
  

  

Abstract— On-orbit servicing missions will rely on space 
robots; however their complexity requires prior careful studies. 
Among these, robotic docking is especially challenging. In this 
work, the robotic impact docking between two space systems is 
considered. The impedance properties required to design an 
impedance controller are studied. These properties include the 
ratio of the masses between the systems under impact, the 
relative stiffness between the bodies of each space system and 
the associated damping factor. The velocity of the probe tip to 
be commanded is calculated aiming at successful latch at first 
impact. Simulation results validate the proposed approach. 

I. INTRODUCTION 

On-Orbit Servicing (OOS) missions such as satellite 
servicing and refueling, construction of large assemblies, and 
space debris removal and mitigation will be of critical 
importance in the near future. The use of space robotic 
systems in such missions is a viable approach and attracts 
increased interest; however, their complexity requires prior 
careful studies. Space agencies worldwide dedicate a 
significant amount of their budget to OOS and run missions 
such as the ETS-VII, the Robotic Refueling Mission (RRM), 
and the Clean Space. A critical aspect of these is reaching 
and capturing a target, i.e. another satellite or debris. This 
task includes the phases of far and close rendezvous, and 
mating i.e. docking or berthing. 

Mating to a target, see Figure 1, is a demanding task due 
to impacts and dynamic coupling [1]. Docking and capturing 
procedures are associated with impact forces applied when 
two space systems come into contact. The difficulty of this 
task increases when the systems have comparable masses. 
Recent works study the problem taking into account the 
system dynamics, either post impact, [2], or prior to impact, 
[3]. The concept of virtual mass and impedance control were 
proposed and studied in order to tackle the problem [4]. 

 
Figure 1. Probe - Drogue Docking System. 

More specifically in the case of passive docking (impact 
docking), to accomplish the task the two systems, called 
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Chaser and Target, have to come into contact, so that impact 
forces develop. These forces can lead to system separation or 
damage of critical subsystems. Hence it is necessary to model 
the impact adequately and study the effects of mass and 
compliance parameters during latching, so that a controller 
for successful docking can be developed [5]. 

To study these impacts, many modeling approaches have 
been proposed [6]. As the computational power in space is 
limited, while the impact is a fast process, simplified but 
relatively accurate models are necessary. Furthermore, a 
method that could predict the performance prior to impact 
could produce useful results for tuning the gains of a selected 
controller. In the literature one can find approaches that can 
lead to chaotic responses, not to mention the ambiguous 
problem of multiple impacts, [7], [8]. Considering the above 
issues, lumped parameter models constitute a useful 
approach, applied mainly to cases of rigid impacting bodies, 
[9], [10]. However, the use of lumped parameters is useful 
also in designing impedance filters and controllers. 

A docking procedure was proposed in [11]; however, the 
importance of having all systems floating and not rigidly 
fixed was neglected; hence the obtained simulation results 
involve inaccuracies compared to a realistic scenario. Using a 
Hardware-In-the-Loop (HIL) simulator, a method to set the 
compliance during an impact equal to that in an experiment, 
was proposed, [12]. However, the time delay introduced set 
limits to system parameters and the associated system 
stability, leading to a small range of values suitable for 
experiments. The high robot stiffness causes a contact 
duration shorter than the time to compute the robot dynamics. 
This time delay adds energy to the system, which may lead to 
inconsistencies in the simulation results, instability of the 
closed-loop system, or damages in the HIL system. The 
authors tried to minimize but did not eliminate the time 
delay, and proposed a stability analysis for a range of 
stiffness and damping properties, [13]. 

In this paper our previous work on multibody impact 
docking is extended [14]. The impedance properties required 
to design an impedance controller are studied. These include 
the mass ratio of the systems under impact, the relative 
stiffness between the bodies of each space system and the 
associated damping factor. The velocity of the probe is 
calculated aiming at a successful latching during the first 
impact. Simulation results validate the proposed approach. 

