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Free-floating manipulators are subject to dynamic singularities
that complicate their Cartesian motions and restrict their
workspace. In this work, the Cartesian trajectory planning of
free-floating manipulators is studied. A methodology is developed in
which, for given end-effector trajectories, appropriate initial system
configurations are found that result in singularity avoidance during
end-effector motion. The method applies to both planar and spatial
systems, with and without initial angular momentum, and to any
desired end-effector position and attitude trajectories.
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I. INTRODUCTION

Robots in space are playing important roles in
planetary exploration and in tasks on orbit, due to their
ability to execute tasks impossible to humans and to act in
inaccessible or too-risky environments. On-orbit robotic
systems consist of an on-orbit, thruster-equipped
spacecraft (base) fitted with one or more robotic
manipulators (see Fig. 1). Examples of such systems
include the ETS-VII [1] and the Orbital Express [2].

To conserve fuel or avoid interactions with nearby
objects, all spacecraft actuators may be turned off. Then
the system operates in a free-floating mode during which
the spacecraft translates and rotates in response to
manipulator motions due to the dynamic coupling between
the spacecraft and its manipulator. This mode of operation
is feasible when no external forces or torques act on the
system. In general during operations, zero angular
momentum is desired. However, small amounts of angular
momentum may be present due to previous on/off thruster
action or to collisions with the environment. Moreover, the
effective Cartesian space motion of such systems is
subject to the existence of dynamic singularities (DSs) [3].
These are due to the dependence of the end-effector
velocity on both manipulator and spacecraft motions, and
unlike the singularities of fixed-base manipulators, they
are functions of the dynamic properties of the system. At
DSs, the manipulator is unable to move its end-effector in
some inertial direction, while their location in the
workspace is path dependent due to the nonholonomic
nature of the Cartesian motion; hence the DSs must be
considered in the design, planning, and control of
free-floating manipulator systems.

Over the past decades, the dynamics, planning, and
control of space manipulators have been studied by a
number of researchers [4]. The planning and control of an
underactuated free-floating space system is complicated
due to the nonintegrability of the system’s angular
momentum [5]. To describe the system’s kinematics, the
Virtual Manipulator approach developed by Vafa and
Dubowsky [6] can be used in modeling, path planning, and
workspace analysis of such systems. Papadopoulos and
Dubowsky [7] showed that nearly any terrestrial fixed-base
control algorithm can be applied to space manipulators if a
few additional conditions hold. They also showed [3] that
the free-floating manipulators exhibit DSs which cannot
be predicted by the kinematic properties of the system and
whose location in the workspace is path dependent.

The system’s reachable workspace, a qualitative and
quantitative analysis of which is presented in [8], is
restricted by the presence of a DS. Umetani and Yoshida
[9] introduced the free-floating system generalized
Jacobian and developed a resolved motion-rate control
method based on it. However, the method fails in the
presence of a DS. Caccavale and Siciliano [10] employed
the generalized Jacobian in solving the inverse kinematics
of a free-floating space manipulator. The flatness theory
has been used in planning trajectories for free-floating
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Fig. 1. Spatial free-floating space robot and definition of its parameters.

systems [11–12]. The method requires the selection of
particular parameters so that the system is made
controllable and linearizable by prolongations.

Papadopoulos [5] has presented a point-to-point
Cartesian-space planning method that permits the effective
use of a system’s reachable workspace avoiding DS; no
attempt to follow a predefined path was made. Tortopidis
and Papadopoulos [13] developed a point-to-point,
polynomial-function-based path-planning method that
allows for endpoint location and simultaneous spacecraft
attitude control using manipulator actuators only. Since
the proposed method was applied in joint space, it was
immune to DS. Pandey and Agrawal [14] addressed the
problem of path planning for a free-floating prismatic
manipulator; however, only a final end-effector position
and orientation—not a path—are defined. Lampariello
et al. [15] applied a motion-planning method for
free-flying manipulators which yields optimal solutions
for spacecraft actuation and motion duration, avoiding
unnecessary spacecraft actuation. However, to avoid the
appearance of DSs, motion planning is done in the
joint space rather than in the task space, where tasks are
defined.

A method for grasping and stabilizing a
noncooperative free-floating target satellite is proposed in
[16]. The method includes a path-tracking phase, in which
singularities are avoided indirectly through a cost-function
minimization. Xu et al. [17] have proposed a
trajectory-planning method using damped least squares to
avoid a DS by deviating the end-effector from its desired
path. However, both methods require manipulator
redundancy. Dimitrov and Yoshida [18] introduced a
holonomic distribution control concept to plan
reactionless Cartesian end-effector paths. Redundant
manipulators were used and no end-effector path was
defined. Wang and Xie [19] have developed an adaptive
Jacobian tracking control system for free-floating
manipulators with uncertain kinematic and dynamic
properties; however, to apply this controller, the
end-effector is assumed to be outside the workspace area
where singularities may appear.

Many research works deal with the capturing of
tumbling satellites by space robots where momentum

exchange appears. Distributed momentum control has
been proposed [20–23] so that the spacecraft attitude
reactions during the approach and postimpact phases are
minimized. Several time-optimal control methods have
been presented [24–27], considering either the constraints
on the reaction wheel torques or the momentum it can
store, along with the constraints on the grasping forces and
torques. In all these works, the spacecraft attitude is
controlled with the reaction wheel. An adaptive control
algorithm has been proposed so that the derived
manipulator motions result in minimum disturbance to the
spacecraft following the capture of an unknown tumbling
target [28]. The proposed algorithm was applied in joint
space on redundant manipulators, and thus was immune to
DS.

Although zero initial system angular momentum is
desired before a robot motion, small amounts of angular
momentum may be present, as mentioned earlier. Matsuno
and Saito [29] presented an attitude point-to-point control
law of a planar two-link space robot with angular
momentum, which takes the system to the desired
location. However, the system drifts away due to the
angular momentum. To effectively utilize the angular
momentum generated by momentum wheels, Yamada
et al. [30] proposed a path-planning method for an arm on
a free-floating satellite. However, no desired end-effector
path was defined. The kinematics and momentum
equations of space manipulators were presented by
Nenchev et al. [31]. They focused on the redundant nature
of free-flying systems and proposed a least-squares
approach to resolve system redundancy. The solutions
were applied on tasks with zero system momentum.

