
Robotics and Autonomous Systems 160 (2023) 104310

S

b
n
v
S
o
o
s
n
p
t

F
o
(
a
e
F
t
c
o
c
a

e

t

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

On the parameter identification of free-flying spacemanipulator
systems
Olga-Orsalia Christidi-Loumpasefski ∗,1, Evangelos Papadopoulos
chool of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece

a r t i c l e i n f o

Article history:
Received 21 August 2020
Received in revised form11 September 2022
Accepted 5 November 2022
Available online 15 November 2022

Keywords:
Parameter identification
Space manipulator systems
Space robotics
On-orbit servicing

a b s t r a c t

A novel parameter identification method is proposed, which identifies all the parameters required for
the reconstruction of free-flying space manipulator system dynamics. Its key advantage is that it does
not use acceleration measurements; thus, it is less sensitive to sensor noise than other methods. The
method is based on the conservation of angular momentum and on a kinematic equation including
a Jacobian. To apply the method, all manipulator joints are commanded to follow optimized exciting
trajectories, while the system is in free-floating mode. The estimated parameters render the free-
flying system dynamics fully identified and available to model-based control. The method applies to
multi-arm systems and is validated by simulation and experiments with excellent results.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Space is becoming fast very important, not only for exploration
ut also for people’s well-being. However, space operations face
umerous challenges. Spacecraft failures can disrupt critical ser-
ices and contribute to the generation of space debris. On Orbit
ervicing (OOS) allows for the development and maintenance
f vital on orbit infrastructure, including operations such as re-
rbiting and de-orbiting, inspection and retrofitting of structures,
atellite maintenance and repair, and space debris removal. A
umber of manned on-orbit servicing missions have been accom-
lished successfully, while autonomous servicing is planned for
he near future.

A cost-effective way to accomplish OOS is to employ Free-
lying Space Manipulator Systems (FFSMS) [1]. FFSMS consist
f one or more robotic manipulators, mounted on a spacecraft
SC) equipped with thrusters, reaction wheels (RWs), antennas
nd sensors, see Fig. 1. The ETS-7 and the Orbital Express are
xamples of such systems [2,3]. Unlike fixed-based robots, the
FSMS spacecraft is disturbed by manipulator motions, [4]. Hence,
o control such a system, it is essential to consider the dynamic
oupling between the manipulators and their base. A number
f control modes for FFSMS have been proposed and can be
lassified in three categories [5]. In the first, both the position
nd attitude of the SC are actively controlled (free-flying mode).
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Fig. 1. A free-flying space manipulator system with a captured satellite.

In the second mode, neither is controlled (free-floating mode), and
finally, in the third, only the SC attitude is controlled. During
different phases of a mission, a succession of these modes can
be employed.

To accomplish high accuracy tasks on orbit, advanced con-
trol strategies such as model-based ones, must be employed.
However, model-based control requires accurate knowledge of a
system’s parameters [6]. Also, these are important for accurate
navigation algorithms, for system validation, and for failure de-
tection. In addition, the FFSMS parameters can change on orbit
for a number of reasons, such as docking to a spacecraft or
space debris capture, and therefore they must be updateable on
orbit. The parameters can be obtained approximately through
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detailed system CAD models. Nevertheless, many elements are
very complex to model [7]. Therefore, such models can be useful
for obtaining initial estimates only.

To address these needs, a number of parameter identification
ethods have been developed. These methods can be classified as

hose employing the equations of motion, those based on energy
ethods, and those based on momentum equations. Examples of

he former include [8–12]. However, the main disadvantage of the
quations of motion methods is the requirement for acceleration
easurements, which contain substantial noise and corrupt the
stimates.
Xu et al. [13] proposed a method that uses both equations

f motion and momentum equations, for identifying all inertial
roperties of a space manipulator system and of a grasped tar-
et. Hence, the method requires acceleration measurements and
any steps to identify system parameters.
To tackle this limitation, other researchers have formulated

dentification methods based solely on energy or momentum
quations, [8,14–18]. However, these algorithms, cannot identify
ll required parameters; they estimate mainly the SC body or
he grasped object. A momentum method for identifying the
arameters of a space robot was proposed, that identifies all
arameters required to reconstruct the free-flying dynamics, us-
ng the linear and angular momentum equations [19]. However,
uring the identification experiment, the method requires the use
f reaction wheels, increasing operational complexity, while the
egressor matrix of the angular momentum requires the addi-
ional measurements of the spacecraft linear velocity, increasing
oise sensitivity. Also, it assumes that the system momentum is
nown and applied by the reaction wheels; however, this is not
eveloped further to include this assumption explicitly. A recent
eview of system identification methods for space manipulator
ystems can be found in [20].
In our previous works [21,22], methods for identifying all

ystem parameters required for the complete reconstruction of
system’s free-floating joint space dynamics [21] and Cartesian
pace dynamics [22] respectively, were proposed. Compared to
he ones in the literature, these methods are superior, as they
ield all parameters and have distinct accuracy advantages in the
resence of noise. Although this is an important realization, addi-
ional parameters are required to describe a FFSMS in free-flying
ode, as for example when it approaches a target.
In this paper, a new parameter identification method is de-

eloped, which identifies all inertial parameters needed for the
omplete reconstruction of a system’s free-flying joint space dy-
amics. Novel contributions of the developed methodology in-
lude the identification of all system parameters required for
he complete reconstruction of a FFSMS in free-flying mode, the
se of only manipulator joint torques as system inputs, and its
ndependence of noisy measurements. The identification method
s based on a formulation of the system angular momentum
onservation during the free-floating mode, and on a kinemat-
cs equation with includes a Jacobian. To apply the method,
ll manipulator joints are commanded to follow optimized ex-
iting trajectories, while the system is in free-floating mode.
he methodology is readily applicable to FFSMS with multiple
anipulators.

