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Abstract: Piezoelectric energy harvesting (PEH) is studied in the case of a low-velocity impact of
a rigid mass on a composite beam. A methodology is outlined, encompassing modelling of the
open-circuit impact response in a finite element (FE) package, formulation of a lumped parameter
(LP) model for the piezoelectric transducer connected with the harvesting circuit, and experimental
verification of the impact using a custom portable configuration with impactor motion control.
The subcircuit capacitor charging effect, the impactor mass and velocity on the harvesting subcircuit
response, and the obtained output power are quantified. The results indicate that the current
methodology can be used as a design tool for the structure and the harvesting circuit to achieve
power output from composite beams with piezoelectric patches under impact conditions.

Keywords: composites; piezoelectric energy harvesting; impact response; impact testing machine

1. Introduction

Piezoelectric energy harvesting (PEH) is defined as the principle of converting mechan-
ical to electric energy via vibrating piezoelectric transducers, and storing that energy by
means of an appropriately designed electric circuit. This process evolves among two main
stages: (i) conversion of mechanical strain, stemming from vibration to electric voltage
in the piezoelectric (PE) transducer; and (ii) driving the produced current to an electric
circuit feeding a battery. Based on this process, pioneering autonomous systems including
piezoelectric sensors and appropriate harvesting circuitries have been designed since the
late 1990s [1,2]. Most PEH configurations developed since then have been designed by
considering as input continuous forced harmonic excitation [3,4]. This led to a variety of
devices using ambient or human-motion-induced energy for IoT applications and wireless
sensor networks [5,6]. The energy conversion process physics has been studied exten-
sively, employing lumped-parameter models or models based on analytical continuum
mechanics for capturing the response of the vibrating structure in the linear [7–9] and
nonlinear [10–14] regime. A key part of a harvesting device is the circuit. Great effort
has been placed on the design of electric circuits maximizing the power output of the
PEH device, as in the pioneering works of Ottman et al. [15,16], Lefeuvre et al. [17,18]
and others [19–23], leading to various options for the design of a PEH device working
under predefined conditions [24,25]. The basic architecture of a PEH circuit has been
commercialized [26,27].

An interesting application of PEH is low-energy impact. Neglecting energy loss
during an impact, the initial kinetic energy of the impactor is partially converted to potential
energy of impactor–target contact, kinetic and elastic energy in the mechanical substructure,
while the rest is instantly stored as electric energy in the piezoelectric transducer. The
temporal variation of this energy equilibrium may be quantified by means of finite element
methods [28], used to model the impacted structure as a continuum solid and encompass
the interaction between impactor and structure by means of a contact law. In initial PEH
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systems, impact was exploited as a frequency up-conversion mechanism, enabling power
harvesting at low excitation frequencies. Umeda et al. [29] studied the impact of a steel
ball on a piezoelectric vibrator by developing an electrical equivalent model with constants
obtained from the admittance characteristics of the system measurements. A plucking-
based up-conversion strategy for knee-joint energy harvesting has been developed by Pozzi
and Zhu, who modelled a resistively shunted piezoelectric bimorph with finite elements
and validated their model experimentally [30]. In several works, the use of an impact
as a source of power has been studied by connecting the piezoelectric transducer to a
resistance. Renaud et al. [31] developed a lumped-parameter model, assumed a single-
mode impulse excitation based on a method reported by Lee [32] and provided a closed
expression of electric resistance for optimizing power output. Gu and Livermore studied
an impact-driven coupled vibration harvester consisting of a composite and a piezoelectric
bimorph beam, by assuming Euler–Bernoulli-type kinematics and displacement at the
contact point induced by inelastic collision [33]. The effect of impactor mass and velocity
has been studied by Basari et al., based on fundamental energy equilibrium equations
and impact tests [34]. Doria et al. [35] studied the effect of the shape and duration of a
finite-width impulse of base acceleration on a cantilever beam at open-circuit configuration
using analytical, experimental and numerical methods. The contact stiffness between the
impactor and the target has been considered by Jaquelin et al. [36] and Martinez-Ayuso
et al. [37], who developed analytical solutions based on Euler–Bernoulli beams. Fu and
Liao implemented a Hunt–Crossley [38] contact model for predicting the power output
of a resistively shunted piezoelectric beam subjected to impact [39]. Circuits including
rectifiers have been implemented by Ferrari et al. [40] and Wong and Dahari [41], who
studied impacted piezoelectric beams experimentally, in the case of impact induced by a
vibrating beam with tip mass and raindrops, respectively. PEH harvesting systems based
on impact for powering devices have been developed by Feng et al. [42], who introduced
the impact event as an electric pulse excitation in the case of a self-monitoring helmet, and
by Chen et al. [43] in the case of road speed-bumps.