To avoid DSs, all previous research works have used
either manipulator redundancy or point-to-point
path-planning techniques. However, the redundancy
complicates system design, while many space tasks
demand exact end-effector path following. In our previous
work [32], we have introduced a preliminary technique
which permits straight-line planning only of a
nonredundant free-floating space manipulator avoiding DS
when its angular momentum is zero. Here this technique is
developed into a method allowing motion along any
end-effector path, which may lie in the entire workspace,
including the path-dependent workspace. Moreover, the
system is allowed to have nonzero angular momentum. It
is shown not only that the presence of angular momentum
affects the value of the initial spacecraft attitude but also
that this attitude depends on the duration of the
end-effector motion. Also, the method is applicable to
both planar and spatial systems allowing commands for
both end-effector desired position and orientation. The
application of the method is illustrated by two examples.

II. DYNAMICS OF FREE-FLOATING SPACE
MANIPULATORS

A space manipulator system consists of a spacecraft
and a manipulator mounted on it. When the system is
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operating in free-floating mode, the spacecraft
attitude-control system is turned off. In this mode, no
external forces and torques act on the system, and hence
the spacecraft translates and rotates in response to
manipulator motions.

We consider a system whose manipulator has revolute
joints and an anthropomorphic open-chain kinematic
configuration for maximum reachable workspace. In a
system with a manipulator that has N degrees of freedom
(dof), there will be N + 6 dof in total, including the
spacecraft dof. The assumption of zero external forces and
initial linear momentum results in a fixed system center of
mass, which can then coincide with the origin O of the
inertial coordinate frame (see Fig. 1). The initial angular
momentum of the system is not assumed to be zero.

In the absence of external torques, the system angular
momentum is conserved. The conservation equation is
then

0D (q) 0ω0 + 0Dq (q) q̇ = RT
0 (ε, n) hCM, (1)

where 0ω0 is the spacecraft angular velocity expressed in
the spacecraft zeroth frame, the N × 1 column vectors q
and q̇ represent manipulator joint angles and rates,
respectively, and 0D and 0Dq are inertia-type matrices of
appropriate dimensions, given in [3]. The matrix R0(ε, n)
is the rotation matrix between the spacecraft zeroth frame
and the inertial frame expressed as a function of the
spacecraft unit quaternion ε, n, and hCM is the system
angular momentum expressed in the inertial frame.

The vector vE contains the end-effector linear velocity
ṙE and angular velocity ωE and is given by

vE =
[

ṙE

ωE

]
= C (ε, n)

[
0J∗

11
0J∗

12

] [ 0ω0

q̇

]
, (2)

where

C (ε, n) =
[

R0 (ε, n) 03x3

03x3 R0 (ε, n)

]
(3a)

and

0J∗
11 = [

0JT
11 I

]T
(3b)

0J∗
12 = [

0JT
12

0JT
22

]T
. (3c)

The 0J11, 0J12, and 0J22 terms are functions of q and are
given in detail in [3], and I is the 3 × 3 unity matrix.

III. TRAJECTORY PLANNING AND DYNAMIC
SINGULARITIES

In this section, we focus on the Cartesian-space
trajectory planning of a spatial free-floating manipulator
whose end-effector has to follow a desired path in
prescribed time. The path is defined by vE(t). During
system motion, the conservation of angular momentum,
given by (1), must be satisfied. Combining (1) and (2) in

Fig. 2. (a) Singularity and margin curves in joint space. (b) PIW and
PDW areas for 2-dof planar space robot. At E, manipulator may become

singular.

matrix form results in the following equation:

A
[ 0ω0

q̇

]
=

[
RT

0 03x6

06x3 CT

] [
hCM

vE

]
, (4)

where the 9 × (N + 3) matrix A is given by

A =
[

0D 0Dq
0J∗

11
0J∗

12

]
9×(N+3)

. (5)

Given vE(t) and hCM, (4) yields the required joint rates
and the spacecraft angular velocity. Equation (4) has at
least one solution, if N ≥ 6. Therefore, the minimum
number of manipulator joints of a spatial system, for a
given end-effector trajectory vE(t), is six. Note that in
planar systems, this number reduces to three. In the
remainder of this paper, we take N = 3 in the planar case
and N = 6 in the spatial one.

When N = 6, (4) has only one solution, if det(A) �= 0.
Since the matrix 0D is invertible, using block matrix
properties the following is true:

det (A) = det
(0D

)
det

(
S∗ (q)

) �= 0 ⇒
det

(
S∗ (q)

) = S (q) �= 0, (6)

where S∗, called the generalized Jacobian [9], is given by

S∗ (q) = −0J∗
11

0D−1 0Dq + 0J∗
12. (7)

When S = 0, (6) defines the DSs in the joint space and
then A loses its full rank. Due to the DSs, the manipulator
reachable workspace is divided in two regions. In the first,
called the path-independent workspace (PIW), no dynamic
singularities can occur, while in the second, called the
path-dependent workspace (PDW), the manipulator may
become singular depending on the end-effector path taken
to reach a point [3].

In the joint space, det(S∗) = S0 = const. in (6) defines
surfaces (spatial systems) or curves (planar systems). If
S0 = 0, these will be called here singularity surfaces (for
spatial systems) or singularity curves (for planar systems);
and if S0 �= 0, they will be called margin surfaces (for
spatial systems) or margin curves (for planar systems).
The singularity and margin curves for a 2-dof planar
system are shown in Fig. 2a. The singularity curve I in
Fig. 2a corresponds to manipulator DS occurring in the
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PDW A area, while curve II corresponds to manipulator
DS in the PDW B area (see Fig. 2b).

If (6) is satisfied, the spacecraft angular velocity as the
end-effector moves, expressed in the spacecraft zeroth
frame, is

0ω0 = [0D−1 + 0D−1 0DqS∗−1 0J∗
11

0D−1
]

RT
0 hCM

−0D−1 0DqS∗−1CTvE, (8a)

while the column vector of the joint rates is

q̇ = − S∗−1 0J∗
11

0D−1RT
0 hCM + S∗−1CTvE. (8b)

As shown by (8), the joint rates and the spacecraft angular
velocity are proportional to the initial angular momentum
and the end-effector linear and angular velocity. The
matrices R0(ε, n) and C(ε, n) in (8a) and (8b) must be
updated using the equations[

ε̇

ṅ

]
=

[
(1/2)

(
ε× + nI

)
− (1/2) εT

]
0ω0. (8c)

Note that if the end-effector is driven from some point
A to point B along path AB, and then the motion is
reversed so that the end-effector is driven back to point A
along the same path and with the same trajectory and time
duration but opposite angular momentum, then it will
reach A with exactly the same configuration with which it
started (see Appendix A). Note that this reverse motion is
virtual, i.e., it is not performed by the manipulator during
the actual motion. However, it allows the computation of a
feasible initial spacecraft attitude using a known
spacecraft attitude corresponding to an end-effector
location along the desired path. This property will be
employed in the methodology developed here.

