role in order to 
determine whether the Chaser will continue, stop or change 
its direction of motion after the impact as a system. This 



  

cannot be found using the simple rigid body theory, because 
it examines only the bodies under impact (in this case m2  
and m3 ) without considering the mass ratio between the 
individual masses of the two multibody systems under impact 
(thus all the masses under consideration, m1,m2,m3 and m4 ).  

To examine the significance of the coefficient, let a perfectly 
elastic impact occurs e* = 1( )  and use it in Eqs. (15) and (18), 

 Urel ,s
+ = 1− eI

*( )Urel ,s
− = 1− 2 ⋅eI( )Urel ,s

−   (22) 
The following alternative cases can be identified: 

i) eI = 0⇒Urel ,s
+ =Urel ,s

− : No impact occurs. 

ii) eI = 1⇒ µi,ef = mi,ef ⇒Urel ,s
+ = −Urel ,s

− : Resembles an 
impact between two rigid bodies. Therefore, the well-
known theoretical case is obtained, while the rest of 
equations are simplified as the relative velocity between 
the two systems is equal to the relative velocity of two 
simple rigid bodies. 

iii) eI =
1
2
⇒Urel ,s

+ = 0 : The two multibody systems move 

with the same velocity. This situation is further examined 
later. 

iv) 0 < eI <
1
2
⇒Urel ,s

+ ⋅Urel ,s
− > 0 : The two systems will 

move in the same direction after impact. Practically the 
Chaser will continue its direction of motion, and the 
Target will move towards the same direction. This is the 
favourable situation during docking. 

v) 1
2
< eI <1⇒Urel ,s

+ ⋅Urel ,s
− < 0 : The two systems will 

move in a different direction. Practically the Chaser will 
change its direction of motion, and the Target will move 
towards the initial direction of the Chaser. This would 
prevent docking. 

The previous results show that the behaviour during impact 
depends on the ratio of the masses, and not on the masses per 
se. This is important both for the design of an approach 
strategy on orbit, but also for the design of the controller to 
be used. 

3.3 MORE ON THE COEFFICIENT OF EFFECTIVE MASSES 

A number of interesting cases for the Coefficient of Effective 
Masses are examined next. For this reason the ratios between 
the masses are defined as 

 λi = m2 m3 , λc = m1 m2 , λt = m4 m3   (23) 

3.3.1 Equal Mass Ratios of Chaser and Target 

If one assumes that the ratios, -not the absolute masses-, of 
the Chaser and the Target are equal that is 

 λc = λt = λ   (24) 

so that Eq. (19) becomes, 

 eI = 1 λ +1( )  (25) 

then, using Eq. (15) and (18) one can find 

 Urel ,s
+ = λ − e*( ) λ +1( )⎡⎣ ⎤⎦ ⋅Urel ,s

−   (26) 

The ratio λ  can be positive only; therefore the numerator of 
Eq. (26) can be positive (and the systems will continue to 
move in the same direction because Urel ,s

+ ⋅Urel ,s
− > 0 ) if and 

only if the ratio of the masses of the bodies is larger than the 
coefficient of restitution. Note however that 0 ≤ e* ≤1 , 
therefore if λ >1 , then this situation is trivial. In other words 
Eq. (26) must be examined especially when the Target has 
larger m2  than m1 . Finally one can easily see that as the 
ratio λ  increases, that is  m1 ≫ m2 , the coefficient eI  tends 
to zero, therefore the Chaser keeps its direction after impact 
and the relative velocity of the systems is decreased partly. 

3.3.2 Impact of three masses 

If the Chaser or the Target must be modelled with a single 
mass, then either m1 = 0  or m4 = 0 , thus λc = 0  or λt = 0  
correspondingly.  