In most of the above-mentioned works on PEH, impact has been studied as a fre-
quency up-conversion mechanism, induced as an impulse excitation. However, impulse
excitation—mostly induced to the model as a half sine force or voltage time signal—should
fit the induced signal amplitude to a measurement. From a design perspective, the velocity
of the impactor would be easier to estimate as an analysis input parameter. Moreover,
impulse excitation does not encompass the physics of the impact, which is introduced by
the contact law between the impactor and the structure hosting the PEH circuit, and mainly
depends on the stiffness and mass of the impactor and target. Thus, important parameters
such as the impact-force–time profile determining the stress distribution in the impacted
structure are not captured accurately. Concerning the circuit, mainly resistive circuits are
connected to the structure under impact, leading to a qualitative and not quantitative
prediction of the harvested energy. This work aims to complement the current state of
the art by presenting a finite element (FE)-based methodology capable of predicting the
impact dynamics, including force–time history, and the harvested energy in customized
commercial PEH circuits comprised of rectification, charging and discharging phases. The
methodology is validated against measurements performed in an in-house low-cost impact
testing machine and processed using real-time hardware/software. The results validate
the expected harvested power, and the effect of impact parameters such as impactor mass
and velocity on the coupled electromechanical response.

2. Description of the Method

The objective of the experimental-numerical method developed here is the prediction
of the electric power that can be harvested during impacts which start vibrations on
composite beams with piezoelectric patches connected to PEH circuits. The methodology
evolves in two stages, indicated by the orange and the blue dotted lines in the flowchart
shown in Figure 1.
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Figure 1. Flowchart of the experimental-numerical methodology.

In the first stage, a finite element (FE) model of a composite beam with a piezoelectric
patch is developed in the multiphysics commercial software Abaqus, where the patch is
in open-circuit mode [44]. This stage serves to validate the numerical model of the beam
subject to impact tests. The validation leads to fine-tuning of the FE model in terms of
contact stiffness and energy dissipation on the composite material and its support. In
this context, the methodology is described as experimental-numerical, since some of the
model parameters (e.g., contact stiffness and damping) are experimentally determined.
Next, the selected terms of modal matrices and the predicted slope of the FE model
are used as input to the analytical equations for predicting the current in closed-circuit
mode [9]. In this context, the piezoelectric patch is modelled as an electromechanically
uncoupled current source. Then, the structure of the PEH circuit is programmed in a
commercial circuit-design software [45] to yield the transient and steady-state responses
of the electromechanical system. The predictions of the closed electric circuit model are
compared with measurements.

In the next sections, the basic equations of motion of the coupled electromechanical
system are formulated, and each stage of the methodology is described explicitly.

2.1. Coupled Electromechanical System in Open-Circuit Conditions

The beam geometry is shown in Figure 2, and the relevant geometric parameters
are listed in Table 1. The PE patch, consisting of a piezoceramic material embedded in
polyimide, is bonded with epoxy on the upper surface of the beam and is assumed to be
tightly connected with the beam. The beam laminate consists of orthotropic composite
plies with arbitrary orientation and an isotropic piezoelectric transducer. The composite
material is assumed to exhibit linear elastic behavior. Through-thickness polarization and
linear piezoelectric response are assumed for the PE patch transducer.
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Figure 2. Composite beam with PE patch: FE mesh and geometric parameters.

Table 1. Beam and PE patch geometric parameters.

Parameter Value (mm) Parameter Value (mm)

Beam length L 128 PE patch length Lp 50

Beam width b 37 PE patch width bp 30

Beam thickness h 2.15 PE patch thickness hp 0.2

Distance from support d1 5.5 Distance from free end d2 10

The ply constitutive equations in the natural coordinate system Oxyz (Figure 2)
are [46]:

σi = CE
ij Sj − (e3i)

TE3

D3 = e3jSj + ε
S
33E3

(1)

where i, j = 1, . . . ,6; σi and Sj are the mechanical stress and engineering strain in vectorial
notation; E3 is the component of electric field vector along the thickness direction; D3 is
the electric displacement vector component; Cij is the elastic stiffness tensor; e3j is the
piezoelectric tensor arising from the piezoelectric charge tensor and the stiffness tensor
and ε33 is the material electric permittivity. Superscripts E and S indicate constant electric
field and strain conditions, respectively, and superscript T indicates matrix transposition.
Equation (1) is formulated in a general manner to encompass the behavior of both a
piezoelectric and a passive composite ply (emj = 0). The electric field vector component E3
is the gradient of the electric potential V along the thickness of the PE patch:

E3 = −∂V/∂z (2)

The through-thickness mechanical displacements of the composite laminate are de-
scribed employing the first-order shear laminate theory:

u(x, y, z) = u0(x, y) + βx(x, y)z
v(x, y, z) = v0(x, y) + βy(x, y)z
w(x, y, z) = w0(x, y)

(3)

where u0, v0, w0 and βx, βy are displacements and rotations of the midsurface, respec-
tively. As explicitly described in Section 2.2, a higher-order layerwise approximation of the
through-thickness displacement field [47] is utilized at a specific stage of the method to di-
rectly provide the slope of transverse displacement along the longitudinal axis of the beam.
The PE patch is modelled as a 3D solid continuum, perfectly bonded on the composite
substrate, with electric potential as nodal DOF in addition to mechanical displacements.
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The equations of motion of the beam subjected to impact are expressed in variational
form using Hamilton’s principle as [28]:

∫ t0+dt

t0

(∫
V

δKdV −
∫

V
δHdV −

∫
V
δWddV +

∫
Γ
δuTτdΓ

)
dt = 0 (4)

where index V denotes beam volume; δu is the vector of mechanical displacements arising
from the kinematic assumptions (3); τ are the tractions at the boundary surface Γ and δH,
δK and δWd are the variations of the electromechanical, kinetic, and dissipated energy of
the beam, respectively. The energy terms in Equation (4) may be expressed as a function of
stress, strain and electric field, which are substituted using Equations (1) and (2) and the
strain–displacement relations. The degrees of freedom of the beam are approximated along
the midsurface (mechanical displacements) and within the transducer volume (electric
voltage) by means of quadratic (8 nodes/FE) and linear (4 nodes/FE) shape functions, re-
spectively [44]. Numerical integration of Equation (4) yields the coupled electromechanical
discrete system in the time domain:

[
[Muu] 0

0 0

]{ ..
u
..
V

}
+

[
[Cuu] 0

0 0

]{ .
u
.

V

}
+

[
[Kuu] [Kuυ]
[Kυu] [Kυυ]

]{
u
V

}
=

{
F(t)
Q(t)

}
(5)

where [M], [C] and [K] are the system mass, damping and stiffness matrices, divided into
elastic (index u) and electric (index υ) parts; F is the external force vector and Q denotes
the external electric charge. In the case of an open-circuited piezoelectric transducer, as
in the first stage of the methodology illustrated in Figure 1, the external electric charge is
assumed to be zero.

The external force appearing in Equation (5) is attributed to the contact between a
rigid impactor, modelled as a point mass with initial velocity, and the beam. This impact
force is expressed as a function of transverse displacement using a linear contact law:

F(t) =
{

ky
(
wi(t)−w0(x0, y0, t

))
, wi(t) > w0(x0, y0, t

)
0 wi(t) ≤ w0(x0, y0, t

) } (6)

where the index i denotes the impactor, (x0, y0) are the coordinates of impact on the
midsurface and ky is the contact stiffness derived by material and geometric properties [48].
The contact law of Equation (6) is represented schematically by interposition of a linear
spring with stiffness ky between beam and impactor, as shown in Figure 3.

Figure 3. Modeling of impactor–target contact during impact.

Note that the present formulation accounts for low-velocity impacts causing no mate-
rial damage. It was implemented using the linear spring connection element SPRINGA [44].
More sophisticated models describing the contact between impactor and composite
beam [49–51] could be applied, but the linear contact law was used for the sake of simplicity.

Solution of Equation (5) provides the time profile of displacements of the composite
beam and the electric potential at the terminals of the open-circuited piezoelectric trans-
ducer, which in this case acts as a sensor. The time profile of impact force may be predicted
using Equation (6) and used as input for predicting electric current in a harvesting circuit,
as explicitly described in the following section.
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2.2. Determination of the PEH Patch Model

The response of the PEH patch is predicted by developing a model with degrees
of freedom depending on the vibration modes considered, which in the single-mode
case is described as a lumped parameter (LP) model with parameters determined by the
FE simulation. The model is based on the formulation of Erturk and Inman [9]—the
piezoelectric patch is modelled as a current source in parallel to an electric impedance
(Figure 4) and a capacitor, which is practically the capacitive part of the piezoelectric
transducer.