Equation (8) can be solved numerically to yield the
required joint angles q and the resulting spacecraft attitude
ε, n, so that the end-effector follows the desired path with
desired attitude. However, these fail in the presence of a
DS. One method to avoid DSs is to restrict the end-effector
motions in the PIW, thus reducing the system workspace.
Next we propose a methodology which allows end-effector
path planning that avoids the DS in the PDW and results in
an effective use of the entire system workspace.

IV. AVOIDANCE OF DYNAMIC SINGULARITIES

In this section, we introduce the basic analysis leading
to DS avoidance, along with the definitions employed in
the development of the planning method.

As mentioned in Section III, DS avoidance is achieved
if (6) is satisfied during end-effector motion. The function
S, given in (6), can take positive or negative values. The
satisfaction of (6) can be possible if, during the desired
end-effector motion, S does not become zero, i.e., if
during the motion its minimum value is Smin > 0 (if
S > 0) or its maximum value is Smax < 0 (if S < 0). Note
that when S takes values close to 0—i.e., near a DS—the
manipulator’s motion may result in large values of
accelerations and torques. Therefore, values of S close to
0 also are undesirable; DS avoidance then requires that

Smin > S0 > 0 or Smax < S0 < 0, where S0 a constant. In
this section, and without loss of generality, we focus on
deriving the minimum values of the function S. The same
approach is also applicable if maximum values of S are
considered.

As shown in (6), the value of S depends on
manipulator configuration q. Since q is the solution of (8),
it is a function of the time t and the initial conditions εin,
nin, qin—i.e., q(t ; εin, nin, qin). First, we show that Smin is
a continuous function of the initial spacecraft attitude, a
property that will be used in the next section.

For a given Cartesian path, q results from the
integration of (8), which is of the form
ẋ = f(t ; x),x = [q, ε, n]T. Since f is composed of
trigonometric functions, it is continuous, and in addition,
all its partial derivatives are continuous. Thus it can be
shown that the solution x is continuous in t and εin, nin,
qin [33]. Therefore, S is a continuous function of t , εin,
nin, qin:

S = S (t ; εin, nin, qin) . (9a)

Due to the kinematics, for a given end-effector initial
position, qin is a continuous function of εin, nin. Then (9a)
takes the form

S = S (t ; εin, nin) . (9b)

Similarly, the time derivative of S has the form

Ṡ = f (t ; εin, nin) . (10)

The function S can have a minimum either at a path
intermediate point (Case I)—i.e., at some t∗ < tf , where tf
is the final motion time—or at a path extreme point (Case
II)—i.e., at either t∗ = 0 (if this point is the initial one) or
t∗ = tf (if this point is the final one).

In Case I, t∗ can be found by setting Ṡ equal to 0:

t∗ = g (εin, nin) . (11)

For the desired path, the corresponding minimum of S is

Smin = S
(
t∗, εin, nin

) = S (εin, nin) . (12a)

In Case II and for the desired path, the minimum of S is

Smin = S
(
t∗, εin, nin

)
, (12b)

where t∗ = 0 or t∗ = tf . Therefore, in all cases, for a
desired path of given duration, the minimum of S is a
continuous function of the initial spacecraft attitude:

Smin = S (εin, nin) . (13a)

For planar systems, (13a) is simplified to

Smin = S
(
θ0,in

)
, (13b)

where θ0,in is the initial spacecraft attitude.
Next, the conditions that guarantee singularity

avoidance are derived and illustrated geometrically.
In Case I the manipulator configuration q, which

corresponds to a minimum value of S(q), is computed by
setting the time derivative of S(q) equal to 0:

Ṡ = ∇STq̇ = 0, (14)
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Fig. 3. Geometrical representation of minimum value of function S
during end-effector motion along desired paths (Cases I, II). Case I:

Minimum value S0 corresponds to point C at which motion curve 1 is
tangent to margin curve. Case II: Minimum value S0 corresponds to final

point E of motion curve 2 just touching margin curve.

where ∇S is the gradient of the scalar function S(q). If the
desired minimum value of S during the motion is S0, then
(14) and

S (q) = S0 (15)

represent the necessary conditions for the computation of
the manipulator configuration q such that Smin = S0.

In Case II, the minimum value of S corresponds to the
initial or final value of S, or (respectively) equivalently to
the end-effector initial or final position. Since the end
effector’s distance R from the origin (system center of
mass) is a function of the manipulator configuration only
[3], the equation

R (q) = Ri, (16)

where Ri is the radius of the initial or final end-effector
position, along with (15) constitutes the necessary
conditions for the computation of the manipulator
configuration q such that Smin = S0.

Fig. 3 illustrates geometrically the conditions
corresponding to Cases I and II. This figure shows the
singularity (S0 = 0) and margin (S0 �= 0) curves defined in
Section II for the system in Fig. 2b. It also shows two
additional joint space curves. The first is called the motion
curve and depicts the manipulator configuration trace
according to (8), during end-effector motion along a
desired path (see motion curves 1 and 2 in Fig. 3; these
curves correspond to end-effector motion along the paths
AB and AE in Fig. 2b, respectively). The second curve,
called the distance curve (for planar systems) or distance
surface (for spatial systems), depicts manipulator
configurations corresponding to a given end-effector
distance from the system center of mass. For example,
curves RA, RB , and RE correspond to points A, B, and E in
Fig. 2b, respectively.

Since the normal vector of a margin surface (or curve,
for planar systems) is equal to the gradient ∇S of the scalar
function S(q) and the tangent vector of the motion curve is

q̇, then in Case I, (14) indicates that the vectors q̇ and ∇S

are normal to each other—or else that the motion curve
and a margin surface (or curve) have a common tangent,
as is the case with motion curve 1 in Fig. 3. In Case II, the
minimum value of S corresponds to its initial or final
value—or else the initial or final point of the motion curve
should just touch the margin curve, as is the case with
motion curve 2 in Fig. 3. Note that a DS only appears if
the motion curve intersects the singularity surface (or
curve). Note that different singularity surfaces (or curves)
correspond to PDW A and B (see curves I and II in Fig.
2a). Therefore, if the end-effector path crosses both PDW
areas, the motion curve should avoid intersection with
both surfaces (curves) that correspond to these areas.