II. SCENARIO AND SYSTEM MODELING 

To prevent a faulty satellite from becoming space debris, a 
robotic system (Chaser) will have to dock on it (Target) using 
a dedicated latching system and then perform an OOS task. 
The type of latching docking system of interest here is similar 
to the Russian Probe-Drogue Docking System, employed at 
the International Space Station (ISS), see Figure 1. In more 
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detail, the Chaser is composed of a free-floating spacecraft 
base, a manipulator and a probe, see Figure 2a. The probe 
mechanism is connected to the manipulator, which is 
mounted to the base. The Target includes a drogue with a 
latching mechanism, connected flexibly to its satellite base. 
The parameters of the Target are known, but those of the 
Chaser can be modified for optimum response. This can be 
simplified and studied in 2D, see Figure 2b, where the Chaser 
and the Target are moving along the same (x-) axis. The aim 
here is to study the behavior of the interaction and then 
control it; therefore, a single-axis analysis is undertaken 
(central impact), as is common in the literature [1]. 

 

 
Figure 2. Model of impact docking: (a) Two floating spacecrafts, one 

equipped with a manipulator, and (b) A simplified system model. 

Multibody systems under impact can be modeled as two-
body systems; this approach is known as an equivalent two-
body system model, i.e. an “n” multibody system under 
impact, can be modeled as a two-body system with one body 
being equivalent to the first k masses, and the second body 
equivalent to the rest n − k masses, connected by equivalent 
spring/damper elements [15]. A Chaser space robot (parent) 
comprises a main body, flexible appendages (e.g. antennas, 
solar panels), and an articulated robotic manipulator. Without 
introducing significant errors, the base and the small masses 
located away from the impact point are lumped to a larger 
mass 1m  

 
in one end (main body in Figure 2b), with a probe 

of mass 2m  
 
in the other. They are connected through an 

actuator acting as a spring-damper system, whose compliance 
characteristics can be set by control. The Chaser main body 
center of mass (CoM) position is denoted by 1x  and the 
position of the probe tip by 2x , see Figure 2b. The position of 
the CoM of the Chaser parent system, ,c cmx  is given by 

 1
c, 1 1 2 2 1 2( )( )cmx m x m x m m −= + +   (1) 

The Target parent consists of a base of mass 4m , whose 
CoM position is described by 4x , and is connected to the 
drogue of mass 3m  whose point A position is described by 

3 ,x .
see Figure 2b. The position of CoM of the Target parent 

system, ,T cmx  is given by an equation similar to (1). The 
spring tk  

models the flexibility of the drogue-base 
connection. The drogue latch includes a compliant element 
with spring constant tyk , which is compressed during an 

impact, see Figure 2b. If the probe tip (point C) can fully 
overshoot the latching mechanism (point A), the later returns 
to its initial position, securing the probe. Whenever 2 3x x< , 
no impact occurs. The drogue is assumed to be symmetrical, 
therefore a single y-axis spring is used, with its spring 
constant corresponding to the equivalent stiffness of all 
latching mechanism springs. 

Without loss of generality, the Target has zero velocity 
and the Chaser has an initial constant velocity 

   
x1,0 = x2,0 . At 

the moment it  at which the impact occurs, the masses 2m  
and 3m  

have the same position, i.e. 2 3x x= . Then, the probe 
starts pushing the latching mechanism, and for the duration of 
the contact, the latch spring tyk  

is being compressed. The 
system equations of motion, obtained after the contact 
between 2m  and 3m , are given by: 

 

   

m1x1 = −Fc

m2x2 = −Fi,x + Fc

m3x3 = Fi,x − kt[l0
' − (x4 − x3)], ti ≤ t ≤ ti + timp

m3y3 = Fi,y − kty[l0
'' + y3]

m4x4 = kt[l0
' − (x4 − x3)]

 (2) 

where cF  is the controlled force applied on the probe, ' ''
0 0,  l l  

are the free lengths of springs tk  and tyk  respectively, and 

, ,,  i x i yF F  are the impact forces between the probe and 
drogue. All forces are shown in Figure 2b. 

