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ABSTRACT 

Leg compliance, gravity and ground have a significant 
impact on the performance and gait characteristics of a 
quadruped robot. This paper presents results obtained 
using a planar lumped parameter model of a quadruped 
robot and an extensive research scheme to determine 
optimum design parameters for a quadruped moving in 
different gravity environments. Hildebrand diagrams are 
used to classify quadruped robot gaits. In addition, an 
optimization procedure using either MathWorks 
fmincon or a Differential Evolutionary (DE) algorithm 
is employed to determine the optimum motion and robot 
physical parameters related to energy efficiency. Using 
“multiple gait graphs”, the effects of leg compliance, 
gravity and ground inclination are determined. 
 
1. INTRODUCTION 

Legged locomotion offers a great potential to mobile 
platforms transversing unstructured environments in 
terms of speed, energy efficiency and adaptation. 
Planets, satellites, and asteroids presenting great 
scientific and exploration interest, are all characterized 
by such environments and therefore are candidates for 
legged robot deployment. Research in legged 
locomotion led to several models, control algorithms 
and designs. 

To name a few, researchers at the JPL proposed the 
ATHLETE concept, a six-limbed hybrid mobile 
platform designed to traverse terrain using its wheels or 
limbs [1]. Another six-legged robot proposed for 
planetary exploration is the DLR Crawler [2], an 
actively compliant walking robot that implements a 
walking layer with a simple tripod and a more complex 
biologically inspired gait. The robot ASTRO, part of an 
emulation testbed for asteroid exploration, is a six-
limbed ambulatory locomotion system that replicates 
walking gaits of the arachnid insects [3]. DFKI 
researchers presented SpaceClimber, a biologically 
inspired six-legged robot for steep slopes, and focused 
on the foot-design to handle constraints from the 
environmental ground conditions [4]. Researchers from 
ASL/ ETH proposed a quadruped that was built for 
upright walking but its wide range of motion in all joints 

allows a crawling gait and recovery manoeuvres [5]. 
However, these robots perform statically stable gaits for 
the sake of overall motion stability and rough terrain 
handling, which reduces their speed capability. 

In addition, a general systematic approach to the 
design and selection of optimal robot gaits is lacking. 
The way that quadruped animals walk has been studied 
intensively since 1887 [6] and many results that refer to 
connections between their walking nature and their 
body and structure characteristics have been presented 
[7]. Also, systematical ways to observe and classify 
their moving behaviour have been developed. 
Hildebrand adopted graphical ways, which present the 
back and front legs duty factors as well as the phase 
difference between the legs of the same side (left or 
right) as a percentage of the stride duration, i.e. the time 
interval between two successive footfalls (touchdowns) 
of the back left foot [8]. These definitions are 
implemented in practical experiments [9], [10]. 

In this paper, we focus in the systematic use of 
Hildebrand diagrams in analyzing quadruped robot gaits 
that result from an extensive search process. 
Environmental conditions taken into consideration 
include gravity, topographic features, surface and 
subsurface characteristics. A point contact/impact 
between foot and surface is assumed. 

An optimization procedure using either MathWorks 
fmincon or a Differential Evolutionary (DE) 
optimization algorithm is employed to determine the 
optimum motion initial conditions, quadruped model 
physical parameters and the desired motion parameters 
related to energy efficiency.  

The resulting gaits are classified using an automated 
scheme based on the Hildebrand gait diagram and gait 
graph. Using multiple gait graphs, a general plot for a 
significant parameter is formed which depicts on the 
same plane the gait graphs of a number of simulations 
that differ by one parameter each time, e.g. leg stiffness. 
Resulting “multiple gait graphs” show that gravity 
increase leads to the increase of the mean value of the 
Duty Factor, ground inclination increase leads to the 
increase of the Phase Relationship value and leg 
stiffness increase leads to the decrease of the mean 
value of the Duty Factor. 



 

2. SYSTEM DYNAMICS 

2.1. Robot Model 

Fig. 1 shows a lumped parameter physical model of the 
quadruped robot employed in this paper. The model 
consists of two compliant virtual legs (VLegs) of mass 
mj and uncompressed length l0j, and a body of mass mb 
and inertia Ib respectively. The index j indicates a rear 
(r) or a front (f) VLeg. A VLeg, front or rear, models 
the two respective physical legs that operate in pairs 
when a gait is realized and exerts equal torques and 
forces on the body as the set of the two physical ones 
[11]. 

 
Figure 1. A lumped parameter planar quadruped model. 
 