Let us examine the case in which the Target is modelled as a 
single mass. Using Eq. (19) one can find that 

 eI =
λc +1( ) ⋅λi +1( )
λi +1( ) ⋅ λc ⋅+1( )   (27) 

Plotting this function, Figure 3, it can be seen that there is 
tendency for the systems to change the direction of their 
relative velocity (as eI > 0.5 ). This is reasonable if it is 
taken into account that the entire energy of the impact of the 
Target is received by a single mass only. Therefore the only 
case in which the systems retain their initial direction of 
relative velocity is when the Target is much larger than the 
mass under impact from the side of the Chaser. 

 
Figure 3. Impact of three masses, where the Target is only 

one mass. 
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On the other hand if the Chaser is a single mass, then Eq. 
(19) leads to  

 eI = 1 λi +1( )   (28) 

Apparently Eq. (28) is similar to Eq. (25). Thus as the Chaser 
becomes larger, it tends to retain its initial velocity. 

3.3.3 Impact with a mass connected to a fixed wall 

Another extreme case is when the second mass of the Target 
a very large, such as if it is a fixed wall (e.g. ISS). Let 
m4 → +∞ . This time it is best to solve Eq. (19) again and 
take into account that 

 m4 >> m1,m2 ,m3   (29) 

resulting in, 

 
 
eI =

µi,ef

mi,ef

!
µi,ef

m1 +m2( ) =
µi,ef

mc

  (30) 

By substituting the mass ratios it can be found that 

 eI = 1 λi +1( ) ⋅ λc +1( )⎡⎣ ⎤⎦   (31) 

In other words as the Chaser mass increases, the magnitude 
of the relative velocity is affected less. Plotting this function, 
it can be seen in Figure 4 that after impact, the systems retain 
the initial direction of the relative velocity, except in cases 
where the Chaser has a larger mass under impact and/or the 
mass connected to the wall has about the same mass as the 
Chaser. 

 
Figure 4. Target mass connected to a wall. 

3.3.4 Zeroed Relative Velocity After Impact 

In some cases, the relative velocity after impact can be zeroed 
( eI = 0.5 ) which is a favourable situation. In fact if this can 
be achieved, then the Chaser and the Target will have zero 
relative velocity, which is ideal. Equating Eq. (19) with 0.5, 

 eI = 0.5⇒ λcλi + λi( ) 1− λt( ) + λt − λcλt − λc +1= 0  (32) 
By substituting the ratios with a constant, the necessary 
equations are derived. For example, if λc = c  is known, then 

 λi ⋅ c +1( ) ⋅ 1− λt( ) + 1− c( ) ⋅ λt +1( ) = 0  (33) 
By plotting Eq. (33), see Figure 5, it can be seen that if the 
mass ratio of the Chaser is unity, then if the mass ratio of the 
target is also unity, it does not matter what is the mass ratio 
between the systems themselves. However in general, it is 
obvious that to find a relationship between the mass ratios 
that would zero the post impact relative velocity, the 
following must apply: if the mass ratio of the Chaser is larger 
than one, then the mass ratio of the Target should be less than 
one, and vice versa. Similar conclusions are derived for the 
cases λi = c  and λt = c . 

 

Figure 5. Mass ratio combinations which zero relative 
velocity after impact if the mass ratio of Chaser is known. 

4 MINIMUM VELOCITY FOR IMPACT DOCKING 

The objective is to examine the minimum velocity required 
during impact in order to perform latching during the impact 
docking. Although it is usual that the latching system is on 
the probe, due to fact that the analysis is performed between 
relative velocities, the results can be transferred.  

In Figure 6,  xC  is the position of the chaser,  xT  the position 
of the Target, k  is the spring constant of latching mechanism 
and θ  is the angle of the probe according to the x-axis. It is 
assumed that the initial velocity of the Target at t=0 is

   
!xT ,0 = 0  and its initial position is 

  
xT ,0 = 0  (without loss of 

generality) and the initial position of the Chaser is

  
xC ,0 = −x0 ,    x0 > 0  where   x0  is the initial distance between 
the two bodies. While, 

    xT + xC < 0  (34) 

no impact occurs. In Eq. (34) xT  is the reference point of the 
Target along the x-axis, which is located at the end of the 
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latching mechanism, and xc  is the reference point of the 
Chaser along the x-axis which is located at the end of the 
probe tip. 