. Dynamics of free-flying space manipulators

In this section, the dynamics of a FFSMS is presented briefly.
ig. 2 shows a FFSMS consisting of a SC, equipped with thrusters,
ith N rw RWs, and with n manipulators or appendages with rev-

olute joints, in an open chain kinematic configuration. A captured
satellite or space debris is considered as part of the manipulator’s
2

Fig. 2. A free-flying space manipulator system with n manipulators.

last link. The m-th manipulator has Nm links, and the sum of all
manipulator links K is

K =

n∑
m=1

Nm (1)

A frame 0{x0, y0, z0} is attached at the SC center of mass
(CM). A SC feature point S is tracked, and an observation frame
b{xb, yb, zb} is attached to it, with orientation that of frame 0.
Moreover, a frame rw,k{xrw,k, yrw,k, zrw,k} is attached to the k-
th RW. Frame i{X, Y, Z} is the inertial frame. In this work, the left
superscript on (•) indicates the frame in which (•) is projected.
A missing left superscript indicates the inertial frame.

2.1. System angular momentum

The system angular momentum with respect to the system
CM, hcm, is written as the sum of the robotic servicer’s angular
momentum hrs and the angular momentum of the RWs due to
their relative rotation with respect to the servicer SC, hrw/sc

hcm = hrs + hrw/sc (2)

The robotic servicer’s angular momentum hrs is given by [23]

hrs = R0(0D 0ω0 +
0Dq q̇) (3)

where 0ω0 is the SC angular velocity. The column vector q̇ is

q̇ = [q̇(1)T
· · · q̇(m)T

· · · q̇(n)T
]
T (4)

where the Nm x 1 column-vector q̇(m) represents the joint rates
vector of the m-th manipulator. The matrix R0 is the rotation
matrix that describes the orientation of frame 0 with respect to
the inertial frame, expressed as a function of the Euler parameters
ε, η. The inertia-type matrices 0D, 0Dq are given in [21]; the
inertial parameters of the RWs are considered as part of the SC
inertial parameters. In contrast to [19], in this formulation, the
servicer’s angular momentum is not a function of the SC linear
velocity.
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The angular momentum of the RWs due to their relative
otation with respect to the servicer’s SC, hrw/sc , is given by

rw/sc = R0

Nrw∑
i=1

0arw,iIrw,iq̇rw,i = R0
0Arwq̇rw = Arwq̇rw (5)

where Irw,i is the i-th RW’s polar moment of inertia, 0arw,i is the
vector that denotes the i-th RW’s rotation axis, q̇rw,i is the i-th
RW’s spin rate with respect to its stator, q̇rw is the column vector
of the RWs relative angular rates, and the inertia-type matrix
0Arw is an appropriate matrix.

2.2. Equations of motion of FFSMS

For FFSMS, the Lagrangian L can be assumed to be equal to the
system kinetic energy T. This energy is written as

T =
1
2
M0ṙTcm

0ṙcm +
1
2

0ω T
0

0D0ω0 +
0ωT

0
0Dqq̇ +

1
2
q̇T 0Dqqq̇

+
0ωT

0
0Arwq̇rw +

1
2
q̇T
rw

0Irwq̇rw
(6)

where M is the system total mass, 0ṙcm is the system CM linear
velocity, inertia-type matrices 0D, 0Dq, and 0Dqq are given in [21]
and inertia-type matrix 0Irw is given by
0Irw = diag

(
Irw,1, . . . , Irw,Nrw

)
(7)

The first four terms of the kinetic energy in (6) have been
presented in [23]. The two additional terms refer to the kinetic
energy due to the presence of rotating RWs on the SC.

Using the generalized speeds [23]
0v = [

0ṙTcm
0ωT

0 q̇T q̇T
rw]

T (8)

and employing a quasi-coordinate formulation yields [24],

d
dt

(
∂T

∂0ṙcm

)
+

0ω×

0
∂T

∂0ṙcm
=

0f0 (9)

d
dt

(
∂T

∂0ω0

)
+

0ω×

0
∂T

∂0ω0
+

0ṙ×cm
∂T

∂0ṙcm
=

0n0 (10)

d
dt

(
∂T
∂q̇

)
−

∂T
∂q

= τK×1 (11)

d
dt

(
∂T

∂q̇rw

)
= τrwNrw×1

(12)

here (∗)× denotes the skew symmetric matrix, f0 is the resulting
xternal force applied to the SC by its thrusters, n0 is the associ-
ted moment, τ is the vector of manipulators joint torques, and
rw is the vector of RWs torques.
Eqs. (9)–(12) can be written in matrix form as

H+(q)0v̇ +
0c+(q, q̇, q̇rw, 0ṙcm,0 ω0) =

0Q (13)

here 0v̇ is the derivative of 0v in frame 0, and 0H+ is the
6+K +Nrw) × (6+K +Nrw) positive definite symmetric system
nertia matrix, given by

H+
=

⎡⎢⎢⎢⎣
M1 0 0 0
0 0D 0Dq

0Arw

0 0DT
q

0Dqq 0

0 0AT
rw 0 0Irw

⎤⎥⎥⎥⎦ (14)