Each VLeg is connected to the main body with an 
actuated rotational joint at distance d from the body 
center of mass (CM). This body can rotate by an angle θ 
around the z-axis and thus the model captures the body 
pitch stabilization problem. The rotational hip joint 
allows for positioning of VLegs at angle γj in the sagittal 
plane. Also, each VLeg has a passive prismatic joint 
modeled as a linear compression spring of constant kj 
and viscous damping coefficient cj. The prismatic joint 
allows changes of the VLeg length lj and energy 
accumulation during locomotion. Table 1 summarizes 
robot and motion parameters. 
 

Table 1. Nomenclature. 
Symbol Quantity 
xc Body CM x-axis coordinate 
yc Body CM y-axis coordinate 
θ Body pitch angle 
Ib Body inertia w.r.t. z-axis 
mb Body mass 
x VLeg CM x-axis coordinate 
y VLeg CM y-axis coordinate 
l VLeg length 
l0 VLeg uncompressed length 
k VLeg spring constant 
c VLeg viscous dumping coefficient 
γ VLeg absolute angle 
Il VLeg inertia w.r.t. z-axis 
m VLeg mass 

d Hip joint to CM distance 
φ Ground inclination 
τ Hip torque 
r As index: rear VLeg 
f As index: front VLeg 
td As index: value at touchdown 
lo As index: value at liftoff 

 
2.2. Motion Phases and Transitions 

A quadruped robot, studied in the sagittal plane, goes 
through four phases of the three-link (rear VLeg, front 
VLeg, main body) kinematic chain, i.e. double stance, 
flight, front stance, rear stance, as presented in Fig. 2. 
The realization of the gait depends on which legs are 
working in pairs, which motion phases appear and for 
how long, the values of the leg touchdown angles and 
body pitch angle. 

 
Figure 2. Motion phases and events that trigger them. 

 
Pronking is the gait when all legs are, either in 

contact with the ground (double stance) or not (flight). 
The bounding gait has two additional intermediate 
phases, namely the ones in which only one set of legs 
(rear or front) is in contact with the ground. In pronking, 
zero or close to zero pitching is expected. However, in 
the non-ideal case, where body pitching occurs, the rear 
or front legs may strike the ground first. Then, pronking 
reduces to bounding. 

Legged robots are hybrid systems and therefore their 
motion cannot be described by a single set of equations. 
A set of continuous equations for each phase together 
with discrete transformations governing transitions from 
one phase to the next are required to model the 
dynamics of such systems. The transition equations that 
determine the touchdown and lift-off events of the rear 
and front VLegs during plane motion are: 
 yc − d sin(θtd ) ≤ l0r cos(γ r ,td )   (1) 
 yc + d sin(θtd ) ≤ l0 f cos(γ f ,td )   (2) 
 lr ,lo = l0r   (3) 
 l f ,lo = l0 f   (4) 
Eqs. (1) and (2) describe the conditions of touchdown 
events, while (3) and (4) describe the conditions of 

af

y
x

2d

lr

lf

mr

mf 

of

kr cr

kf  cf

 

gy

e

or

ar

gx mb Ib

lrc

lfc

Og

REAR 
STANCE

DOUBLE 
STANCE

FLIGHT

FRONT 
STANCE

Both VLegs 
Lift-off

Both VLegs 
Touchdown

Rear VLeg 
Lift-off

Rear VLeg 
Touchdown

Front VLeg 
Touchdown

Front VLeg 
Lift-off

Rear VLeg 
Lift-off

Rear VLeg 
Touchdown Front VLeg 

Touchdown

Front VLeg 
Lift-off



 

liftoff events. Which event will occur depends on length 
comparison. 
 
2.3. Equations of Motion 

The robot motion is studied in the sagittal plane. During 
the flight phase (both VLegs do not touch the ground), 
the robot’s CM performs a ballistic motion with 
constant system angular momentum with respect to the 
CM. During stance phase, the VLeg(s) that are in 
contact with the ground move the body forward. The 
equations of motion for the main phases, i.e. flight (FL) 
and double stance (ST), and for the intermediate ones, 
i.e. front (FST) and rear stance (RST), are derived using 
a Lagrangian formulation. During double stance phase 
the vector of the generalized coordinates is 

 qST = xc yc θ γ r γ f
⎡
⎣

⎤
⎦
T

  (5) 

and the Lagrangian of the robot is: 

 

 

LRobotST = LBodyST + LVLegrST + LVLegfST =
1
2
mb ( xc

2 + yc
2 )+ 1

2
Ib θ

22 −mbgxxc −mbgyyc

+ 1
2
mr ( xr

2 + yr
2 )− 1

2
kr (l0r − lr )

2 −mrgxxr −mrgyyr

+ 1
2
mf ( x f

2 + yf
2 )− 1

2
k f (l0 f − l f )

2 −mf gxx f −mf gyyf

  (6) 