V. METHODOLOGY DEVELOPMENT FOR
PLANAR SYSTEMS

Based on the previous analysis, in this section we
develop a DS avoidance methodology for planar systems
which yields appropriate initial spacecraft attitude ranges
and is applicable to any desired end-effector path crossing
both the PDW A and B areas.

To avoid DSs with some margin S0, the initial
spacecraft attitude values θ0,in, which correspond to
Smin = S0 > 0, are computed first. In Section V.A, the
computation of the values θ0,in is presented analytically for
a planar 3-dof manipulator with nonzero angular
momentum. Using these values as limits, in Section V.B
we define the initial spacecraft attitude ranges for DS
avoidance in a single PDW area (A or B in Fig. 2b). Since
the desired end-effector paths may cross both PDW areas
A and B, in Section V.C the computation of the initial
spacecraft attitude ranges is expanded to paths lying in
both the PDW A and B areas.

A. Computation of the Range Limits

In this section a methodology to compute the limits
θ0,in is developed. This computation is based on the
conditions described in Section IV (Cases I and II). The
method is applied to planar systems with nonzero angular
momentum, with the end-effector following any desired
path with a desired orientation. To be able to specify both
end-effector position and orientation, a 3-dof (N = 3)
manipulator is used (see Fig. 4).

Using any kinetics method, such as the barycentric
vector approach [3], the end-effector position and
orientation for a 3-dof planar manipulator can be written as

xE = ac(θ0) + bc(θ0+q1) + cc(θ0+q1+q2)

+ dc(θ0+q1+q2+q3) = xE (s) (17a)

yE = as(θ0) + bs(θ0+q1) + cs(θ0+q1+q2)

+ ds(θ0+q1+q2+q3) = yE (s) (17b)

θE = θ0 + q1 + q2 + q3 = θE (s) , (17c)

where a, b, c, and d are barycentric vector lengths, which
reflect both the geometric configuration and the system
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Fig. 4. (a) Definition of system mass properties and configuration
parameters. (b) System barycentric vectors a, b, c, and d [3].

mass distribution (see Fig. 4b). The computation of the
barycentric vectors is given in [3]. Also, c(·) = cos(·),
s(·) = sin(·), and s is the arclength parameterization of the
path (0 ≤ s ≤ 1), given by

s = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5. (18a)

The initial and final values are sin = 0 and sfin = 1,
respectively, and the initial and final velocities and
accelerations are all zero.

Under these conditions, s is given by

s = 10τ 3 − 15τ 4 + 6τ 5, (18b)

where τ is the dimensionless time,

τ = t t−1
f , 0 ≤ τ ≤ 1. (19)

Since the orientation of the end-effector is specified,
(17) can be written as

x3 = xE − dc(θE ) = ac(θ0) + bc(θ0+q1) + cc(θ0+q1+q2)

(20a)

y3 = yE − ds(θE ) = as(θ0) + bs(θ0+q1) + cs(θ0+q1+q2),

(20b)
where x3, y3 are the coordinates of point 3 (barycenter of
link 3) in Fig. 4b.

For this system, the determinant of the generalized
Jacobian given by (7) is

det
(
S∗) = S (q1, q2) = abD2s(q1) + bcD0s(q2)

− acD1s(q1+q2),

= k0 (q1) + k1 (q1) s(q2) + k2 (q1) c(q2) (21a)

where k0(q1), k1(q1), and k2(q1) are given in Appendix B.
Note that (21a) does not depend on q3 and is identical

with the singularity equation of a 2-dof manipulator [32],
if one considers point 3 (Fig. 4b) as an end-effector. The
influence of third-link mass is contained in the coefficients
ki ,i = 0, 1, 2. Therefore, the singularity-avoidance
problem of a 3-dof manipulator with desired end-effector
orientation is reduced to a 2-dof problem, if one considers
the motion of manipulator point 3. The motion of point 3

is defined by the desired end-effector path and its
orientation—see (20).

It can be shown that the equation

S (q1, q2) = S0 (21b)

has the following solutions:

q2 (q1) = π − arcsin

[
(S0 − k0)

/√
k2

1 + k2
2

]
− arctan

(
k2

/
k1

)
, (22a)

corresponding to the singularity curve I (S0 = 0) or to the
margin curve III (S0 > 0)—see Fig. 2a—and

q2 (q1) = arcsin

[
(S0 − k0)

/√
k2

1 + k2
2

]
−arctan

(
k2

/
k1

)
,

(22b)
corresponding to the singularity curve II (S0 = 0) or to the
margin curve IV (S0 > 0)—see Fig. 2a. Equation (22a)
corresponds to a manipulator DS occurring in the PDW A
are shown in Fig. 2b, and (22b) corresponds to a DS in the
PDW B area. In Fig. 2a, the margin curves corresponding
to S0 < 0 are drawn.

Next we derive analytically the conditions necessary to
find the system configuration that corresponds to a
minimum of the function S (Case I or II). The margin
curve is defined by the value of S0. The slope of the
margin curve is found using the time derivative of (21b)
and is given by

l1 = −∂S (q1, q2)

∂q1

(
∂S (q1, q2)

∂q2

)−1

= g1 (q1, q2) . (23a)

The slope of the motion curve at some point (q1, q2) is

l2 = dq2
/
dq1 = q̇2

/
q̇1. (23b)

The joint rates are expressed as a function of the spacecraft
attitude, manipulator configuration, and end-effector path.
Applying (8) on a 3-dof planar manipulator yields[
θ̇0 q̇1 q̇2 q̇3

]T =[
θ̇0 q̇T

]T =T (θ0, q)
[
hCM ẋE ẏE θ̇E

]T
,

(24)
where the 4 × 4 matrix T(θ0, q) is a function of the
system configuration. The end-effector linear and angular
velocities can be found by differentiating (17):

[
ẋE ẏE θ̇E

]T =
[
∂xE

∂s

∂yE

∂s

∂θE

∂s

]T

ṡ (t) = F (s) ṡ (t) .

(25)
Taking the second and the third equation of (24)—

corresponding to q̇1 and q̇2, respectively—and using (25),
(18b), and (19), we can write (23b) as

l2 = g2 (θ0, q, τ, hCM, tf) . (26)

To avoid singularities in the PDW A or B areas, the
motion curve and the margin curves—given by (22a) and
(22b), respectively—must have a common tangent (see
motion curve 1 in Fig. 3). If the subscript t denotes the
system quantities at the touch point, then

l1 (q1t , q2t ) = l2 (θ0t , qt , τt , hCM, tf) . (27)
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Note that unlike the case of zero angular momentum
[32], in the presence of nonzero angular momentum the
singularity-avoidance problem depends on the motion’s
final time tf , as shown by (27).