Vector 0c+ contains the remaining nonlinear terms of the left-
and-side of Eqs. (9)–(12), and the vector of generalized forces
Q can be written as in [25]

Q =

⎡⎢⎢⎢⎣
03×1

03×1

τK×1

⎤⎥⎥⎥⎦ +

if∑
p=1

0JT0,p
0F0,p +

n∑
m=1

Nm∑
i=1

if∑
p=1

0J(m)T
i,p

0F(m)
i,p (15)
τrwNrw×1

3

where 0F0,p is the p-th external force/moment applied to the SC
by its thrusters, with 0J0,p the corresponding Jacobian matrix,
0F(m)

i,p is the p-th external force/moment applied to the i-th body
of the m-th manipulator, and 0J(m)

i,p is the corresponding Jacobian
matrix, and if is the number of applied forces/moments on the
corresponding body. Jacobian matrices J0,p and J(m)

i,p are given
in [26] and Appendix.

3. The parameter identification method

In our previous work [21], a parameter identification method
was proposed that identifies a minimal vector of parameters π
required in the reconstruction of the free-floating joint space
dynamics. Nevertheless, missions with a robotic servicer in free-
flying or attitude control mode require accurate knowledge of
the free-flying joint space dynamics; however, the corresponding
parameter sets are not identical. In the free-flying mode, the
required parameters are those that can reconstruct H+, c+, J0,p
and J(m)

i,p in joint space dynamics in Eq. (13). The vector of param-
eters π identified in [21] allows partial reconstruction of these;
therefore additional parameters must be estimated. In particular,
for matrix H+ and vector c+, the system total mass M is required
also, while for matrices J0,p and J(m)

i,p , a vector of additional param-
eters φ must be available. Specifically, the equations of motion of
a FFSMS as a function of the inertial parameters are⎡⎢⎢⎢⎣
M1 0 0 0
0 0D(π) 0Dq(π) 0Arw

0 0DT
q(π)

0Dqq(π) 0

0 0AT
rw 0 0Irw

⎤⎥⎥⎥⎦ 0v̇+
0 c+(M,π) =

0Q(π,φ) (16)

The identification method developed here is based on angular
momentum and kinematics equation sets. The first set is used
for identifying vector π, while the second one for identifying
vector φ. Once vectors π and φ become available, one can easily
reconstruct the total mass M. Note that during the identification
experiment, thrusters and reaction wheels are off. Hence the
system operates in free-floating mode; however, the parame-
ters identified by the identification method render the free-flying
dynamics fully known.

In the free-floating mode, the system angular momentum and
the system linear velocity remain constant

hcm = (hcm)in = const. (17)

ṙcm = (ṙcm)in = const. (18)

where (∗)in is the initial value of (∗).
A flowchart for the implementation of the developed method

in five steps is shown in Fig. 3. During the procedure, manipulator
joints follow appropriate exciting trajectories.

3.1. Identification based on the angular momentum principle

To use Eq. (2) for parameter identification, the RWs relative
angular momentum with respect to the SC, 0hrw/sc , must be
known. This is the case, as the RWs moments of inertia, their
location with respect to SC frame and the RW joints rates are
practically known from their specifications, their mounting pro-
cedure and the RWs encoders respectively. The robotic servicer’s
angular momentum, hrs, must be expressed linearly with respect
to a minimal inertial parameter vector π [21]. Thus, the servicer’s
angular momentum can be written as

h = Y q̇, q, ω , ε, η π (19)
rs ( 0 )
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Fig. 3. Flow chart for the implementation of the proposed method.

here the 3 × k matrix Y is the regressor matrix, and k is the
imension of π. In contrast to other methods that require joint

accelerations and spacecraft angular acceleration, the key feature
of this regressor is that it does not require noisy acceleration mea-
surements. Specifically, joint accelerations are more noisy than
joint rates since the former are obtained by the differentiation of
the latter. Also, spacecraft angular accelerations are more noisy
for the same reason. Therefore, eliminating both accelerations
and their large associated noise improves significantly the quality
of the identification results of the developed method.

Initially, the robotic servicer and its RWs each have accumu-
lated angular momentum

(hcm)in = (hrs)in +
(
hrw/sc

)
in (20)

Based on Eqs. (19), (20) becomes,

hcm)in = (Y)in π+
(
hrw/sc

)
in (21)

Based on Eqs. (21), (17) becomes

cm = Yπ+ hrw/sc = (Y)in π+
(
hrw/sc

)
in (22)

This equation can be written further as

Y − (Y)in)π =
(
hrw/sc

)
in − hrw/sc (23)

Assuming N measurements of the variables (q̇, q, q̇rw,ω0),
and ε, η obtained at time instants t1, t2, . . . , tN during manipulator
motion, Eq. (23) results in the following system of equations

b̂ =

⎡⎢⎢⎢⎢⎢⎣

(
hrw/sc

)
in − hrw/sc (t1)(

hrw/sc
)
in − hrw/sc (t2)

...(
hrw/sc

)
in − hrw/sc (tN )

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Y(t1) − (Y)in

Y(t2) − (Y)in

...

Y(tN ) − (Y)in

⎤⎥⎥⎥⎥⎦π = Ŷπ (24)

All required quantities, can be obtained directly or indirectly
using available sensors. The required joint angles q are obtained
directly by the joint motor encoders, while the joint rates q̇
and the RW rates q̇rw are obtained by differentiating q and
qrw , available directly from the corresponding encoders. Note
that RWs joint rates measurements are required only before the
identification experiment. The orientation of the servicer’s SC, and
thus, the corresponding Euler parameters ε, η, can be obtained
directly using Star or Sun Trackers, or indirectly using installed
IMUs, while 0ω0 can be provided by IMUs also.