The ground inclination, positive or negative, affects 
robot dynamics through the two gravity components gx, 
gy: 
 gx = g ⋅sin(ϕ ), gy = g ⋅cos(ϕ )   (7) 
Rear (xr, yr) and front (xf, yf) VLeg CM coordinates can 
be expressed as functions of the generalized coordinates 
using geometrical relationships: 

 
xr = xc − d cos(θ )+ lrc sin(γ r )
yr = yc − d sin(θ )− lrc cos(γ r )

  (8) 

 
x f = xc + d cos(θ )+ l fc sin(γ f )
yf = yc + d sin(θ )− l fc cos(γ f )

  (9) 

The energy dissipation due to prismatic joint viscous 
damping is: 

 
 
PDiss =

1
2
cr lr

2 + 1
2
cf l f

2   (10) 

The energy contribution of actuator torques is given by: 
 

 PContr = τ r ( γ r − θ )+τ f ( γ f − θ )   (11) 
Variables lr, γr, lf, γf are derived using kinematic 
relationships: 
 lr = (xtr ,td + d cos(θ )− xc )

2 + (d sin(θ )− yc )
2   (12) 

 γ r = A rctan(−d sin(θ )+ yc , xtr ,td + d cos(θ )− xc )  (13) 

 l f = (xtf ,td − d cos(θ )− xc )
2 + (d sin(θ )− yc )

2   (14) 

 γ f = A rctan(d sin(θ )+ yc , xtf ,td − d cos(θ )− xc )   (15) 
Rear xtr,td and front xtf,td toe location are given by: 
 xtr ,td = xc + lr sin(γ r )− d cos(θ )   (16) 

 xtf ,td = xc + l f sin(γ f )+ d cos(θ )   (17) 
when touchdown occurs without toe slippage. 

During the flight phase the generalized coordinates 
vector is the same as (5) and the Lagrangian of the robot 
is (6) with the spring terms omitted, while there is no 
energy dissipation and contribution. For the two 
intermediate phases, i.e. rear and front stance, vector qi 
does not include lr, γr or lf, γf respectively, which are 
calculated again by (12), (13) and (14), (15), and the 
Lagrangian, energy dissipation and contribution 
equations of each phase miss the appropriate terms. 
Equations of motion for all phases are derived as:  

  

d
dt

∂LRobot ,i
∂ qi

⎛
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⎞
⎠⎟

T

−
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T
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T

−
∂PContr ,i
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⎛
⎝⎜

⎞
⎠⎟

T

=0  (18) 

where i is the phase index, i.e. ST, FL, RST, FST. 
 
3. GROUND MODELS 

The environmental conditions affect the motion of a 
legged system therefore it is necessary to develop 
models that shall quantify their relation with the 
emerged gaits. The environmental parameters that have 
direct effect on motion types are: gravity, topographic 
features, surface and subsurface characteristics. Other 
parameters which have indirect effect but can be 
modelled sufficiently by changing the characteristics of 
the body and legs are: environmental radiation, 
temperature, pressure, corrosive environment and 
weather of celestial body. For example in the case of 
environmental radiation a larger mass would correspond 
to the inclusion of a radiation protection system. To this 
end, this analysis will focus on the first four parameters, 
which are the most crucial and cannot be modelled via 
an indirect way without loss of realism. Particular 
attention will be given to the subsurface characteristics. 
 
3.1. Gravity 

This parameter plays a dominant role during the 
definition of the best strategy for gaits, as it was evident 
by the astronauts’ movements on the Moon. Gravity has 
direct implication on the motion the robot. At the limit 
of zero gravity, no gait of any kind is possible. 
Additionally, gravity defines the apex height of the gait, 
e.g. a large stride at a planet with low gravity may result 
the landing of the robot far from a scientific goal of 
interest. Whilst gravity has a dominant role, the 
modelling of gravity is rather simple. The dynamic 
model of the robot system explicitly includes the 
gravitational acceleration which is defined by references 
like [12]. 
 
3.2. Topographic Features 

The surface of celestial bodies is not flat and the slope 
on any area of interest is expected to be variational. Of 
great scientific importance are craters or similar features 
(e.g. mountain or volcanoes), and the inclination on 



 

these areas imposes various dangers for any robot (e.g. 
tipping over), especially when a dynamically stable gait 
is used. It is necessary to model the inclinations in such 
a way that safe results could be obtained. Each path of 
the robot is separated in small segments with local 
inclinations (defined by the global inclination 
characteristics). The user defines only the dimensions of 
these segments, length for the 2D case, length and width 
for the 3D case. Note that all the properties of the terrain 
at a point are defined by the properties of the segment 
they belong.  
 