Figure 4. Modeling of piezoelectric patch in closed-circuit configuration.

The closed-circuit response is described by the ordinary differential equation [9]:

εS
33 · b · L

hp
· dV

dt
+

V(t)
Rl

+
∞

∑
j=1
κj

dηj(t)
dt

= 0 (7)

The capacity in the circuit of Figure 4 is:

Cp =
ε33bL

hp
(8)

where L, b and hp are the length, width and thickness of the transducer, respectively.
Considering that an exclusively bending vibration along the length of the beam is ex-

cited by the impact event and assuming proportional damping, the transverse displacement
is separated to spatial and time components:

w(x, t) =
n

∑
j=1
ϕj(x)ηj(t) (9)

where j denotes an eigenmode, n is the number of the eigenmodes considered and ϕ is
an eigenvector. The circuit current source is derived by comparing the analytical bending
equation of motion with the dynamics of a resistor–capacitor circuit, as:

I(t) = −
n

∑
j=1
κj

dηj(t)
dt

(10)

where j denotes an eigenmode and η is the transient vector of modal coordinates in the
space-time decomposition of the transverse displacement. κ is the electromechanical
coupling coefficient, provided as:

κj = e31hpb
∫ xf

xs

d2ϕj(x)

dx2 dx = e31hpb

(
dϕj(x)

dx

∣∣∣∣
xf

−
dϕj(x)

dx

∣∣∣∣
xs

)
(11)

with xs and xf denoting the start and end of the patch in terms of length coordinate x.
The methodology followed for determining stiffness, mass, damping, piezoelectric and

permittivity terms of the LP model, including all necessary terms appearing in Equations
(9)–(11), may be briefly summarized as follows.
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(a) Solving of Equation (5) for the free-vibration response of the open-circuit system in the
frequency domain provides the eigenvectors, which are used for the formulation of the
modal mass, damping, stiffness and force transformation matrices, respectively [52]:

[Mffmod] = [ϕ]T[M][ϕ]

[Cffmod] = [ϕ]T[C][ϕ]

[Kffmod] = [ϕ]T[K][ϕ]

[Fsfmod] = [ϕ]T[F]

(12)

(b) The modal matrices are used for determining η:

[Mffmod]
{ ..
η
}
+ [Cffmod]

{ .
η
}
+ [Kffmod]{η} = {Fsfmod}u (13)

where u is a modal force amplitude scaling parameter that can be predicted by Equations (5)
and (6) or obtained by measurement of the impact force. The linear system of Equation (13)
consists of n uncoupled equations.

(c) The electromechanical coupling coefficient κ is provided by Equation (11) using PE
properties, geometrical parameters and the slope of the modal transverse displace-
ment. The latter is directly calculated in modal space, in addition to the eigenvectors
and modal matrices, by implementing a C1-continuous 2D higher-order layerwise
FE [47], which encompasses this slope as a nodal DOF.

(d) The electric current flowing through the PEH circuit is calculated using Equation (10).
As an alternative to points (b–c), ηmay be derived at the point of excitation by means
of a high-speed camera.

(e) The PE transducer is modelled in the PEH circuit as a current source and a capacitor
with Cp appearing in Equation (8).

(f) The harvested power may be calculated as:

P(t) =

∫ t2
t1

Vout(t)Iout(t)dt

t2 − t1
(14)

where Vout and Iout are respectively the voltage and current in the discharging branch of
the PEH circuit described in the following section.

2.3. PEH Circuit

The PEH circuit studied here is the commercial PI E-821.00 [27], shown in Figure 5a.
The circuit was modelled in Ltspice software [45], as presented in Figure 5b. The model
includes a charging branch, consisting of a diode rectifier and a capacitor that charges
due to the alternative current produced by the PE transducer. When the voltage of the
capacitor reaches a reference value (nominal value 12 V), an automatic switch is activated,
allowing part of the electric energy in the capacitor to be released into the discharging
branch. The automatic switch is turned off when the voltage of the capacitor falls below a
low threshold (nominal value 6 V). The switch is implemented by a MOSFET controlled
by an operational amplifier which compares the voltage of the capacitor to the reference
voltage. This response is modelled with the use of a Schmitt trigger supplied by external
voltage sources for simplicity. The discharging branch consists of a buck converter tuning
the output to be a pulse of constant voltage.
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Figure 5. PEH circuit: (a) physical item, (b) modelling approach in Ltspice.