(a) 

(b) 

Figure 6. Simplified model for t=0. 

When the two reference points are at the same position the 
probe starts to push the latching mechanism, and for the 
duration of contact the following apply: (i) the chaser begins 
to decelerate, (ii) the target begins to accelerate and, (iii) the 
spring begins to compress. Note that for this preliminary 
theoretical analysis the friction is disregarded. 

The equations of motion for the two bodies are  

   −FX = mC ⋅ !!xC   (35) 

   FX = mT ⋅ !!xT   (36) 

The compression of the spring, after the two bodies have the 
same position, is given by  yk  

 
  
yκ = ( xC − xT ) ⋅ tanθ   (37) 

Using Eqs. (35)-(37), and after some arithmetic manipulation, 
the force  FX  becomes 

   FX = k ⋅(xC − xT ) ⋅ tan2θ   (38)  
By subtracting Eq. (35) and (36) we can find the relative 
position of the two bodies. 

 
   

!!xC − !!xT = −k ⋅ tan2θ ⋅(xC − xT ) ⋅(1 mC +1 mT )⇒
⇒ !!xC − !!xT = − K ⋅(xC − xT ) mi,ef

  (39) 

where K is 

   K = k tan2θ   (40) 

Note that in this case  

 
  
ω = K mi,ef   (41) 

Equation (39) is a differential equation, and its solution  

 
   

xc − xt = (xc − xt )0 ⋅cos(ω ⋅ t)+
+ (( !xc − !xt )0 ω ) ⋅sin(ω ⋅ t) 

  (42) 

Accordingly the relative velocity of the bodies is, 

 
   

!xc − !xt = ( !xc − !xt )0 ⋅cos(ω ⋅ t)−
− (( !xc − !xt )0 ⋅(xc − xt )0 ω ) ⋅sin(ω ⋅ t) 

  (43) 

Making the assumption that the Chaser has such initial 
velocity that its probe will be advanced only by its length (the 
probe tip) in order to latch, the time when this will be 
achieved depends on the compression of the latching spring, 
thus it must hold  

 
  
tlatch = Τ 4 = π 2ω = π 2mi,eff 4K   (44) 

If the latch time is less than T / 4  then the probe will not 
push the latching mechanism enough in order for the 
following to apply: 

 
  
xC− xT > lp   (45) 

where lp  is the width of the probe tip, a design parameter. 

By using Eq. (43) and (44), the minimum velocity in order to 
have latching is  

 
   
!xC,0,min =ω (lp − x0 cos(ωt)) sin(ω t)   (46) 

5 SIMULATION RESULTS 

5.1 RIGID MULTIBODY IMPACT DOCKING VERIFICATION 

In order to verify the proposed RMI theory, a MATLAB/ 
Simulink model has been created. In order to test the validity 
of the propositions, the model was developed with a fully 
analytical approach. Thus each system (Chaser and Target) 
has been modelled as a 2-mass spring-damper system and the 
contact forces between the bodies under impact were 
calculated using the Kelvin-Voigt model. In particular the 
impact was modelled by a spring-damper system which can 
only be compressed. As the simulation advances, Simulink 
calculates the velocities of the masses under impact, and 
calculates their interpenetration. This interpenetration is fed 
back to the contact model and a force is developed which 
tries to push away the masses under impact. Therefore prior 
and after the impact the simulation presents two moving 2-
body systems, and during impact a 4-body system. No 
equation stemming from the proposed RMI was used in order 
to avoid bias of results. Thus the validity of the proposed 
theory is examined via a complete visco-elastic theoretical 
formulation. The user can also change the initial parameters 
of the bodies, however, except the initial velocity of the 
Chaser (m1  and m2  have the same velocity, therefore the 
internal spring and damper of the Chaser is at their free 
length) and its initial position, all other values have been set 
to zero without loss of generality. 