3.3. Surface Characteristics 

The coverage of an area from rocks or soil, affect the 
path profile of the robot. The rock dimensions are 
directly related to the gait that the robot should use to 
pass over without tipping. Moreover when touchdown 
occurs, it is highly possible the legs to be in different 
levels due to uneven terrain characteristics, such as 
different rock sizes. Various distribution models can be 
applied for this reason, for example for Mars, 
distribution model equations can be found in [13]. On 
the simulation, the existence of rocks can be modelled 
by changing locally and abruptly the local inclination. 
 
3.4. Subsurface Characteristics 

The terrain includes areas with regolith and bedrocks 
that can be comprised of materials with different 
properties [14]. Similar information can be obtained for 
other planets, satellites or asteroids. In addition, the 
compliance of the ground affects the motion and 
different contact models and/or parameters should be 
applied according to the nature of the terrain, e.g. 
granular soil could be implemented as a surface with 
large deformations, and a rocky surface as a fixed body 
with large stiffness. Stick, slip and sliding conditions 
should be taken into account, with surface friction 
playing dominant role [15].  

Since space agencies have shown in the past large 
interest on rover locomotion, various terramechanics 
models have been developed or exemplified for the case 
of planets, such as in [16]. Related work on the past 
took place for the case of legged locomotion with 
combined use of artificial intelligence schemes for real 
time estimation of soil parameters [17]. These works 
have as a common feature the use of equations that 
make use Bekker equations or similar. However, as [18] 
also presents, this approach lacks on the accurate 
representation of a dynamics interaction between soils 
and legs – and for this reason the authors introduce the 
term “terradynamics”. This approach is proved 
interesting for the locomotion of the robot types that the 
authors examine but does not include impact 
characteristics, which are prominent in our case. 
However the term terradynamics can be equally used in 
our approach. 

Generally impacts can be modelled via three 

methods, which are presented in [19]. The use of 
compliant models seems the most appropriate, as the 
different soil kinds can be simulated by lumped 
parameters (i.e. springs and dampers) with different 
linear or non-linear characteristics. The simulation 
exploits the properties of springs and dampers in series. 
That is, the spring and/ or damper of the leg and terrain 
are in series and an equivalent stiffness and/ or damper 
is used. As a first approach this can lead to some 
simplifications (e.g. if a very stiff ground exists, then 
leg stiffness dominates). 

Currently there is work in progress for 
implementation of more detailed ground models using 
viscoelastic models like Kelvin – Voigt 
  F =K ⋅x+B⋅ x   (19) 
and Hunt – Crossley 
  F =K ⋅xn +B⋅ x ⋅xn   (20) 
where K ,B  are the stiffness and damping coefficients,  
n  a parameter which in case of Hertzian contact is 
equal to 1.5 and x  is the depth of penetration. An 
alternative model is being proposed and examined 
which implements an hysteresis of the ground in order 
to model particular soil kinds like wet sand or a stiff soil 
with a unified manner 

 
 

Fg =
K ⋅xn +B⋅ x ⋅xn ,

λ ⋅K ⋅xn +B⋅ x ⋅xn +Fconst ,
compr.
rest.

⎧
⎨
⎪

⎩⎪
  (21) 

where 

 Fconst =K ⋅xmax
n ⋅ 1−λ[ ] where λ ≥1   (22) 

and λ  is an experimental coefficient which shows the 
irreversible and/or hysteric deformation of the ground 
during restitution, caused for example by a wet soil and 
xmax  the maximum depth during compression. 

Friction can be accounted as in [15], depending on 
the soil characteristics (this value can be easily found in 
any textbook for soils) and the normal force during the 
interaction between the toe of the foot and the ground. 
 
4. OPTIMAL GAITS 

4.1. Extensive search 

The extensive search scheme used in this work was set 
using the Matlab environment and has a two-layer 
structure. The inner layer involves the robot motion 
simulation. The equations of motion of each phase 
presented in Section 2.3 are solved using the ODE45 
function and which set of them is solved each time is 
determined by the transition equations (1)-(4). The 
multipart controller function calculates during each 
flight phase the leg touchdown angles and actuator 
torques for the upcoming stance phase (rear, double or 
front). A simple PD-controller is used to position legs to 
the calculated desired touchdown angles. The robot 
motion simulation was set to be terminated when the 
robot had completed 65 strides, i.e. complete cycles 
considered from a reference limb, e.g. rear left, flight 



 

phase till the next.  
The outer layer involves definition of the initial 

conditions, the quadruped model physical parameters, 
the environment parameters and the desired motion 
parameters. This definition is programmed as a loop 
function to make the extensive search through a range 
of values of the parameters of interest feasible. In this 
work, parameters of interest include uncompressed leg 
length and stiffness, gravity and ground inclination, 
quadruped forward velocity, while Table 2 displays the 
parameter values that kept constant during the extensive 
search scheme. 