3. Experimental Configuration for Impact Testing
3.1. Custom Impact Frame for Controlled Impact Velocity

Impact tests were performed using a custom portable experimental configuration [53],
which was complemented in terms of repeatability and data acquisition capabilities
(Figure 6).

Its basic version includes a light aluminum frame, prestressed by steel cables for
providing extra rigidity, and an impactor instrumented for impact force measurement.
In its current version, the impactor is moved by a DC servomotor [54] in controllable
configuration by means of encoder feedback (see Appendix B). The perpendicularity of
impact is ensured by means of two parallel bearing sets. Impact force and impactor velocity
are measured by a custom force sensor [55] and the encoder, respectively.
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Figure 6. Experimental configuration for impact tests: (a) schematic representation with measurement system, (b) photo of
impact frame with beam specimen, (c) PEH circuit including an E-821.00 module.

The impact test takes place in two successive steps: (i) the impactor is raised up to
the desired height, and (ii) the velocity of the impactor is provided by the user to initiate
its trajectory (see Appendix B). The motion of the impactor in both stages is controlled by
implementing a modified state feedback controller [56] with gravity compensation. The
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controller is based on a lumped-parameter model of the impactor, including constants
derived by CAD models and static, constant velocity and constant acceleration tests (see
Appendix B). The appropriate gains were determined by the root-locus method. All
signals (load cell, encoder feedback, circuit voltage and current) are obtained using high-
speed data acquisition modular equipment (NI CRIO 9074 [57] including an analog input
module (AI–NI 9220) with 16 channels being capable to operate at a maximum rate of 105

samples/s per channel, and a digital I/O module (NI 9401) with a maximum sampling
rate of 107 samples/s, while a rate of 104 samples/s is used for the control of the impactor.
The software implemented for acquisition, control and storage of the signals is Labview
FPGA [58]. The developed experimental configuration [59] enables impactor tip angle and
velocity to be set by the test engineer to perform impact tests of various types [60] (see
Appendix B). The displacement at the load application point is measured by processing
images [61] acquired by a high-speed camera. A polyurethane tip was used in the impact
tests. The positions of impactor and piezoelectric patch on the tested clamped composite
beam are shown in Figure 2.

3.2. Materials and Specimens

A composite beam of graphite/epoxy material with a P.876-A12 DuraAct® [62] (PI
Ceramic GmbH, Lederhose, Germany) surface attached piezoelectric patch and lamination
[−45/45/902/0/90]S was studied. The patch consists of PIC255 piezoceramic embedded
in polyimide. For the sake of simplicity, the piezoceramic part of the patch was modelled,
and its properties are listed in Table 2. The elastic properties of the composite material
considered were obtained from static tests [63] performed by the manufacturer (Hellenic
Aerospace Industry S.A., Athens, Greeece). They were validated additionally by per-
forming modal tests on the cantilever beam leading to measurement of the fundamental
eigenfrequency at 89.7 Hz. A relatively large modal loss factor of η = 12.5% was assumed
in the LP system, which includes the contribution of clamped support, viscoelastic ma-
terial and intensive usage of the specimen in forced harmonic response tests [64]. The
electromechanical properties of all materials considered are listed in Table 2.

Table 2. Electromechanical properties of materials considered (* under constant stress).

Property Composite Material Piezoelectric Material

Density (kg/m3) 1554 7800

Elastic Properties

E11 (GPa) 138.40 62.10

E22 (GPa) 8.50 62.10

E33 (GPa) 8.50 48.30

G12 (GPa) 4.30 23.20

G13 (GPa) 4.30 21.30

G23 (GPa) 4.30 21.30

ν12 0.31 0.33

ν13 0.31 0.43

ν23 0.31 0.43

Piezoelectric Properties

d31 (10−12 m/V) - −191

d32 (10−12 m/V) - −191

d33 (10−12 m/V) - 409

Dielectric Properties (ε0 = 8.85 × 10−12 F/m)

ε33/ε0 3.5 1832 *
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4. Results and Discussion

According to the methodology shown in Figure 1, the validation stage included the
study of the composite beam impact response in open-circuit electric conditions; therefore,
the piezoelectric transducer acted as a sensor. The contact stiffness ky was tuned by
correlating model prediction with measured impact force and piezoelectric voltage time
profiles, yielding a value of 500 N/m. In the prediction stage, the closed-circuit response
was studied in three cases, each with a different electric component connected to the PE
terminals: (i) a resistance of 10 kΩ; and (ii) the E-821.00 harvesting module twice, each
time with a different charging subcircuit capacitor. The latter configuration was achieved
by replacing the standard 200 µF capacitor with either of two other custom ones having a
capacity of 100 µF and 1 nF, respectively.