Note that if the robotic servicer is initially at rest and its
RWs have accumulated angular momentum, (a realistic scenario
following a stabilization procedure), Eq. (24) still holds with
4

(Y)in = 0. If both the robotic servicer and its RWs are initially
at rest, and hence (hcm)in = 0, then angular momentum must be
introduced in the RWs. This can be implemented using a speed
controller and RWs desired rates

(
q̇rw

)
des. Once the desired rates

are reached, the RWs spin with the desired accumulated relative
angular momentum(
hrw/sc

)
des = Arw

(
q̇rw

)
des (25)

Then, the RWs controller is turned off and all manipulator
joints are commanded to follow optimized exciting trajectories,
while the system is in free-floating mode.

Then, Eq. (24) still holds with(
hrw/sc

)
in =

(
hrw/sc

)
des (26)

3.2. Identification based on kinematics

To estimate the vector of parameters φ, a kinematic equation
that includes the Jacobian matrix J0,p is used. Specifically, the
linear velocity of an arbitrary point P on the SC and the SC angular
velocity can be related to the time derivative of generalized
speeds through the Jacobian matrix J0,p [27]. In more detail, for
the observation point S on the SC of the FFSMS, see Fig. 2, this
kinematic relation is written as[ 0ṙs

0ω0

]
=

0J0,s0v (27)

Using (A.3),
0ṙs −

0ṙcm =
0J(0)1

0ω0 +
0J(0)2 q̇ (28)

where J(0)1 and J(0)2 are submatrices of the J0,s, given in [26]. The
right side of (28) can be formulated as
0ṙs −

0ṙcm = W
(
q̇, q, 0ω0

)
φ+ x

(0ω0,
0rjoint1/s

)
(29)

where W contains measurable variables, 0rjoint1/s is the known
position vector from the tracked point S to a manipulator’s first
joint expressed in frame 0, see Fig. 2, and x contains both mea-
surable 0ω0 and known quantity 0rjoint1/s. This equation can be
further written as
0ṙs = W

(
q̇, q, 0ω0

)
φ+ RT

0ṙcm + x
(0ω0,

0rjoint1/s
)

(30)

The 3 × l matrix W is the regressor matrix corresponding to
the vector of inertial parameters φ and l is the dimension of
φ. The system CM linear velocity ṙcm is constant in free-floating
mode, see (18), and unknown; hence, it can be included in the
vector to be estimated. Note that this regressor too, does not
require acceleration measurements and it applies to multi-arm
systems. As discussed earlier, elimination of linear and angular
accelerations improves the quality of the identification results.
Also, the spacecraft linear velocity is needed here only in (30),
and is less noisy with respect to the linear acceleration, since the
former is obtained by integration.

Obtaining again N measurements of ṙs, q̇, q, ω0, ε, η at time
instants t1, t2, . . . , tN during an appropriate trajectory, results in
the following system of equations

ĉ =

⎡⎢⎢⎢⎢⎢⎣
0ṙs(t1) − x(t1)
0ṙs(t2) − x(t2)

...

0ṙs(tN ) − x(tN )

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
W(t1) RT

0

W(t2) RT
0

...
...

W(tN ) RT
0

⎤⎥⎥⎥⎥⎦
[
φ

ṙcm

]

= Ŵ
[
φ

ṙcm

]
(31)
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The additional measurement of the SC linear velocity can be
btained by fusing GNSS, inertial, and magnetometer data [28]. To
btain good identification results, the manipulators must follow
ufficiently exciting trajectories, also see Section 3.4.
The systems of equations given by Eqs. (24) and (31), are over-

etermined and therefore, their solution is obtained by appropri-
te recursive or non-recursive algorithms (e.g. least squares). The
egressor matrices must be of full rank for Eqs. (24) and (31) to
e solved for π and φ, which in turn requires that π and φ are

minimal parameter sets, obtained as in [21].

3.3. System total mass estimation

Based on the identified vector parameters π and φ, the total
ass M can be estimated using various expressions of the form

M = πi/
(
ϕjϕk

)
(32)

here i, j, k can be easily selected based on the fact that some
f the πi’s are related to a product of two ϕi’s. One of these
xpressions is adequate for the total mass calculation. Vector
arameters π and φ together with the total mass M are enough
o reconstruct the system’s free-flying dynamics.

For a FFSMS, Eq. (32) is applicable and preferable since it
oes not require additional steps in the identification procedure.
owever, Eq. (32) may be sensitive to sensor noise in case of
mall mass systems such as the autonomous robot Cepheus, part
f our Space Robot Emulator, especially if low cost sensors are
sed. For such cases an additional identification step is proposed,
hich is applicable before the robot performs the joint trajec-
ories. Locking all joints, the entire space manipulator system
ecomes an equivalent to a single body. Then, external forces
re applied to the system at time t1 for a time interval ∆t. The
otal mass M is identified by measuring the CM velocity at time
nstants t1 and t2 = t1+ ∆t, as follows.