Table 2. Constrained parameters during simulation. 
Parameter Value 

Initial robot CM vertical position 0.35 m 
Initial body pitch 0 rad 
Initial body pitch rate 0.5 rad/ s 
Initial vertical velocity 0 m/ s 
Initial forward velocity 0.4 m /s 
Body mass 9 kg 
VLeg mass 0.62 kg 
Prismatic joints viscous friction 10 Ns/ m 
Hip joint distance 0.50 m 
Body inertia 0.56 kgm2 

Desired robot CM apex height 0.32 m 
 
4.2. MathWorks fmincon 

The initial conditions, the quadruped model physical 
parameters, the environment parameters and the desired 
motion parameters influence directly the robot motion 
and its characteristics. We seek to find the optimum of 
them in order the robot to traverse a specific distance 
while consumes the least amount of energy, i.e. the 
actuators required torque. This is a constrained 
nonlinear multivariable problem and can be solved 
using MathWorks fmincon and an appropriate problem 
formalization. 

The optimization vector is 

 
    
x= xcdes hdes x0 y0

θ0 k l0 d⎡
⎣

⎤
⎦   (23) 

where 
  xcdes  and  hdes  are the desired robot forward 

velocity and apex height respectively, 
   x0 ,   y0  and 

  
θ0  

are the initial forward velocity, vertical position and 
pitch rate respectively, while  k ,   l0  and  d  can be found 
in Table 1. The objective function is the square of the 
mean actuators required torque and its value is obtained 
running the robot motion simulation. 

 
   
f (x)= mean(torque)⎡⎣ ⎤⎦

2
  (24) 

The constraints definition involves inequalities of 
the optimization vector parameters, i.e.: 

 

   

0.1 ≤ xcdes ≤ 5.0
l0 + 0.01 ≤ hdes ≤ l0 + 0.10
0 ≤ x0 ≤ 1.0
l0 + 0.01 ≤ y0 ≤ l0 + 0.10
xcdes − x0 ≥ 0
hdes − y0 ≥ 0
0 ≤ θ0 ≤ 1.0
100 ≤ k ≤ 20000
0.20 ≤ l0 ≤ 0.40
0.20 ≤ d ≤ 0.30

  (25) 

and the initial vector   x0  has the following value: 

 
  
x0= 1.0 0.30 0.4 0.35 0.20 6000 0.25 0.20⎡⎣ ⎤⎦   (26) 

 
4.3. DE 

The optimization method discussed in the previous 
section (that is the default algorithm underlying a call to 
the MATLAB fmincon solver) is a "local optimizer". In 
other words, its search is tailored at finding the closest 
valley to the initial guess. The complexity of the 
problem arising from the walking gaits optimization 
results in a rugged/discontinuous fitness landscape 
suitable for the deployment of a "global" optimization 
technique. In order to further explore the parameter 
space and the corresponding walking behaviours, we 
have thus also experimented with a heuristic global 
optimization method. In particular, we have used 
Differential Evolution (DE) [20]. The central idea 
behind DE is that the difference vector between two 
members of the population is added to a third member 
of the population, with which the performance is then 
compared. This scheme leads to excellent convergence 
properties, which was a necessary requirement for the 
optimization of the walking gaits due to the time spent 
in the inner loop optimization. The implementation used 
for the optimization is the MATLAB-script by Jim van 
Zandt [21], modified in order to deal with bounded 
variables. 

Differential evolution has several good features, 
which makes it promising for complex searches. It is 
capable of searching in the whole design space (and not 
only in the basin of attraction the initial condition 
belongs to), does not require numerical differentiation, 
as it is a gradient free optimization method, it is easily 
parallelized in large CPU clusters using the island 
model and it is a well tested and highly regarded 
algorithm in the area of evolutionary computations. 

The application of DE to our walking gaits problem 
revealed, though, several problems mainly connected to 
DE achieving very low fitness values with the solutions 
corresponding to unstable gaits or to non-physical 
solutions. Large portions of the search space apparently 
correspond to unphysical solutions, and we are now 



 

identifying how to exclude such solutions from the 
search (possibly by incorporating more complex 
bounds). For this article, we reverted to the local search 
and we mainly present the results coming from that set 
of experiments. 
 
5. RESULTS 

5.1.  Hildebrand Diagrams 

We take for granted that the simulation environment can 
provide the ordinate values of the CM of the robot, their 
respective time values and their respective phase 
indicator. 