4.1. Open-Circuit Impact Response

Figure 7 illustrates FE-predicted and measured time history of impact force, transverse
displacement, and piezoelectric voltage at an impact with initial velocity of 0.75 m/s. The
measured force signal shown in Figure 7a indicates a globally dominated response [53], as
derived from the long duration of the impact and the single fundamental vibration mode
participating in the response. Chattering was observed in the beginning of the measured
force signal, assumed to be mainly attributable to the dimensional clearance of the force
sensor in the impactor assembly. The FE model successfully captured the impact duration,
while it overestimated the impact force amplitude. This deviation may be attributed to
modelling the impactor as a concentrated rigid mass, whereas in the test the polyurethane
tip became deformed during impact. A better comparison during the initial impact phase
was observed between prediction and measurement in the time history of the displacement,
shown in Figure 7b. The measured piezoelectric voltage (Figure 7c) had a similar time
profile with the displacement, as expected in an open-circuit PE response, while it was
more sensitive to the initial chattering observed in the force–time history. The end of the
impact event was determined from the force sensor signal, considering the initial noise,
and is denoted with a dashed vertical line.

Figure 7. Cont.
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Figure 7. Time history of predicted and measured impact response (vi = 0.75 m/s) in open-circuit configuration: (a) impact
force, (b) tip displacement and (c) electric potential at piezoelectric terminals.

4.2. Closed-Circuit Resistive Impact Response

Predictions of the lumped parameter (LP) model for the resistor voltage and circuit
current are compared with measurements in Figure 8a,b, respectively. The LP model
predictions followed the measured trends for both the resistor voltage and circuit current,
but missed the fluctuation measured during the initial impact phase. The change of sign
in both graphs during impact indicates that the impactor moved backwards when it lost
contact with the beam. The free vibration which followed the impact event, provided a
smoother signal, which contained practically the first bending mode.

Figure 8. Impact response in a resistive circuit with R = 10 kΩ: (a) resistor voltage, (b) circuit current.

4.3. Closed-Circuit PEH Response

The dynamic response of the PEH circuit connected to the piezoelectric composite
beam under an impact with velocity of 0.75 m/s is illustrated in Figures 9 and 10. A
100 µF capacitor was employed in the circuit. Voltage and current were measured at
the piezoelectric terminals and at the capacitor, as illustrated in Figure 5b. The current
predictions and measurements seemed to be more sensitive to the impact event and the
induced vibration, while the voltage appeared to have a smoother time response. This trend,
also observed in the forced frequency response of a similar system [64], is more evident
in the measurements presented in Figure 10. This may be attributed to the rectification
in the charging subcircuit, which mainly affected the voltage signal as designated by the
manufacturer. As shown in Figure 10, the capacitor voltage eventually reached a value of
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0.22 V, which is lower than the discharging threshold of 12 V, thus there was no current
output in the discharging subcircuit.

Figure 9. Predicted and measured signals at the piezoelectric terminals of the PEH circuit with a 100 µF capacitor in the
case of impact: (a) voltage, (b) current.

Figure 10. Predicted and measured signals at the capacitor of the PEH circuit with a 100 µF capacitor in the case of impact:
(a) voltage, (b) current.

The LP model could predict the general signal trends, but missed the initial fluctuation
during impact. This trend was more evident before rectification (Figure 9). As already
observed in the open-circuit case (Section 4.1), parameters not included in the impact
modelling approach, such as the deformability of impactor and clearance in the force
sensor assembly, strongly affected the fluctuation in the dynamic response during the
initial phase of the impact event. Nevertheless, this methodology could predict the limit
values of impact-induced signals and therefore could be used as a design tool for PEH
circuits in applications related to low-velocity impact events.

The design capabilities of the developed methodology were studied by implementing
a 1 nF capacitor in a customized version of the E-821.00 PEH circuit for achieving voltage
output. This capacity is smaller than the 2.7 µF capacity of the MOSFETs, so practically the
circuit operated with the MOSFETs also acting as capacitors.