For successful latching, the interaction force can be 
controlled by an impedance controller with appropriate 
parameters. To design such a controller, an impedance filter 
describing the desired impact behavior is selected first as: 

 
   
Fi,x = mf (x2 − x1)+ bf (x2 − x1)+ k f (x2 − x1)  (3) 

where , ,f f fm k b  are mass, spring and damper design 
parameters to be determined. Using (2) and (3) to achieve 
this impedance behavior, the applied actuator force cF  must 
be, 

 

   

Fc = Fi,x ((mf m2 −1)μc,ef ) m
f( ) +

+μc,ef bf (x2 − x1) mf + μc,ef k f (x2 − x1) m
f

  (4) 

where ,c efμ  is the effective mass of the Chaser, 

 , 1 2 1 2/ ( )c ef m m m mμ = +  (5) 

The fm  is selected equal to 2m  so that cF  does not depend 
on ,i xF . Then, the applied actuator force cF  

becomes, 

 
   
Fc = kd (x2 − x1)+ kp (x2 − x1)   (6) 

where ,d pk k  are controller gains given by, 

 , 2 , 2,d f c ef p f c efk b m k k mμ μ= =   (7) 

Impact Modeling. The description of the impact forces is 
developed using viscoelastic theory. According to this theory, 
a compliant surface under impact can be modeled by a 
combination of lumped parameter elements, i.e. by springs 
and dampers. Common impact models include the Kelvin-
Voigt (KV) and the Hunt-Crossley (HC) model, [6]. For 
example, the interaction force gF  using the KV model is  

 
   
Fg ( yg , yg ) = kg yg + bg yg   (8) 

where gk  and gb  are the stiffness and damping coefficients 
of the impact respectively and gy  the penetration of one 
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body in the other. Using (8) in (2) and assuming that the 
impact is elastic (no damping), the impact force, see Figure 3, 
becomes, 

 
, 2 3

, ,

( )
, 0

/ tan( )
i x i

i y i x

F K x x
F F

θ
θ

= −
>

=
 (9) 

where iK  is the fictious impact spring. 

 
Figure 3 Impact model for impact docking model. 

In many cases, it is useful to model the impact as part of a 
harmonic motion. More specifically, an impact has two 
phases, compression and restitution. These can be modeled as 
the half-period of a sinusoidal motion with period impT ; the 
smaller the duration of impact, the better the approximation. 
In fact, for impact durations of less than 1 s, this approach 
yields very good results, as it also incorporates the effects of 
energy losses; however for very small durations, these effects 
are generally negligible. Thus, the duration of this high 
frequency oscillatory motion is  

 ,2imp imp i ef it T Kπ μ= =   (10) 

where ,i efμ  is the effective mass of the bodies under impact, 

 , 2 3 2 3( )i ef m m m mμ = +   (11) 

Using (10), one can estimate for how much time (2) is 
valid. When 2m  and 3m  are not in contact, (2) applies with 
zero impact force. 
Description of Impact during Simulations. According to the 
previous analysis, the impact docking model described in this 
work depends on the relative position of the systems. 
Although, the time that the bodies are in contact is given by 
(10), the use of (2) for more than a single impact is not 
considered. For (2) to be valid again, and taking into account 
Figure 2, two requirements must be met: 

 The lines that pass from points A, D and B, C 
respectively must coincide. 

 Point A must belong to the line segment BC. 

Equivalently, the following inequalities must be fulfilled 
simultaneously: 

 2 3 30 xx x r< − <   (12) 

 3 2 20 yy y r< − <   (13) 

 2 2 3 3tan( ) tan( )y x y xθ θ+ = +   (14) 

where 2 yr  and 3xr  are geometric features, see Figure 2. 

III. ESTIMATION OF IMPEDANCE PARAMETERS 

To achieve latching during impact docking, the impedance 
parameters , ,f f fm k b

 
for the implementation of the 

impedance filter must be selected. One can identify three 
requirements necessary to have a successful latch, which in 
turn will allow the estimation of these parameters. 

1st Requirement: Impedance mass, 2fm m= . 
As mentioned above, we choose 2fm m=

 
so that a force 

sensor will not be necessary for the computation of the 

actuator force. Because of that, selecting the appropriate 2m  
is important for implementing the impedance filter. An 
analytical method for setting 2m  is developed here. 