At first, we compute the time moment in which the 
devolution from the transient to the steady state occurs 
so as to be able to discriminate between these two parts 
of the robot’s locomotion. This is the time instance, for 
which, the pair of the local minimum value and the local 
maximum value of the robot’s CM ordinate coordinate, 
which appear first, after that, (i.e., the transitional time), 
contains exactly these two CM ordinate values, that 
differ from each one of the following local minimums 
and local maximums, respectively, less than a user-
defined tolerance. Here, you see that we need to 
compute the vector that holds the indexes that are 
respective to both the local maximum and minimum 
values of the CM ordinate (versus time). We do this by 
detecting the monotonous (increasing or decreasing) 
sub-arrays that form the one-dimensional array of CM 
ordinate values, and then, we save the index of each 
ordinate value that is located between a couple of these 
sub-arrays. These sub-arrays are alternated sequentially 
and that leads to an alternating finding of local 
maximums and minimums. We start with a find of a 
maximum value since we drop our robot in order to 
begin its movement. 

Secondly, we compute four vectors that hold the lift-
off (lo) and touchdown (td) time instances of both the 
hind (back) and the fore (front) feet. In order to build 
these four vectors (”lo_hind” for the lo times of the hind 
feet, “td_fore” for the td times of the fore feet, and, 
similarly, “td_hind” and “lo_fore”) we check the 
succession of the phase indicators (integers in the range 
from one to four, 1 := double flight, 2 := back stance, 3 
:= double stance, 4 := fore stance) in a row-vector which 
is generated by the sets of differential equations which 
are successively integrated in order to produce the 
simulated movement. According to the result of this 
check (different every time, in general) we update the 
appropriate time vector with the time value that is 
respective to the last phase indicator which we 
inspected, before we detect a change in the values of the 
indicator vector, e.g., if at some part of this array the 
sequence of the indicators is […] 1 1 1 1 2 2 2 2 […] 
then we the update the td_hind vector with the time 
moment that is respective to the last “1” that appears. 

To proceed, we calculate the three scalar quantities 
that form the gait diagrams. These quantities are the 

duty factors (DF’s) for both the hind and the fore feet 
and the phase relationship (PR) between the fore and 
hind ground contacts. 

For the computation of the DF’s (same procedure for 
both the hind and the fore feet) what we do is to 
compute every possible DF value that is respective to 
one of the distinguished gait cycles of the robot’s 
movement and then we consider their mean value as the 
final outputted value. We adopt this procedure because 
we want to calculate the most typical value of each DF. 
The algorithm of computing one, of the many DF 
values, is fairly simple as it implements straight the 
definition schema [8]. For example, for the above-stated 
computation, we consider a pair of successive td time 
instances of a pair of feet and the unique lo event of the 
same pair of feet that is located between these two td 
events. At the end we calculate the ratio of the time 
interval that separates the first (smaller of the two) td 
value from the lo value to the time interval between the 
two td values. We apply this for every pair of adjacent 
td incidents of the current pair of feet (hind or fore) and 
then we take their mean value as stated above. 

Subsequently, we compute the value of the PR 
between the footfalls of the hind and fore feet. To do 
this, we implement two different methods. 

The first is the classical method [8], and, according 
to it, the value of the PR, of a gait, is equal to the ratio 
of the time interval between the td of the hind feet and 
the td of the fore feet (where hind footfall precedes fore 
footfall, since the stride here is defined as the robot 
movement between two successive footfalls of the hind 
feet) to the time interval between the two successive 
landings of the hind feet. 

The second, is a variation of the classical method 
[22], and according to it, the PR value is equal to the 
ratio of the time interval between the td value of the fore 
feet and the td of the hind feet (here, the fore feet are 
used as reference in the definition of the gait cycle) to 
the time interval that separates the two consecutive 
touchdowns of the fore feet that are matched to the 
current gait. 

To conclude, the PR computation is completed when 
we calculate every possible PR value, using both of the 
two pre-mentioned methods, and, at the end, we 
consider as our final value the mean value of all the 
realistic values that emerged. 

Note that not all of the computed values are realistic, 
e.g., when the fore feet hit the ground before the hind 
feet in the “beginning” of two successive gaits, and, we 
use the “classic” computational method, we calculate a 
non-realistic value of the PR of the “first” gait, since the 
touchdown incident of the fore feet of that gait is 
located very close to the second touchdown of the hind 
feet of the same gait, in proportion to its stride duration 
(the time interval between two successive footfalls of 
the hind feet), i.e., it is a percentage of 0% to 25% 
which leads to a 75% to 100% value of PR. For a 
similar reason, the value of the PR, computed using the 



 

alternate procedure, of the “first” gait of a couple of 
successive gaits where the hind feet touch the ground 
before the fore feet, in the beginning of that gait, is also 
non-realistic. 
 
5.2. Results 

The optimization procedure used to determine the 
optimum motion initial conditions, quadruped model 
physical parameters, environment parameters and the 
desired motion parameters related to energy efficiency. 
The optimization algorithms described in Section 4.2 
and 4.3 were used and the results for Earth-like and 
Mars-like gravity are presented in Table 3. 