The system linear momentum vector p is given by

= M ṙcm (33)

The rate of change of the linear momentum is given by

ṗ = ΣF (34)

here ΣF is the sum of the forces acting on the body. Integration
of (34), yields the linear momentum at t2,

pt2 = pt1 +

∫ t2

t1

ΣFdt (35)

where pt1 and pt2 are the system linear momentum at time
instants t1 and t2, respectively. Substituting (33) to (35) yields

M ṙcm|t2 = M ṙcm|t1 +

∫ t2

t1

Σ Fdt (36)

where ṙcm|t1 and ṙcm|t2 are the linear velocities of body’s CM at
time instants t1 and t2, respectively. To facilitate the estimation of
M, constant external forces can be applied. Thus, (36) is simplified
further as follows

M ṙcm|t2 = M ṙcm|t1 + ΣF∆t (37)

The linear velocity of the observation point S on the spacecraft,
whose motion can be tracked, is expressed as

ṙs = ṙcm + ω× (rs − rcm) (38)

where ω is the angular velocity of the equivalent single body. If
the spacecraft attitude is maintained constant, for example using
reaction wheels, then (38) results in

ṙ = ṙ (39)
s cm

5

and therefore, ṙcm is known. Also, the thruster forces ΣF acting
on the equivalent single body are known since they are set. Then,
using (37) and (39), the system total mass can be identified using
data from any axis, e.g. for the Y-axis, as

M =
ΣFy∆t(

ṙs|t2
)
y −

(
ṙs|t1

)
y

(40)

In (40) noisy acceleration measurements are not used.

.4. Exciting trajectories

Appropriate exciting trajectories are required that result in Ŷ
nd Ŵ being of full rank and with a small condition number. A
mall condition number is needed so that the estimation is more
ccurate and reasonably insensitive to noise. The developed ex-
iting trajectories are based on truncated Fourier series. To satisfy
esired initial and final conditions, a fifth-order polynomial is
dded to truncated Fourier series

(m)

i =

Nf∑
l=1

ai(m)
l

ωf l
sin

(
ωf lt

)
−

bi(m)
l

ωf l
cos

(
ωf lt

)
+

5∑
j=0

c i(m)
j t j (41)

where q(m)
i represents the i-th joint angle of them-th manipulator,

m = 1, . . . , n, i = 1, . . . ,Nm, N f is the number of the harmonics
employed, ai(m)

l and bi(m)
l are free coefficients, c i(m)

j are polynomial
coefficients to be determined using the desired initial and final
conditions and the free-coefficients, and ωf = 2π/tf with t f the
motion duration.

The free coefficients of the Fourier series are found by mini-
mizing the condition number of the regressor matrix Ŷ. These also
yield a small condition number for the regressor matrix Ŵ. The
optimization algorithm is implemented using the Global Search
Solver provided by the Global Optimization Toolbox (MathWorks),
considering mechanical constraints on joint positions and veloc-
ities.

3.5. Noise modeling

To identify the required parameters, measurements obtained
by the system sensors must be available. Here, it is assumed
that an Inertial Measurement Unit (IMU) and joint encoders are
available on an FFSMS. For the IMU’s gyro and the acceleration
measurements, angle random walk 0.01 ◦/

√
h, bias instability

0.3 ◦/h, and velocity random walk 0.001 (m/s)/
√
h and bias

instability 10 µg , were considered respectively. Sampling time
was chosen to be 50 ms. The sensor was modeled in the Matlab
Navigation Toolbox using the imuSensor object and the function
imu().

Encoders on the FFSMS and RWs motors are used with the
noise on the measured angle to be zero mean Gaussian noise with
standard deviation 2.5e−5 rad.

4. Simulation results

In this section, the proposed identification method is illus-
trated using a spatial servicer with a three degrees-of-freedom
(DoF) manipulator with revolute joints, in an open chain kine-
matic configuration. The servicer parameters are given in Table 1.
The studied SC is assumed to have three RWs in an orthogonal
configuration with Irw,i = 0.18 kg m2. The size of the minimum
set of parameters π for this system is nineteen, given in [21],
while for φ is five. These are given in Appendix.

The duration of the first simulation is t f = 80 s , and N f = 3.
The desired initial and final conditions correspond to zero joint
angles, rates and accelerations. All measurements are sampled
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Table 1
System parameters of simulation study (SI Units).
i li r i mi (Ixx)i (Iyy)i (Izz )i
0 – [−1.06, −1.06, 0.67]T 1000 600 600 900
1 0.25 0.25 10 0.21 0.21 0.01
2 1.0 1.0 50 0.05 16.69 16.69
3 1.0 1.0 50 0.05 16.69 16.69

Table 2
Optimized trajectory coefficients.
Coeff. Value Coeff. Value Coeff. Value

a11 0.0411 a12 −0.0622 a13 0.0002

a21 0.0435 a22 −0.0407 a23 −0.1253

a31 0.0516 a32 −0.0423 a33 0.1343

b11 0.0533 b12 −0.1269 b13 0.0171

b21 −0.0393 b22 0.0596 b23 −0.0444

b31 −0.0153 b32 0.0449 b33 0.0463

Table 3
Initial conditions for simulation study.
Spacecraft angular velocity [0.01 0.03 0.025]T rad/s
Spacecraft orientation [0.2 0.1 0.3 0.93]T

Joint angles and rates [0 0 0]T rad [0 0 0]T rad/s
Angular momentum 0(hrw/sc )in [50 50 50]T Nms
0rjoint1/s [0 0 0]T m

at 50 ms. The coefficients ail and bil of the optimized exciting
oint trajectories for minimum condition number of regressor’s
ondition number, are derived for this study and presented in
able 2. The initial conditions for this experiment are given in
able 3.
Using Eqs. (24) and (31), π and φ are identified, practically

ith zero relative error (RE) if no noise exists, and accurately
hen noise is considered, see Table 4. Based on the identified
arameters, the total mass M is estimated using e.g.