The displacement during an impact can be approximated 
by a partial harmonic motion. The impulse developed along 
the x-axis ,imp xP

 
during impact is given by, 

 ( )*, , ,1imp x relx i i efP e U μ−= +   (15) 

where ,
i
relx iU −  is the relative velocity of the bodies under 

impact on the x-axis, hence the subscript ( i ). The superscript 
(-) stands for the velocity prior to an impact, while *e  is the 
Coefficient of Restitution (CoR), see also [7]. The relative 
velocity between the systems ,

i
relx sU ±  where the subscript ( s ) 

stands for both masses cm  and tm , before (-) or after impact 
(+) occurred at moment it  can be defined as 

 
   
Urelx ,s

i± = xc,cm
i± − xt,cm

i±   (16) 

where 
   
x j ,cm

i± , j = c,t  is the absolute velocity of the Chaser (c) 
or the Target (t) parents CoM before or after the impact with 
respect to the inertial frame as given by, (1). Since the same 
impulse ,imp xP  is developed between the Chaser and Target, 
and between the two masses under impact ( 2m  and 3m ), as 
parts of their parent systems (Chaser or Target), and since 
this impulse represents a momentum exchange, 

 
   
Pimp,x = mc xc,cm,x

i− − xc,cm,x
i+( )   (17) 

 
   
Pimp,x = mt xt ,cm,x

i− − xt ,cm,x
i+( )   (18) 

where ,  c tm m  are the total masses for the Chaser and Target 
parent systems respectively. Therefore, the post-impact 
Chaser and Target CoM relative velocities are 

 
   

Urelx ,s
i+ = xc,cm,x

i+ − xt ,cm,x
i+ =

= xc,cm,x
i− − Pimp,x / mc( )− xt ,cm,x

i− + Pimp,x / mt( ) =
= xc,cm,x

i− − xt ,cm,x
i−( )− Pimp,x 1/ mc +1/ mt( )

⇒Urelx ,s
i+ =Urelx ,s

i− − Pimp,x / mi,ef

 (19) 

where the total system effective mass, ,i efm  is given by 

 

, ( )i ef c t c tm m m m m= +  (20) 

After some manipulation and using (15), it can be found that 

 ( )*, ,1relx s I relx sU e U+ −= −   (21) 

where 

 ( )* *1I Ie e e= +   (22) 

and where Ie  is defined by 

 , ,I i ef i efe mμ=   (23) 

and called the Coefficient of the Effective Masses. Based on 
the value of the coefficient Ie , one can determine whether 
the Chaser will continue, stop or change its direction of 
motion, after the impact as it sets the sign of ,relx sU + . The 
following cases can be clearly identified, when * 1e =  
(elastic impact): 

(i) , ,0I relx s relx se U U+ −= ⇒ = : No impact occurs. 
(ii) , , , ,1I i ef i ef relx s relx se m U Uμ + −= ⇒ = ⇒ = − : Resembles 

an elastic impact between two rigid bodies. The relative 
velocity between the two systems is equal to the relative 
velocity of two rigid bodies as    m2 m1  and    m3 m4 . 

(iii) ,1 2 0I relx se U += ⇒ = : The two parent systems move 
with the same velocity. 

m2

m3Ki
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(iv) , ,0 1 2 0:I relx s relx se U U+ −< < ⇒ >
 

The two parent 
systems move in the same direction after impact. The Chaser 
continues its motion, while the Target moves in the Chaser’s 
direction, at lower speed. This is the favorable case for latch. 

(v) , ,1 2 1 0I relx s relx se U U+ −< < ⇒ < : The two systems 
move in different directions. The Chaser reverses its direction 
of motion, and the Target moves towards the initial direction 
of the Chaser. This prevents latching. 

The previous results show that the behavior during impact 
depends on the mass ratios, and not on the mass values. In 
the case that the Target’s masses and mass 1m  are known, 
one can find the mass of the Chaser’s probe 2m  

that enables 
latch, i.e. one that ensures 0 1 2Ie< < . Many interesting 
cases corresponding to different ratios of masses are 
presented in [14]. This value can be used for example to 
select which joints to lock and which joint to operate during 
docking, at a manipulator with many degrees of freedom so 
as to achieve the desired 2m  

and hence the impedance 
parameter fm . 