Table 3. Optimization results. 
 Earth Mars 

  xcdes  0.79 0.96 

 hdes  0.33 0.32 

   x0  0.79 0.52 

  y0  0.34 0.37 

  
θ0  0.00 0.19 

 k  5631 6000 

  l0  0.27 0.28 

 d  0.20 0.25 
 

In order to plot the Hildebrand diagram of the gait 
that a quadruped robot uses in a given simulated 
locomotion, the algorithm presented in Section 5.1 was 
used. We can also use a gait graph, in which, a gait is 
represented by a dot with ordinate coordinate value 
equal to the PR, and abscissa coordinate value equal to 
the mean value of the hind and fore DF’s. 

Subsequently, we present two Hildebrand diagrams 
in Fig. 3 that are describing, respectively, the bounding 
gait and the pronking gait of a simulated quadruped 
robot motion. The values of the quantities that are 
associated to the simulation that lead to these diagrams 

are:  m =9.22 kg,   l0 =0.3 m,  d =0.25 m,  k =4200 N/ m, 

   x0 =0.4 m/ s,   y0 =0.35 m,   
θ0 =0.50 rad/ s,   xcdes =1.00 

m/ s,  hdes =0.32 m,  g =9.81 m/ s and 0o ground 
inclination. 

For the inspection of the effects of the variation of a 
parameter in the gait selection we use a so-called 
“multiple” gait graph (a plane in which we depict the 
gait graphs of many simulated movements of the robot 
[8]) using the extensive search schema which is 
presented in the section 4.1, and, by plotting in the same 
plane different multiple gait graphs (each for a different 
planet or different ground inclination). 

In Fig. 4, we vary the gravitational acceleration 
parameter for three different planets. The parameter 
values are the same as in Fig. 3 except for 

   x0  and   y0  
for Mars and Moon, in which are equal to 0.5 m/ s and 

0.32 m, and, 0.3 m/ s and 0.32 m, respectively. Note that 
the horizontal line with ordinate value 3 %, is defined to 
be the border that separates the pronking gaits (dots 
above that line) from the bounding gaits (dots below 
that line). 
 

 
Figure 3. Bounding and pronking Hildebrand diagrams. 
 

 
Figure 4. Gravity effect Hildebrand graph. 

In Fig. 5, we vary  k  for planet Earth for three 
different ground inclination values. The rest of the 
required parameters are the same as in Fig. 3. 

 
Figure 5. Ground inclination effect Hildebrand graph. 

 
We also append a graph in which the alteration of 

0 10 20 30 40 50 60 70 80 90 100

RB

RF

LF

LB

Percentage of Stride Duration

Fe
et

 L
oa

di
ng

 In
di

ca
to

r

 

 
bounding
pronking

20253035404550556065

0

5

10

15

20

25

30

35

40

45

50

% of cycle that each foot is on the ground

%
 o

f c
yc

le
 th

at
 fo

re
 fo

ot
fa

ll 
fo

llo
w

s 
hi

nd
 o

n 
th

e 
sa

m
e 

si
de

 

 

Jupiter (gratio = 2.36), krange: 3500 to 13000 (N/ m)

Earth (gratio = 1.00), krange: 2200 to 19000 (N/ m)

Mars (gratio = 0.38), krange: 1000 to 9800 (N/ m)

Moon (gratio = 0.17), krange: 500 to 3500 (N/ m)

k increase

3 %
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0       degree,  krange: 2200 to 19000 (N/ m)

+ 5   degrees, krange: 2000 to 7700 (N/ m)

+ 10 degrees, krange: 2400 to 3400 (N/ m)

k increase

3 %



 

the r parameter, as it is defined in [23], is visualized 
while we vary  k  and g . Note that this figure is a 
version of the fig. 4 that contains only the gait graphs 
(dots), which lead to an r value that has not been 
observed until then. Again, the rest of the quantities are 
the same as in Fig. 3. 

 
Figure 6. Compliance - gravity effect Hildebrand graph. 
 
6. CONCLUSIONS 

A procedure for implementing the computation of the 
Hildebrand diagrams has been proposed. Using this, and 
the extensive search philosophy, a set of results has 
been acquired, and, when analysing those, one observes 
that the increase of the value of the gravitational pull 
leads to the increase of the mean value of the DF’s, the 
increase in the value of the ground inclination leads to 
the increase of the PR value and the increase of the leg’s 
stiffness value leads to the decrease of the mean value 
of the DF’s. Also, the range of the relative leg stiffness 
values has been presented, under the variation of leg 
stiffness and gravitational acceleration. 
 
ACKNOWLEDGEMENT 

This work is performed under the Ariadna Call for 
Proposals: Space Gaits, contract number 
4000105989/12/NL/KML. 
 