= π18/ (ϕ1ϕ3) =
m0m3l30r0x/M(

m0
0r0x/M

)
(m3l3/M)

(42)

nd the corresponding relative error is practically also zero if no
oise exists, and 0.97% in the presence of noise. Parameters π18
nd ϕ1, ϕ3 are given in [21] and Appendix. Hence, the proposed
ethod is validated. The identified π and φ of the spatial FFSMS

ogether with the identified system’s total mass M are enough to
econstruct the system’s free-flying dynamics, as has been shown
n Eq. (16).

. Experimental identification of a planar SMS

The Space Robot Emulator (SRE) of NTUA’s Control Systems
ab consists of the autonomous robot Cepheus floating over a
lue-black hard rock table, see Figs. 4 and 5, and an optical
eedback system. The table exhibits very low surface roughness
<5 µm), allowing emulation of zero gravity in two dimensions.
he robots float over the hard rock table using three air-bearings.
hrough the porous air bearing material, pressurized CO2 is sup-
lied creating a thin film of CO2 between the robot and the
able surface, resulting in frictionless planar motion. The CO2 is
rovided to each of the three air-bearings via flexible hoses from
central pressurized CO2 tank. CO2 is used also for the operation
f the three thrusters pairs. The electronic circuitry controls the
as flow using Pulse Width Modulation (PWM), allowing values
f thrust in a continuous range, while using on–off technology, as
sed in actual space systems. To achieve greater fuel autonomy,
reaction wheel is installed, driven by a DC motor with an
 r

6

Table 4
Simulation identification of parameter vectors.
Parameter True

value
Estimated

value
RE (%)
no noise

RE (%)
with noise

π1 843.15 842.81 2e−12 0.04
π2 −111.75 −111.38 −7e−12 −0.32
π3 120.82 120.86 3e−11 0.04
π4 843.15 843.85 2e−12 0.08
π5 120.82 120.58 2e−11 0.20
π6 1123.50 1124.70 5e−12 0.11
π7 310.86 310.13 9e−12 0.23
π8 310.87 310.42 2e−12 0.14
π9 −246.37 −245.28 −5e−12 −0.44
π10 246.42 246.01 9e−12 0.17
π11 −64.39 −64.95 −2e−11 −0.88
π12 64.44 64.44 3e−12 0.01
π13 −143.50 −143.26 −1e−13 −0.17
π14 158.56 158.06 1e−12 0.32
π15 −143.50 −143.17 −2e−12 −0.23
π16 −47.83 −47.78 −5e−12 −0.11
π17 52.85 52.54 9e−12 0.58
π18 −47.83 −47.78 2e−12 −0.19
π19 93.24 93.10 −1e−12 0.15
ϕ1 −0.96 −0.97 −3e−13 −1.77
ϕ2 −0.96 −0.97 −9e−14 −1.28
ϕ3 0.05 0.04 1e−12 2.87
ϕ4 0.14 0.13 6e−13 2.07
ϕ5 −0.56 −0.57 −1e−12 −1.50

Fig. 4. Autonomous robot Cepheus of NTUA’s Space Robot Emulator. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

incremental encoder, offering an alternative to the thrusters for
attitude control.

The electrical autonomy of the robot is achieved by two
Lithium Polymer (Li-Po) batteries, with four cells each. The robot
computational system consists of PC-104 boards running Ubuntu
with ROS installed, and a Wi-Fi bridge. Finally, the SRE employs
an eight-camera PhaseSpace motion capture (mocap) system,
providing spacecraft position and orientation feedback.

Cepheus has a two DoF actuated manipulator, see Figs. 4 and 5.
oth of its joint motors are equipped with incremental encoders.
he feature point on Cepheus, S, is the geometrical center of its
ase (or its SC); an observation frame (frame b) is attached with
ts origin at S. The frame 0, i.e. the frame with origin at the SC
M, has the same orientation with frame b. The mocap system
easures the position of point S and the orientation of frame b.

.1. Identification equations for the planar system

The robotic servicer’s angular momentum is written in the
orm of Eq. (19), which for the planar system reduces to

rsz = Y
(
q̇1, q̇2, q1, q2, ω0z

)
π (43)

here q1, q2 and q̇1, q̇2 are manipulator joint angles and rates and
0z is the SC angular velocity normal to the table.
The kinematic equation for the SC linear velocity, see (30), for

he planar case can be written as

˙
(
˙ ˙

) ( 0 )

s = W q1, q2, q1, q2, ω0z , θ φ+ x ω0z , θ, rjoint1/s (44)
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Fig. 5. Cepheus, part of NTUA’s Space Robot Emulator. (For interpretation of
he references to color in this figure legend, the reader is referred to the web
ersion of this article.)

here θ is the SC orientation (yaw). The vector from point S to
he manipulator first joint is 0rjoint1/s = [0.173 0.091]T, and
as obtained from the robot CAD model. The minimum set of
arameters π and φ for a planar two DoF manipulator system
s eight and four respectively; both are given in Appendix. In
he experiment, Cepheus and its RW are initially at rest, hence
ṙcm)in = 0 and (hcm)in = 0. Therefore, angular momentum is
ntroduced in the RW. This is implemented by setting the desired
W joint rate (q̇rw)des = −170 rad/s and employing a velocity
ontroller. Hence, given that 0Arw = 0.00197 kg m2, the desired
ccumulated angular momentum based on Eq. (25) is
0hrw/sc

)
des =

0Arw (q̇rw)des = −0.3355 Nms (45)

Once RW has the desired angular momentum, the two joints
f the manipulator are controlled by PD position controllers to
ollow the optimized exciting trajectories.