2nd Requirement: Minimum Impact Velocity for Latching.  
The second requirement is related to the minimum impact 
velocity of the probe for successful penetration. To achieve 
latching, the force due to the impact must be such that the 
latching part of the Target’s drogue is compressed to the 
height of the probe tip, denoted by 2 yr  

in Figure 2b. The 
motion of 3m  also depends on the spring tyk  

force (and its 
damping if it is considered). 

More specifically, the maximum elongation maxu  of the 
y-axis spring attached to 3m , must be larger than the height 
of the probe tip. This requirement can be described by 

 max 2 yu r≥   (24) 

The compression of 3m  is maximum when its velocity is 
zero. Then the kinetic energy transforms into potential energy 
and 

  
ktyumax

2 2 = Pimp,yμt ,ef 2m3
2 ⇒umax = Pimp,y m3 kty / μt ,ef( )  (25) 

where ,imp yP
 
is the impulse along the y-axis, given by, 

 *
, ,s ,(1 ) tan( )i

imp y relx i efP e U μ θ−= +  (26) 

and ,t efμ  is the Target effective mass, defined by, 

 , 3 4 3 4/ ( )t ef m m m mμ = +  (27) 

Using (24)-(26), the relative velocity ,s
i
relxU −  for successful 

latching is found to be: 

 
3 2

,s *
,,

tan
(1 )

y tyi
relx

t efi ef

m r k
U

e
θ

μμ
− ≥

+
  (28) 

As can be seen using (28), for larger Target drogue mass 3m , 
or for higher stiffness tyk , higher impact velocity is 
necessary to compress the latching mechanism by the 
latching distance 2 yr . As *e , the impact velocity must be 
increased further. This is in accordance to experience. 

3rd Requirement: Impedance Parameters ,f fk b . 
As the Target stiffnesses are assumed known, the impedance 
filter stiffness fk  and damping fb  must be selected. An 
analytical solution for the selection of these coefficients is 
difficult to be obtained because of the large number of 
parameters involved. To investigate possible solutions with 
the minimum impact velocity for latching, the analytical 
model of a Chaser and a Target was developed, where 

various parameters (masses, stiffnesses, velocities, etc.) can 
be varied.  

The two systems were simulated when coming into contact 
and the success or failure of latching was noted. An 
algorithm was developed to search the range of Chaser gains 
for Target stiffnesses tk  between 300 700 /N m− . The 
remaining parameters were 1 1500m kg= , 4 2000m kg= ,

100 /tyk N m= , while the masses under impact, 2 3,m m , 
varied between 20 40 kg− . 

Figure 4 displays the ratio /f tk k  as a function of the 
known Target stiffness tk and allows selecting the 
appropriate impedance parameter fk . The larger the Target 
stiffness is, the smaller the fk  must be, so that the force 
acting on mass 1m  is small. Due to the small force and the 
fact that 1 2m m , the probe will continue its motion into the 
drogue despite the impact force.  

 
Figure 4. Impedance parameter fk  vs. tk  for successful latching. 

Having selected the impedance filter mass and stiffness 
parameters of the Chaser, one can calculate the impedance 
damping too. Choosing critical damping results in, 

 2f f fb m k=   (29) 

Having selected 2fm m= , fk  and fb , the controller gains 
given by (7) can be calculated. 

IV. SIMULATION RESULTS 

To examine the validity of the analysis, a series of 
simulations using MATLAB/Simulink were run. The Target 
has been modeled as a two mass and spring system, while the 
Chaser as an impedance-controlled two-mass system. The 
contact forces between the bodies under impact were 
calculated using the KV model; the impact was modeled by a 
spring, which can only be compressed. As the simulation 
advances, the velocities of the masses under impact are 
calculated, as well as their interpenetration. This is fed back 
to the contact model and a force is developed which pushes 
away the masses under impact. Therefore, prior to and after 
the impact, the simulation presents two moving two-body 
systems, and during impact a four-body system. 