For a known value of angular momentum hCM and a
predefined final time tf , the path equation in conjunction
with (20), (17c), (18b), (22a) or (22b), and (27) comprise a
nonlinear system in terms of θ0, q1, q2, q3, τ . Since (27)
yields system configurations that correspond to both
minimum and maximum values of S, in order to accept
only those which correspond to S = Smin one should use
the derived system configuration (θ0,t , qt) as initial
conditions and solve (24) backwards (with motion time
τt tf) and forwards (with motion time (1 − τt )tf) to the
initial and final point, respectively, of the path given by
(18a) and (25). Note that the backwards solution of (24)
demands that the system angular momentum be used with
the opposite sign. If in both directions the resulting motion
curve does not intersect the singularity curve, then these
solutions are accepted. In this case, the backwards solution
yields the desired initial system configuration that bounds
the range of feasible configurations.

In the case where (20), (17c), (18b), (22a) or (22b),
and (27) in conjunction with the path equation yield no
solution, there is no common tangent. Therefore, to avoid
contact with the singularity curve, the final point of the
motion curve must touch a margin curve given by (22a) or
(22b), depending on the PDW area (see motion curve 2 in
Fig. 3). In this case, the touch point (q1t , q2t ) is the
intersection point between the margin curve, given by
(22a) or (22b), and the distance curve of the manipulator
point 3, which using (20) is given by

R =
√

a2 + b2 + c2 + 2abc(q1) + 2acc(q1+q2) + 2bcc(q2).

(28)

Equations (22a) or (22b), with (16) and (28), give the joint
angles (q1t , q2t ). The remaining variables (θ0t , q3t ) can be
found using (17), considering the end-effector final
position and orientation. Using the derived solutions as
initial conditions and solving (24) backwards (with motion
time tf) to the initial point of the path given by (18a) and
(25) yields the desired initial system configuration that
bounds the range of feasible configurations.

B. Initial Attitude Ranges for a Single PDW Area

In this section, the feasible ranges of initial spacecraft
attitudes leading to DS avoidance during end-effector
motion along paths lying in a single PDW area
are established. As shown in Appendix C, the
number of values of θ0,in ∈ [0, 2π) corresponding to
Smin = S0 is even. Consider that there are n values
θ i

0,in ∈ [0, 2π),i = 1, . . . , n, with θ i
0,in < θi+1

0,in , which
correspond to Smin = S0 > 0. Due to the continuity of the
function S with respect to θ0,in, there are attitudes in the
vicinity of θ i

0,in which result in Smin > S0 and others which
result in Smin < S0. These attitude values define ranges

with boundary values θ i
0,in. Of those, the ranges which lead

to DS avoidance are those for which Smin > S0.
Next, and without loss of generality, consider

n = 2—i.e., that there are two values θ1
0,in, θ

2
0,in ∈ [0, 2π)

corresponding to Smin = S0. To identify the feasible
ranges, one can choose an arbitrary value
θ∗1

0,in ∈ (θ1
0,in, θ

2
0,in). If the value θ∗1

0,in results in Smin > S0,
then all attitudes in the chosen range (θ1

0,in, θ
2
0,in)

result in Smin > S0. Then the attitudes inside the
adjacent ranges correspond to Smin < S0. Therefore, the
desired range in [0, 2π ) which results in DS avoidance is
defined by � = [θ1

0,in, θ
2
0,in]. Otherwise, the desired

range is the complementary one, defined by
� = [0, θ1

0,in] ∪ [θ2
0,in, 2π).

In the general case, where n values θ i
0,in correspond to

Smin = S0, these ranges are given, respectively, by

� =
k=(n−2)/2⋃

k=0

[
θ2k+1

0,in , θ2k+2
0,in

]
(29a)

and

� =
k=n/2⋃
k=0

[
θ2k

0,in, θ
2k+1
0,in

]
, (29b)

where θ0
0,in = 0 rad and θn+1

0,in = 2π rad.

C. Initial Attitude Ranges for Multiple PDW Areas

We now tackle the problem of end-effector motion
along any desired path, which may contain segments in
both the PDW A and B areas and for a number of times.
The path is divided into L successive parts, with their
common points selected to lie in the PIW area. The
number L is defined as equal to the number of times the
end-effector path crosses the PDW. For example, the path
segments AB and AF in Fig. 2b cross the PDW areas one
and two times, respectively. Therefore, the path AF is
divided into two segments AB and BF. The individual
common points of the path segments are labeled by
0, 1, . . ., L, starting from the final point of the path (see
Fig. 2b). The common points for segment i are points
i − 1 and i. This procedure results in distinct path
segments crossing a single PDW area. The feasible
attitude ranges leading to DS avoidance in a single area
were defined in Section V.B. Next, the range notation is
generalized, with the end-effector starting at point k and
avoiding DSs along path segment l, as �k

l .
For example, in Fig. 2b the end-effector is driven from

point 2 to point 0. To find the feasible spacecraft attitudes
at point 2 that avoid any DS, the path AF is divided into
segments BF (path segment 1) and AB (path segment 2).
Both segments cross a single PDW area. The feasible
spacecraft attitude range �1

1 at point 1 that avoids DSs at
path segment 1 is computed first. Then the feasible
spacecraft attitude range �1

2 at the same point is computed
so as to avoid DSs at path segment 2. The intersection
�1

1&2 = �1
1 ∩ �1

2 yields the feasible spacecraft attitude
range at point 1 that avoids DSs at both path segments
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Fig. 5. Flowchart for end-effector path that crosses both PDW A and B
areas.

TABLE I
Parameters of the System Shown in Fig. 4

Body li (m) ri (m) mi (kg) I (kg·m2)

0 0.5 0.5 400 66.67
1 1.0 1.0 40 3.33
2 0.5 0.5 30 2.50
3 0.2 0.2 1 1.5

1 and 2. Then the reverse motion from point 1 to point 2
along path segment 2 yields the feasible attitude range
�2

1&2 at point 2. Since the range �1
1&2 results in DS

avoidance in both segments 1 and 2, the range �2
1&2

guarantees DS avoidance along path AF (point 2 to
point 0).