REFERENCES 

1. Heverly, M. and Matthews, J. (2008). A Wheel-on-limb 
rover for lunar operation. Proc. i-SAIRAS 2008, 
Hollywood, USA. 

2. Görner, M., Chilian, A. and Hirschmüller, H. (2010). 
Towards an Autonomous Walking Robot for Planetary 
Surfaces. Proc. i-SAIRAS 2010, Sapporo, Japan. 

3. Chacin, M. and Yoshida, K. (2008). A Microgravity 
Emulation Testbed for Asteroid Exploration Robots. 
In Proc. i-SAIRAS 2008, Hollywood, USA. 

4. Bartsch, S. et al. (2010). SpaceClimber: Develop-ment of 
a Six-Legged Climbing Robot for Space Exploration. 
Proc. ISR/ROBOTIK 2010, Germany. 

5. Latta, M., Remy, C. D., Hutter, M., Höpflinger, M. and 
Siegwart, R. (2011). Towards Walking on Mars. In 

Symposium of Advanced Space Technology in 
Robotics and Automation, Noordwijk, Netherlands. 

6. Muybridge, E., (1899), Animals in Motion, London: 
Chapman and Hall, Republished Dover Publications, 
New York, 1957. 

7. Alexander, R. M., Principles of Animal Locomotion, 
Princeton, NJ: Princeton University Press, 2006. 

8. Hildebrand, M., The Quadrupedal Gaits of Vertebrates, 
BioScience, Vol. 39, No. 11, Animals in Motion, Dec. 
1989, pp. 766-775. 

9. Cartmill, M., Lemelin, P., Schmitt, D., Support polygons 
and symmetrical gaits in mammals, Zoological Journal 
of Linnean Society, 136 (2002), pp. 401–420. 

10. H. von Wachenfelt, Pinzke, S., Nilsson, C., Gait and force 
analysis of provoked pig gait on clean and fouled 
concrete surfaces, Biosystems Engineering, 104 
(2009), pp. 534–544. 

11. Raibert, M. Legged Robots That Balance, MIT Press, 
Cambridge, MA, 1986, pp. 92-95. 

12. http://nssdc.gsfc.nasa.gov/planetary/planetfact.html 

13. ESA, MREP Mars Environmental Specification, SRE-
PAP/MREP/SFR-MES, Issue 1, Rev. 0, April 2010 

14. Golembek, M. P. et al, “The Martian Surface: 
Composition, Mineralogy, and Physical Properties,” 
ed. J.F. Bell III. Cambridge University Press 2008 

15. Stronge, W. J., “Impact Mechanics,” Cambridge 
University Press, 2000 

16. Iagnemma, K., Kang, S., Shibly, H. and Dubowsky, S., 
“Online Terrain Parameter Estimation for Wheeled 
Mobile Robots With Application to Planetary Rovers,” 
IEEE Transactions on Robotics, Vol. 20, No. 5, 
October 2004, pp. 921-927. 

17. Caurin, G. and Tschichold-Gurman, N., “The development 
of a robot-terrain interaction system for walking 
machines,” IEEE ICRA 1994, vol. 2, 1994. 

18. Li, C, Zhang, T. and Goldman, D. I., “A Terradynamics of 
Legged Locomotion on Granular Media”, Science, 
339, pp. 1408-1412, 2013. 

19. Gilardi, G. and Sharf I., “Literature Survey of Contact 
Dynamics Modelling”, Mechanism and Machine 
Theory 37, pp. 1213-1239, 2002. 

20. Storn, R. and Price, K., “Differential Evolution – A Simple 
and Efficient Heuristic for Global Optimization over 
Continuous Spaces,” Journal of Global Optimization 
11, pp. 341-359, 1997. 

21. http://www1.icsi.berkeley.edu/~storn/code.html#matl 

22. Renous, S., Herbin, M. and Gasc J.-P., Contribution to the 
analysis of gaits: practical elements to complement the 
Hildebrand method, Comptes Rendus Biologies, vol. 
327, 2004, pp. 99-103. 

23. Chatzakos, P., Papadopoulos, E. (2009). Bio-inspired 
Design of Electrically-Driven Bounding Quadrupeds 
via Parametric Analysis. Mechanisms and Machine 
Theory, 44(3), 559-579. 

20253035404550556065

0

5

10

15

20

25

30

35

40

45

50

% of cycle that each foot is on the ground

%
 o

f c
yc

le
 th

at
 fo

re
 fo

ot
fa

ll 
fo

llo
w

s 
hi

nd
 o

n 
th

e 
sa

m
e 

si
de

 

 

r, where r = ( kvleg * l0 ) / ( m * g )

 rrange  = 1.6584 to 63.0195

r increase (for a constant g value)