.2. Optimized joint exciting trajectories

In the identification experiment, N f = 3 and the trajectory
uration is t f = 20 s. The desired initial and final conditions
orrespond to zero joint angles, rates and accelerations. The me-
hanical joint constraints satisfied by the optimized trajectories
re
1.05 ≤ q1 ≤ 2.50 [rad]

2.09 ≤ q2 ≤ 1.40 [rad]

0.70 ≤ q̇1 ≤ 0.70 [rad/s]

0.50 ≤ q̇2 ≤ 0.50 [rad/s]

(46)

The trajectory coefficients ail and bil are obtained so as to
inimize the condition number of Ŷ. Here, the condition number
as 153. The coefficients are displayed in Table 5.

.3. Measurements and signal processing

The identification procedure requires measurements of the
oint angles and rates, the SC orientation, the SC linear velocity
point S) and the SC angular velocity, all given by the mocap
7

Table 5
Optimized trajectory coefficients.
Coeff. Value Coeff. Value Coeff. Value

a11 −0.025 a12 −0.119 a13 0.100

a21 −0.004 a22 −0.003 a23 0.113

b11 0.007 b12 0.093 b13 −0.158

b21 −0.050 b22 0.126 b23 0.058

Fig. 6. Measured histories. (a) manipulator joint angles and (b) their rates.

Table 6
Identified vector of parameters π and ϕ.
Parameter Value Parameter Value

π1 0.0029 π5 0.1448
π2 0.0012 π6 −0.0018
π3 −0.0004 π7 0.0079
π4 0.0024 π8 0.0010
ϕ1 0.1579 ϕ3 0.0020
ϕ2 0.0759 ϕ4 0.0004

system and encoders. To reduce the effect of noise, appropri-
ate signal processing is employed. The joint angles are filtered
and then differentiated; the joint rates are filtered. The posi-
tion of S and the orientation angle of the SC are differentiated,
and the obtained linear and angular velocity are filtered. All
filters are low-pass Butterworth filters. The selection of filter
cutoff frequencies is based on FFTs. Additional insight about the
cutoff frequencies was provided by the FFTs of the signals ob-
tained by the simulated motion of Cepheus with approximate CAD
parameters.

5.4. Experimental identification results for π and φ

Fig. 6 shows the time histories of the experimentally obtained
joint angles and rates. Fig. 7 shows the measured SC orientation
angle and the SC angular rate, while Fig. 8 shows the SC absolute
X and Y positions and velocities. Note that the periodic variations
of the position and velocity of the tracked point S are due to the
rotation of the robot.

Using the measurements of the joint angles, joint rates and SC
orientation, linear and angular velocity, the parameters π and φ
are identified, see Table 6 respectively.
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Fig. 7. (a) Measured SC angle and (b) measured SC angular velocity.

Fig. 8. Measured SC absolute X and Y (a) position and (b) velocity.

.5. Experimental identification results for the total mass M

For a large mass FFSMS and similar or better sensor technology
o the one in the Lab, Eq. (32) is applicable and preferable for the
stimation of the system total mass since it does not require the
dditional step in the identification procedure. However, Eq. (32)
ay be sensitive to sensor noise in case of small systems such as

he autonomous robot Cepheus, part of our Space Emulator. In this
ase, the additional identification step can be employed. Locking
ll joints, Cepheus becomes an equivalent single body. Then, forces
enerated by thrusters act for a time interval, and the motion of
he robot, described by the motion of frame b, is captured by
he mocap system. Since the thruster orientations with respect
o frame b are known, and PWM signals are set and known, the
orce components 6F x, 6F y acting on the system CM are known,
too. The torque generated by the thrusters is eliminated by the
reaction wheel driven by an orientation controller, keeping the
8

Fig. 9. Linear translation of the robot in Y -axis.

orientation constant. Hence, the total mass of Cepheus can be
identified using Eq. (40). The velocity ṙs in Eq. (40) is obtained by
the slopes of the X, Y positions vs. time, using mocap feedback.

To implement this step, all manipulator joints are locked as
close as possible to the base, and an orientation PD controller is
employed, with gains selected experimentally as kp = 0.3 Nm/rad
and kd = 0.3 Nms/rad. The thruster forces applied to the robot at
t1 = 1 s for a time interval ∆t = 0.5 s, were 6F x = 0.052 N and
6F y = −0.595 N . The linear Y-velocity of point S is obtained by
the slope of the linear Y-translation of the same point, see Fig. 9.
Based on it, this velocity was (ṙ s | t 1 )y = 0.0024 m/s at t1 = 1 s
and (ṙ s | t 2 )y = −0.0195 m/s at t2 = 1.5 s. Thus, using Eq. (40),
Cepheus′ total mass is identified as M∗

= 13.56 kg .
To verify this result, the robot was weighted before and after

the experiment yielding a mean value M = 13.55 kg; this
corresponds to an identification relative error equal to 0.1 %.

5.6. Method experimental validation

To validate the experimental results and the developed
method, we compare the response of the simulated SRE using
the identified parameters, with the experimental response of the
actual SRE, obtained during a new experiment, in which, the
manipulator joints follow trajectories randomly selected
qd1(t) = 0.86 sin(2π t/t f ) [rad]

qd2(t) = sin(2π t/t f ) [rad]
(47)

where qd1, qd2 are the desired joint angles for the first and second
joint. The trajectory duration is t f = 18 s.