Fig. 5 illustrates the methodology concept as a
flowchart. Since no path segment 0 exists, we set
�0

0 = [0, 2π] and �1
0&1 = �1

1. The output is the range of
initial attitudes which guarantee DS avoidance during
end-effector motion.

Therefore, the proposed method yields the feasible
initial spacecraft attitude ranges for planar systems, so that
DSs during given end-effector motion are avoided. The
developed method is illustrated by an example.

Example 1 To illustrate the developed method, the
planar space manipulator system in Fig. 4 with parameters
in Table I is employed. The third link corresponds to a
small orientation link whose position and orientation
should follow the desired trajectory. This link is then a
small-mass rigid body. A larger link with a higher mass
can be used, since the feasibility of the proposed method is
not affected by specific system inertial properties. The
initial angular momentum of the robot is h0 = 0.5 N·m·s.
It is desired that the end-effector moves from point A =
(2.0, 0.0) m to point B = (−1.0, 2.0) m following a
parabolic path and intermediate point C = (0.0, 1.0) m in

Fig. 6. Motion animation of space manipulator motion with θ in
0 = 140◦.

time tf = 100 s. The path is given by

yE = αx2
E + βxE + γ, (30a)

where one can set

xE (θ0 (t) , q (t)) = xin + (xfin − xin) s (t) (30b)

with xin and xfin corresponding to end-effector initial and
final positions, respectively. In addition, the third link is
required to be normal to the path.

Next, the appropriate initial configurations that
guarantee DS avoidance are computed using the
developed method. For the entire range of q1 and q2, the
maximum value of S is Smax ≈ 150. We choose S0 = 5
(S0 ≈ 3.3% of Smax) to obtain a satisfactory range of
spacecraft feasible attitudes. Note that one can also select
a negative value of S0.

To satisfy the normality condition, the end-effector
attitude should be given by

θE = 3π
/

2 + arctan
(
∂yE (xE)

/
∂xE

)
. (30c)

Since only the motion of point 3 may cause a DS, the
PIW and PDW areas in Figs. 6 and 7 have been computed
based on its motion. Point 3 crosses both the PDW A and
B areas once (see Fig. 7). Then L = 2. First, the
end-effector path AB is divided into path segments AF and
FB, where F = (− 0.5, 1.4583) m and the corresponding
position F ′ of point 3 belongs to the PIW area (see Fig. 7).
Since the system’s angular momentum is nonzero, the
motion duration must be taken into account. In this case,
(18b), (19), and (30b) result in the time duration
t1 = 69.73 s and t2 = tf − t1, respectively, for the path
segments AF and FB.

Applying the procedure described by the flowchart in
Fig. 5, first the feasible attitude range at final point B is
computed in order to avoid a DS at path FB. According to
Section V.A, the acceptable spacecraft attitude,
manipulator configuration, and dimensionless time at
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Fig. 7. Motion animation of space manipulator motion with θ in
0 = 200◦.

which the motion curve is tangent to the margin curve
S = S0 are computed as[

θ0,t , qT
t

]T = [−0.7463, −3.6512, 0.1762, 1.7885]T rad,

τt = 0.9495.

In this case, the spacecraft attitude at point B is
θB

0 = 318.9◦.
Since the motion curve does not have another common

tangent with the margin curve at the PDW B area, the
motion curve should touch the margin curve when the
end-effector arrives at point B. Application of the
procedure described in Section V.A yields the acceptable
solution of θB

0 = 259.4◦.
The aforementioned spacecraft attitudes θB

0 bound the
spacecraft attitude range at point B, and according to
Section V.B, the feasible attitude range at point B is
�B

FB = [0◦, 259.4◦] ∪ [318.9◦, 360◦]. The reverse motion
from point B to F of path segment FB then yields the
feasible range at point F: �F

FB = [0◦, 298.7◦]
∪ [354.2◦, 360◦].

Next, the feasible spacecraft attitude range at F is
computed to avoid a DS at path AF. The acceptable
spacecraft attitude, manipulator configuration, and
dimensionless time at which the motion curve is tangent to
the margin curve S = S0 are[

θ0t , qT
t

]T = [0.9158, −0.6074, 2.9265, 0.9617]T rad,

τt = 0.4895

[
θ0t , qT

t

]T = [1.5922, −0.7348, 2.9014, 0.2833]T rad,

τt = 0.6413.

Therefore, the initial spacecraft attitudes at point F are
θF

0 = 335.3◦ and θF
0 = 60.9◦, respectively, and the

feasible spacecraft attitude range at point F that avoids a
DS at path segment AF is �F

AF = [60.9◦, 335.3◦].
The spacecraft attitude range at point F that guarantees

DS avoidance at both the path segments AF and FB is

Fig. 8. For motion in Fig. 7, (a) spacecraft attitude and joint angle
trajectories and (b) spacecraft attitude and joint angle rates.

�F
AF&FB = �F

AF ∩ �F
FB = [60.9◦, 298.7◦]. The reverse

motion from point F to point A of segment AF then results
in spacecraft attitude limits θA

0 = 161◦ and θA
0 = 63◦. The

spacecraft attitude range at point A that avoids a DS along
path AB is given by �A

AB = [0◦, 63◦] ∪ [161◦, 360◦]. This
range can be increased if a smaller value for S0 is selected.

Figs. 6 and 7 show the system motion when the initial
spacecraft orientation is θ in

0 = 140◦ and θ in
0 = 200◦,

respectively. In the first case, the initial attitude is outside
the boundaries we have computed, and therefore the
desired motion is not feasible (the manipulator becomes
singular at point D). In the second case, the initial base
orientation permits the end-effector to follow the desired
path. Figs. 8a, 8b show the resulting trajectories and their
rates, respectively.