Predictions and measurements of output voltage in the case of an impact velocity of
1.25 m/s are shown in Figure 11. A very good match between predicted and measured
signal was observed, indicating the enhanced capabilities of the methodology. The low



Sensors 2021, 21, 7445 14 of 22

value of capacitance required for obtaining harvested power indicates that the cantilever
beam configuration is not the most appropriate for impact harvesting, since the strain in
the piezoelectric transducer was not sufficient to charge capacitors of a practical application
range in realistic implementation at macro-scale. To this end, other configurations should
be further studied, focusing on the design of the composite structure hosting the transducer.

Figure 11. Predicted and measured voltage in the output of the discharging subcircuit in the case of
a PEH circuit with capacity of 2.7 µF.

The current methodology could be used as a design tool for harvesting circuits in
the case of structures subjected to impact. In case of known impactor mass and velocity,
a custom PEH circuit can be designed to harvest power during impact and subsequent
vibration. Conversely, for the fixed PEH with a 2.7 µF capacitor studied herein, the mass
and velocity of the impactor can be modified, representing different impact conditions.

Figure 12 illustrates the effect of initial impactor velocity on the harvested power. The
blue stars indicate experimental data, while the green circles are predictions of the present
LP model for an impactor mass of 0.3 kg. For velocities exceeding 1 m/s, the beam acted as
a harvester. Power increases had two discrete slopes. However, a precise prediction of the
harvested power at high velocities requires a thorough study of the mechanical response
of the beam in terms of geometric linearity and mechanical strength, which is beyond the
scope of the current work.

Figure 12. Predicted output power as a function of impact velocity (mi = 0.3 kg).
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In Figure 13, the effect of a mass impacting the beam with initial velocity 0.75 m/s is
shown. The threshold for harvesting power in the E.821.00 PEH circuit with a modified
capacitor was 0.8 kg. The harvested power increased with mass, as expected due to the
increased strain induced in the piezoelectric patch by the larger impulse of the impactor.

Figure 13. Predicted output power as a function of impactor mass (vi = 0.75 m/s).

In addition to the prediction of harvested power, the current methodology can be
used as a design tool for prediction of the structural integrity of a structure subjected to
impact. The prediction of the impact force–time profile, as presented in Figure 7, provides
an overview of the impact event and the timestamp of maximum impact force. Figure 14
illustrates the longitudinal stress distribution at ply 3 of 12 at maximum impact force
in the case of an impact of a 0.3 kg mass with a velocity of 4 m/s. This ply has a 90◦

fiber orientation with respect to the coordinate system presented in Figure 2. In specific
regions, the compressive stress exceeded the compressive strength of the epoxy matrix
(158 MPa) [63]. This prediction dictates that an additional design loop is required to ensure
the structural integrity of the harvesting system and tune its harvesting capability by
properly setting the capacity of the output subcircuit.

Figure 14. Longitudinal stress distribution in ply 3 of a composite beam at maximum impact force during the impact of a
0.3 kg mass hitting with 4 m/s initial velocity.

5. Summary and Conclusions

A FE-based methodology was developed for studying PEH from composite beams
with piezoelectric patches subjected to low-velocity impact. Equivalent LP models were
implemented for predicting the post-impact free vibration, electromechanical response of
the beam, and the impact-induced electric response of the harvesting circuit. A commercial
PEH circuit was modified to enable harvested power output under the specific impact
conditions achieved using a custom portable experimental configuration, which involves
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programming in real-time software for controlling impactor velocity and acquiring sensory
signals. The main conclusions derived are listed below:

1. Predictions of the current methodology compared well with measurements of the
electric response of the harvesting circuit, indicating its applicability in the design of
PEH systems subjected to impact.

2. Deviations between predictions and measurements were observed for the impact force
due to the geometric clearance of the force sensor, approximation of impactor–beam
contact stiffness and impactor deformability.

3. Modification of the commercial PEH circuit in terms of capacity in the charging
subcircuit led to harvesting of power in the impact conditions studied experimentally.
The design of this modification was possible via the development of a circuit model
equivalent to the commercial circuit in LTspice software, and respective verification.

4. The harvested power increased with impactor mass and velocity beyond a thresh-
old. Up to that threshold, no electric power produced due to the impact event and
subsequent beam vibration could be extracted.

5. A major capability of this methodology is the prediction of impact-force–time pro-
file and stress distribution during impact events in composite beams with arbitrary
lamination. In this context it can be used for the design of composite impact har-
vesters with piezoelectric patches, enabling the prediction of harvested power within
applicable structural integrity limits.