Fig. 10 shows the time histories of the measured joint angles
and rates. The measured SC angle and angular velocity are shown
in Fig. 11, and the SC absolute X and Y positions and velocities are
shown in Figs. 12 and 13, respectively.

In particular, the second plot of Fig. 11 shows the time histo-
ries of the experimentally obtained SC angular velocity together
with the predicted one, as obtained by simulating the model
with the identified parameters π of Table 6 and based on Eq.
(43), while the arm joints perform the joint trajectories of the
validation experiment. As shown in this plot, given the identified
parameters, the SC angular velocity of the robot is predicted
accurately.

Similarly, Fig. 13 shows the time histories of the experimen-
tally obtained SC linear velocities in X- and Y- axis together with
the predicted ones, obtained by simulating the model with the
identified parameters φ of Table 6 and based on the kinematic
equation (44). Note that the periodic variations of the position
and velocity of the tracked point S are due to the rotation of the
robot. As shown in this plot, given the identified parameters, the
SC linear velocity of the robot is predicted accurately.

Consequently, and as shown in all plots, given the identi-
fied parameters, the free-flying dynamics of the robot are pre-
dicted accurately, validating the identified parameters and the
effectiveness of the developed method.
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Fig. 10. Measured histories. (a) manipulator joint angles and (b) their rates.

Fig. 11. Measured responses for validation. (a) SC angle and (b) measured and
redicted SC angular velocity.

Fig. 12. Measured and predicted SC absolute X and Y position.
9

Fig. 13. Measured and predicted SC absolute X and Y velocity.

6. Conclusion

In this paper, a novel parameter identification method is pro-
posed, which identifies all parameters required for the recon-
struction of the free-flying space manipulator dynamics. In con-
trast to other methods, its key advantage is that it does not
use acceleration measurements of any variable; thus, it is less
sensitive to sensor noise. In addition, it is applicable to multi-arm
systems. The identification method is based on the conservation
of angular momentum and on system kinematics. To apply the
developed method, all manipulator joints are commanded to
follow optimized exciting trajectories, while the system is in
free-floating mode. Use of the method makes the fully identified
free-flying space manipulator dynamics available to model-based
control and other advanced control schemes. The method is vali-
dated by simulation in the presence of noise and experimentally,
with excellent results.
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Appendix

The Jacobian matrix J0,p is given by

J0,p =

[
13×3 J(0)1 J(0)2 03×Nrw

03×3 13×3 03×K 03×Nrw

]
6×(6+K+Nrw)

(A.1)

where submatrices J(0)1 and J(0)2 are given in [26].
The Jacobian matrix J(m)

i,p is given by

J(m)

i,p =

[
13×3 J(m)

1 J(m)

2 03×Nrw

03×3 13×3 J(m)

3 03×Nrw

]
6×(6+K+Nrw)

(A.2)

where

J(m)

1 = −

⎡⎢⎣r̃(m)

0 +

n∑
j=1
j̸=m

N j∑
k=1

l̃
(j)
k +

Nm∑
k=1

ṽ(m)

ki,p +

n∑
j=1
j̸=m

ẽ(j)
0

⎤⎥⎦
×

(A.3)

and the Jacobian submatrices J(m)

2 , J(m)

3 are given in [26]. The body-
fixed barycentric vectors r̃(m)

0 , l̃
(m)

k , ṽ(m)

ki,p and ẽ(m)

0 in (A.3) are given

in [26].
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D

π

The minimum possible set of parameters π for a planar two
oF manipulator system is eight parameters, given as

1 = m0
0r0x ((m1 + m2) l1 + m2r1) /M

π2 = m0
0r0xm2l2/M

π3 = m0
0r0y ((m1 + m2) l1 + m2r1) /M

π4 = m0
0r0ym2l2/M

π5 =
0I0 + m0 (m1 + m2)

(
0r20x +

0r20y
)

/M

π6 = (m2l2) (m0l1 + (m0 + m1) r1) /M

π7 =
1I1 +

(
m0 (m1 + m2) l21 + 2m0m2l1r1 + m2 (m0 + m1) r21

)
/M

π8 =
2I2 + m2 (m0 + m1) l22/M

(A.4)

where m0,m1, m2 are the masses of bodies 0, 1, 2 respectively,
0I0, 1I1, 2I2 are the polar moments of inertia about axes pass-
ing from the CM of bodies 0,1,2 respectively. The link parame-
ters 0r0x ,

0r0y , l1, r1, l2 are defined according to the Denavitt
Hartenberg convention, and are given as

0r0 =
[0r0x 0r0y 0

]T
, ili =

[
−li 0 0

]T
, iri =

[
r i 0 0

]T
(A.5)

The minimum set of φ parameters for a spatial three DoF manip-
ulator system includes five parameters

φ1 = m0
0r0x/M

φ2 = m0
0r0y/M

φ3 = m3l3/M

φ4 = ((m2 + m3) l2 + m3r2) /M

φ5 =
(
m0

0r0z − (m1 + m2 + m3) l1 + (m2 + m3) r1
)
/M

(A.6)

The minimum set of φ parameters for a planar two DoF manipu-
lator system includes four parameters

φ1 = m0
0r0x/M φ2 = m0

0r0y/M

φ3 =1 ((m1 + m2) l1 + m2r) /M φ4 = m2l2/M
(A.7)
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