VI. METHODOLOGY DEVELOPMENT FOR SPATIAL
SYSTEMS

In this section, the method described in Section IV is
extended to spatial systems such as the free-floating space
manipulator shown in Fig. 1. It is desired that the
end-effector follow an arbitrary path connecting two
points with appropriate orientation. The specification of a
desired end-effector orientation requires a 6-dof spatial
manipulator. The end-effector position and orientation are
given by

rE = [
xE (ε, n, q) yE (ε, n, q) zE (ε, n, q)

]T

= [
xE (s) yE (s) zE (s)

]T
(31a)

RE (ε, n, q) = RE (s) , (31b)

where RE is the rotation matrix that describes the
orientation of the end-effector with respect to the inertial
frame, the arclength parameterization s of the path is given
by (18), and the unit quaternion ε, n satisfies the constraint

εTε + n2 = 1. (32)
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TABLE II
Parameters of the System Shown in Fig. 1

Body li (m) ri (m) mi (kg) Ixx (kg·m2) Iyy (kg·m2) Izz (kg·m2)

0 – [0, 0, 0.5]T 400 66.67 66.67 66.67
1 0 0 0 0 0 0
2 0.5 0.5 40 0.001 2.5 2.5
3 0.5 0.5 30 0.001 7.5 1.7
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0.2 0.2 10 1.5 1.5 1.5

The end-effector velocity is simply

ṙE = [
∂xE

/
∂s ∂yE

/
∂s ∂zE

/
∂s

]T
ṡ = Fṡ (33a)

ω×
E = ṘERT

E, (33b)

where ω×
E is the skew symmetric matrix obtained from the

end-effector angular velocity vector ωE.
The determinant of the generalized Jacobian in (7) is

S (q) = det
(
S∗) = S (q1, q2, q3, q4, q5, q6) (34)

and represents a surface in the 6-dimensional joint space.
For a known value of angular momentum hCM and a

predefined final time tf , the path equation in conjunction
with (31), (18b), (32), (34), and (14) can be solved to yield
the variables ε, n, q, τ .

The representation of the singularity surfaces in a
6-dimensional joint space is complex. However, the
analysis is simplified using a 3-dof manipulator equipped
with a spherical wrist. For this manipulator, the
end-effector position is

rE = r3 + R0
0R6

6u6,E = r3 + RE
6u6,E, (35)

where r3 is the position of the third-link barycenter (point
3 in Fig. 1), 0R6 is the rotation matrix between the
last-link frame and the spacecraft frame, and 6u6,E is the
fixed barycentric vector which corresponds from the
third-link barycenter to the end-effector.

Since the orientation of the end-effector is specified,
(35) can be written as

r3 (ε, n, q1, q2, q3) = rE − RE
6u6,E. (36)

Therefore, the motion of the end-effector along a
desired path with specific orientation results in a particular
path for the manipulator point 3. For this manipulator, the
determinant of the generalized Jacobian given in (7) is

S = det
(
S∗) = S (q1, q2, q3) . (37)

Since (37) does not depend on wrist angles, according
to (36) the singularity-avoidance problem of this
manipulator with desired end-effector orientation is
specified by the motion of manipulator point 3, and (14) is
simplified to

q̇1∂S
/
∂q1 + q̇2∂S

/
∂q2 + q̇3∂S

/
∂q3 = 0. (38)

An analytic form of the singularities resulting from
(37) can be derived for a manipulator mounted along a
principal axis of the spacecraft and with the spacecraft
moments of inertia about the two other principal axes
equal. Then, the generalized Jacobian in (37) is

S∗ (q1, q2, q3) = 0R1 (q1) Sn (q2, q3) , (39)

where 0R1 is the rotation matrix between the first-link and
spacecraft frames and Sn(q2, q3) is the new generalized
Jacobian. Since 0R1 is a rotation matrix, (37) and (39)
yield

S = det
(
S∗) = det (Sn (q2, q3)) = S (q2, q3) . (40)

Therefore, the dynamic singularities do not depend on
q1. In addition, it can be shown that the equation
S(q2, q3) = S0, where S0 is a constant, has analytic
solutions similar to the ones described by (22). For such
systems, the singularity- and margin-surface shapes are
independent of q1 and have cross sections similar to the
corresponding curves of planar systems shown in Fig. 2a.
The PDW and PIW areas are spherical concentric volumes
with cross sections similar to the workspace of planar
systems shown in Fig. 2b.

In spatial systems, since the spacecraft attitude is
described by three independent variables, the computation
of the feasible ranges of these variables is not trivial.
However, one can find individual attitude solutions that
guarantee DS avoidance. This is next presented via an
example.

Example 2 The spatial manipulator with a spherical
wrist shown in Fig. 1 is employed, with parameters given
in Table II. The 0s in Table II represent the massless body
connecting the first two revolute joints and the spherical
wrist. The end-effector moves from point A = (1, 0, 0) m
to point B = (−0.50, 0.80, 0.33) m following a
straight-line path in time tf = 100 s. The end-effector must
be normal to the plane

0.4683x + 1.1683y − 0.7000z − 0.4683 = 0 (41)

on which the straight-line path belongs. The initial angular
momentum of the robot is hCM = [ 0.5 0.3 0.1 ]T N·m·s.
The path of manipulator point 3 in Fig. 1 crosses the PDW.
An initial spacecraft attitude such as εin = [ 0.1 0.5 0.2 ]T,
nin = −0.8367 (shown in Fig. 9a), results in an initial
end-effector motion on the desired path (see Fig. 9b), to
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Fig. 9. System motion snapshots. System becomes singular at point C.

end at a manipulator dynamic singularity that occurs at
point C = (0.1214, 0.4686, 0.1943) m, as depicted in
Fig. 9c.

Next, an appropriate initial configuration is computed
that guarantees that no DS will be encountered. Since the
path of point 3 crosses only one of the PDW areas,
L = 1—i.e., there is one path segment only. For increased
safety margins, S0 = −5 is chosen. The corresponding
manipulator configuration, spacecraft attitude, and
dimensionless time at which the motion curve is tangent to
the margin surface S = S0 are found according to
Section VI.

Setting q1 = 0.1 rad, one acceptable solution is

qt = [
0.1 2.0 3.3076 −2.6104 2.2981 1.4288

]T
rad

[εt, nt ] = [
0.4295 −0.147 0.6898 −0.564

]T
,

τt = 0.4225.

An initial feasible spacecraft orientation is then

[εin, nin] = [
0.46 0.0935 0.7352 −0.489

]T
.

Using other values for q1 results in additional solutions
and eventually sets of such solutions. Since S0 < 0 has
been selected, these solutions correspond to Smax = S0.
Similar to the planar case, the continuity of the function
Smax results in ranges in the vicinity of εin, nin which
correspond to Smax > S0 or Smax < S0. In this case, the
ranges which lead to DS avoidance are those for which
Smax < S0. However, as mentioned earlier, the
computation of feasible full ranges is complex. This is an
issue for future research.