In order to verify the theoretical calculations of post-impact 
relative velocity between Chaser and Target, in relation to the 
pre-impact corresponding velocity, various configurations 
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were examined: a) the masses of the robotic systems of the 
CSL emulator, b) A situation with all masses equal and c) 
and d) random masses. Table 1 presents these values and the 
calculations according to Eq. (18). Figure 7 shows the 
relative velocities of all cases. Only the first impact (which 
interests) is shown for each example. It can be seen that in all 
cases the theoretical model finds the post-impact relative 
velocity with high accuracy. Note that the stiffness has been 
selected low in order to have more clear plots; however with 
higher stiffness the results are the same, and the only 
difference is the duration of the impact. Only the relative 
magnitude of the system’s stiffness with respect to the 
contact stiffness interests according to the assumptions. The 
damping here was zeroed. 

Table 1. Data for the first set of simulations. 

Properties A B C D 

m1  (kg) 17 10 5 100 

m2  (kg) 2 10 50 20 

m3  (kg) 1.5 10 10 10 

m4  (kg) 15 10 100 200 
Contact Stiffness 1000 1000 1000 1000 
Chaser Stiffness 15000 15000 15000 15000 
Target Stiffness 200 200 200 200 
Initial Rel. Velocity 0.05 0.05 0.05 0.05 
Final Rel. Velocity 
(Eq. (18)) (m/s) 

0.0403 0 0.02728 0.0413 

Final Rel. Velocity 
(simulation) (m/s) 0.0402 -0.000476 0.02715 0.0412 

Absolute Error (m/s) 0.0001 0.000476 0.00013 0.0001 
 

 
Figure 7. Relative velocities between Chaser and Target after 

first impact. Examples A-D. 

5.2 VERIFICATION OF MINIMUM IMPACT VELOCITY FOR 
DOCKING 

In order to verify the proposed minimum velocity for impact 
docking, a Simulink model has been developed and various 
initial velocities have been tested. Here an example with the 
robots of the CSL Space emulator is presented, with 
mc = 15kg , mt = 17kg , k = 100N m , lp = 0.02m  and 

θ = 45o . By using Eq. (46), the minimum velocity for impact 
docking is 0.07m/s. In Figure 8 an unsuccessful case is 
examined, where the initial relative velocity is 0.05m/s and 
this leads to the probe not to insert fully to the latching 
mechanism. In the contrary in Figure 9 the initial velocity is 
0.07m/s which leads to a successful docking. 

(a) 

(b) 

Figure 8. Docking Unsuccessful: (a) Velocities of the two 
bodies before and after impact and (b) Relative position of 

probe/latch mechanisms in contrast to the required for 
docking. 

 
Figure 9. Docking Successful: Velocities of the two bodies 

before and after impact. 

6 CONCLUSIONS AND FUTURE WORK 

In this work the impact docking between two multibody 
systems was examined. As the masses of the systems can be 
of the same level of magnitude, it was of interest to examine 
how this affects their behaviour during docking impacts. As it 
has been proven, it is the mass ratios and not their magnitude 
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that will determine the post impact behaviour of the systems. 
The coefficient of effective masses was proposed which can 
help in the identification of the impact behaviour prior to 
impact. A number of interesting cases were examined. 
Accordingly the minimum impact velocity was determined in 
order to perform latch at first impact. For both situations 
simulations are presented which are in line with the 
theoretical approach. In the future the effect of friction during 
latching as well as the integration of the approaches will be 
examined. Additionally experiments on the air bearing space 
emulator of our laboratory will take place in order to 
establish the exact mechanism behind the effects of the 
various parameters during the impact docking. 
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