The current methodology includes the modelling of PEH in composite beams by
developing an LP electromechanical model based on FE and solving for the electric response
of the harvesting circuit. To this end, the extension of the methodology to plate and shell
structures is straightforward and will be studied in future work, aiming at the design of
appropriate PEH circuits for various impact conditions.
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Appendix A

Appendix A.1. Parameters of Impactor Mechanism

The model of the moving mechanism for impact testing is shown in Figure A1.
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Figure A1. Model of motor–gearbox–load.

The differential equation of motion of the impactor is described in Equation (A1):

n · KT · i =
(

n2 · Jm + JL

)
·

..
θ +

(
n2 · bm + bL

)
·

.
θ + TC · sgn

.
θ + TW (A1)

where Tm is the motor’s torque,
.
θm is the motor’s rotational speed, Jm is the rotor’s inertia

of the motor, bm is the viscous friction coefficient of the motor,
.
θ is the rotational speed

of the impact pendulum (load), JL is the inertia of the load, bL is the viscous friction
coefficient of the load, n = R2/R1 is the planetary gearhead’s reduction, i is the current
that passes through the motor, KT is the torque constant, Tc is the torque produced by the
Coulomb friction, u is the output torque after the gearhead, TW is the torque produced by
the gravitational forces (weight) of the impact pendulum and be is the equivalent coefficient
of the viscous friction be = n2 · bm + bL.

The parameters of the model were experimentally determined (Table A1).

Table A1. Parameters of the impactor mechanism.

TC (Nm) b (Nms) Mtot (kg) Jm (kgm2) JL (kgm2) n kT (Nm/A)

0.068 0.46 0.367 3.47E-6 0.02 28 0.054

Appendix A.2. Control of Impactor Mechanism

The block diagram of the closed-loop system with a PV controller is illustrated in
Figure A2.

Figure A2. Simplified closed-loop block diagram for a non-linear PV (or PD *) controller with weight
compensation Tw, where r(t) is the reference input signal, Gc(s), Gp(s) and H(s) are transfer functions
of controller, plant and feedback loop, respectively, and Td is a term for the disturbances.

A non-linear PV (or PD *) controller is an alternative form of a simple PD controller
with an extra term to compensate weight. More specifically, instead of using the first
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derivative of the error, the first derivative of the output is considered in order to avoid
overshoot:

u(t) = KP · e(t)− KV ·
dy
dt

+ TW = KP · (θd − θ)− KV ·
.
θ + TW (A2)

where u(t) is the input, e(t) is the measured error, y(t) is the output, KP and KV are the
gains of the controller, θ and θD are actual and desired position of the impact pendulum,
respectively,

.
θ is its rotational speed and TW is a term to compensate the torque produced

by its weight.

Appendix A.3. Real-Time Implementation of the Control System

CRIO–9074 hardware was used for measuring the velocity of the impactor by means
of an encoder, for implementing the state feedback controller, and for generating the PWM
input to the plant via the motor controller (Figure A3).

Figure A3. Real-time block diagram representation for the closed loop.

The flowchart of the consolidated automatic control and data acquisition system for
the control of the impact pendulum and the sampling of measurements from sensors is
represented in Figure A4. The process was performed in parallel at real-time and FPGA
levels. The FPGA level ensures the efficiency of analog and digital measurements and
output signals, while the real-time (RT) level is exclusively focused on implementation
of the PV controller, data storage and visualization. The red dashed line in Figure A4
illustrates the flow of analog data from the FPGA level to the RT level, while the green
dashed lines indicate the flow of digital signals between the FPGA and the RT level.

Figure A4. Flow chart of the integrated control and acquisition system, where DMA and FIFO denote direct memory access
and first in, first out sequence, respectively.
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The execution frequency of each loop at real-time and FPGA levels is presented in
Table A2.

Table A2. Loop rates of main processes.

Labview Real-Time Level

Control Loop fcontrol loop = 1 kHz

Labview FPGA Level

Encoder Measurements fdigital loop = 10 kHz

Analog Data Acquisition fanalog loop = 16 kHz

Position and velocity profiles of the impactor in a typical impact test are illustrated in
Figure A5.

Figure A5. Implementation evidence of the developed real-time control system: (a) position profile and (b) velocity profile
of the impactor.

The tip angle of the impactor in a typical impact test is illustrated in Figure A6. The
tip angle a3 is low to justify the assumption of vertical impact.

Figure A6. Schematic representation of impactor tip angle, where vlin is linear velocity; vx
lin is its

x-component; p is the angle between x-axis and linear velocity vector; a is the distance between the
tip of the impactor and point B, measured before testing and a1, a2 and a3 are rotation angles.
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