This initial spacecraft orientation with the manipulator
at point A results in end-effector motion on path AB
without encountering DS, as shown in Fig. 10. The
end-effector trajectories are shown in Fig. 11a, while
Figs. 11b, 11c show the trajectories of the manipulator and
wrist configuration variables, respectively. The spacecraft
attitude expressed by x-y-z Euler angles is shown in
Fig. 11d. Figs. 11e, 11f show the robot joint rates, and
Fig. 11g shows the spacecraft angular velocity expressed
in the inertial frame. It can be seen that all trajectories are
smooth throughout the motion, and no dynamic
singularities occur; the end-effector follows the path from
the initial point A to the final point B.

Note that applying the proposed method requires
solving a system of a few nonlinear algebraic equations

Fig. 10. System motion snapshots. End-effector follows path from A to
B without encountering dynamic singularities.

Fig. 11. (a) End-effector position trajectory. (b) Manipulator joint angle
trajectories. (c) Wrist joint angle trajectories. (d) Spacecraft attitude
trajectories (x-y-z Euler angles). (e) Manipulator joint angle rates.

(f) Wrist joint angles rates. (g) Spacecraft angular velocity.

and knowledge of the system dynamics; it can be
implemented with simple code running in MATLAB.
Although parameters in space systems are known rather
accurately, identification methods can be used to improve
this knowledge. However, this is beyond the scope of this
work.

VII. CONCLUSIONS

In this paper, a trajectory-planning method allowing
the end-effector to follow a desired path avoiding DSs was
developed. Since the path is predefined, the method yields
the appropriate initial spacecraft attitude values that avoid
dynamically singular configurations during the motion.
Thus, the entire system workspace can be used. Here, a
nonzero initial system angular momentum was assumed,
and its influence on the end-effector trajectory planning
was studied in order to guarantee the robustness of the
method in the presence of angular momentum.
Furthermore, the proposed method is applicable to any
desired path and was applied to both planar and spatial
systems allowing commands for both end-effector desired
position and orientation. In addition to the computation of
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feasible initial spacecraft attitudes, in planar systems the
method also yielded the exact range of such attitudes. The
application of the method was illustrated by two examples.

APPENDIX A

This appendix shows the property that the initial
configuration is obtained if a trajectory is followed from
its end to its beginning by reversing the end-effector
motion and the sign of the angular momentum. Equations
(8a), (8b), and (8c) yield

ẋ = A1 (x) hCM + A2 (x) ṙE, (42)

where ṙE is given by (33a);

x = [
εT n qT

]T
;

and

A1 (x) =
[

E
[

0D−1 + 0D−1 0DqS−1 0J11
0D−1

]
RT

0

−S−1 0J11
0D−1RT

0

]
(43a)

A2 (x) =
[

−E 0D−1 0DqS−1RT
0

S−1RT
0

]
, (43b)

with

E =
[(

1
/

2
) [

ε× + nI
]

− (
1
/

2
)
εT

]
. (43c)

Using (33a), (42) can be written as

dx = A1 (x (t)) hCMdt + A2x (t) F (s (t)) ṡ (t) dt. (44)

Suppose that the end-effector moves from A with base
orientation and manipulator configuration described by x1

to B with base orientation and manipulator configuration
described by x2, in 
t = t2 − t1. Integration of (44) yields

x2∫
x1

dx = x2 − x1 =
t2∫

t1

A1hCMdt +
t2∫

t1

A2Fṡdt. (45)

Then the end-effector starts from point B with base
orientation and manipulator configuration described by x2

to point A with base orientation and manipulator
configuration described by x3, at the same time

t = t2 − t1 and with opposite angular momentum. The
motion BA corresponds to opposite end-effector velocity.
Integration of (44) yields

x3∫
x2

dx = x3 − x2 = −
t2∫

t1

A1hCMdt −
t2∫

t1

A2Fṡdt. (46)

Comparison of (45) and (46) yields

x2 − x1 = −(x3 − x2) ⇒ x3 = x1. (47)

APPENDIX B

The parameters ki,i = 0, 1, 2, in (21a) are

k0 (q1) = (2aba22 − c (aa21 + ba02)) s(q1)
/

2 (48)

k1 (q1) = − (aba02 + aca01 − 2bca00)
/

2

+c (−aa11+ba01) c(q1)+a (ba02−ca01) c(2q1)
/

2

(49)

k2 (q1) = a (ba21 − ca11) s(q1) + a (ba02 − ca01) s(2q1)
/

2,

(50)
where a, b, and c are the barycentric vector lengths. The
term aij is equal to 0dij , but without the c(·) terms. The
scalars 0dij result from the inertia matrices 0Dij defined
in [3].

APPENDIX C

We show that the number of values of θ0,in ∈ [0, 2π )
that correspond to Smin = S0 is even. Assume that there
are n values of the initial spacecraft attitude
θ i

0,in ∈ [0, 2π),i = 1, 2, . . . , n and θ i
0,in < θi+1

0,in , that
correspond to Smin = S0 > 0 and n arbitrary spacecraft
attitudes θ∗i

0,in ∈ [0, 2π) so that θ∗i
0,in ∈ (θ i

0,in, θ
i+1
0,in ),

i = 1, 2, . . . , n. Note that the values of θ i
0,in and θ∗i

0,in are
repeated after 2π so that the periodicity of the function S is
satisfied. Then θn+i

0,in = 2π + θ i
0,in and θ∗n+i

0,in = 2π + θ∗i
0,in.

Next, the function f (θ0,in) = Smin(θ0,in) − S0 is defined.
Since this function is continuous with respect to θ0,in and
has solutions θ i

0,in, the following n inequalities hold:

f
(
θ∗1

0,in

)
f

(
θ∗2

0,in

)
< 0 ⇒ −f

(
θ∗1

0,in

)
f

(
θ∗2

0,in

) > 0

...

f
(
θ∗n

0,in

)
f

(
θ∗n+1

0,in

)
< 0 ⇒ − f

(
θ∗n

0,in

)
f

(
θ∗n+1

0,in

) > 0

. (51)

Multiplying the n inequalities in (48) yields

± f
(
θ∗1

0,in

)
f

(
θ∗n+1

0,in

) > 0, (52)

where the plus and minus signs correspond to even and
odd values of n, respectively. Furthermore, f (θ0,in) is
periodic, so

f
(
θ∗n+1

0,in

) = f
(
2π + θ∗1

0,in

) = f
(
θ∗1

0,in

)
. (53)

Equations (49) and (50) yield

± 1 > 0. (54)

However, (54) is true only for the case where the sign is
positive. Therefore, the number n of the values of the
initial spacecraft attitude that satisfy Smin = S0 > 0 must
be even.
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