To avoid bias of the results, no equation stemming from 
the theoretical analysis in this work was used in the 
simulation. The user can also change the initial parameters of 
the bodies. The initial velocity of the Chaser masses 1m  and 

2m  before impact are nonzero and equal. All other initial 
conditions have been set to zero without loss of generality. 

Validation of the effect of the coefficient Ie . To examine 
the effect of Ie  on the post-impact behavior, a simulation 
was run in which the fm  is chosen such that 1 2 1Ie< < . 
For this choice, it is expected that no latching will occur. 

The parameters used are those of case A in Table 1. 
According to (23) the coefficient of the effective masses is 

0.9809Ie = . The initial position of 2m  is 2,0 0.3x m= −  and 
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for 3m  is 3,0 0.3x m= . As Figure 5b shows, the Target-
Chaser relative position xe  decreases until the moment in 
which the impact occurs. However, due to the poor choice of 
the mass ratio, the systems after the impact move in different 
directions and docking fails; Figure 5a validates this fact. 

Table 1. Data for simulation runs. 

Properties A B C D E F 

1m  (kg) 40 17 10 5 100 1500 

2m  (kg) 1500 2 10 50 20 40 

3m  (kg) 2000 1.5 10 10 10 20 

4m  (kg) 20 15 10 100 200 2000 

ik  (N/m) 105 15000 15000 15000 15000 105 

fk  (N/m) 513 100 1000 1000 1000 513 

tk  (N/m) 370 200 200 200 200 370 

 
Figure 5 (a) Positions of probe-drogue – (b) Relative positions in the case 

that 
I
e  is not appropriate for successful docking. 

For successful docking, the impedance mass 2fm m=  is 
chosen as a function of the known Target masses and the 
main mass of the Chaser robot. To do this, (23) is employed 
to plot Ie  against the Target mass ratio for a constant Chaser 
mass ratio, see Figure 6. For a given Target mass ratio and a 
desired coefficient Ie , one can find the Chaser mass ratio, 
and since 1m  is known, 2m and 2fm m=  are selected. For 
example, using case F in Table 1 and considering all the 
parameters as inputs expect of the mass 2m  i.e. 

4 3/ 100m m =  and for 0.02Ie < , Figure 6 yields 

1 2/ 1500 / 40m m = . Since   m1 = 1500kg , then it follows that 

  
mf = m2 = 40kg . 

 
Figure 6. The 

I
e  vs the Target mass ratio, for Chaser mass ratios. 

To verify the analysis for the post-impact relative velocity 
between the Chaser and the Target as a function of the pre-
impact relative velocity, and thus the validity of (21), various 
configurations (B, C, D, and E) were examined, see Table 1. 
In all cases, the theoretical model calculates the post-impact 
relative velocity with high accuracy as compared to 
simulation results, as shown in Table 2. 

Table 2. Simulation results for validation of Ie  using (21). 

 B C D E 
Initial Rel. Velocity 0.05 0.05 0.05 0.05 

Final Rel. Velocity 
using Eq. (21) (m/s) 

0.0403 0 0.02728 0.0413 

Final Rel. Velocity 
(by simulation) (m/s) 

0.0402 -0.000476 0.02715 0.0412 

Absolute Error (m/s) 0.0001 0.000476 0.00013 0.0001 

 
Minimum velocity for impact docking. Using as an 

example case F in Table 1 and (28), the minimum velocity is 
calculated to be , 0.5031 /i

relx sU m s− = . If the Chaser relative 
velocity is lower than this value, then, the developed impulse 
during the first impact is not enough for complete latching 
with one impact between the probe and the latch mechanism. 
For example, if we choose , 0.303 /i

relx sU m s− = 0.5031 /m s<  
and apply the first impact impulse to 3m , this is displaced 
without exceeding the mechanism threshold, see Figure 7a; 
therefore no latching will occur. 

On the other hand, if multiple impacts are allowed, then 
the latching mechanism may be compressed fully thanks to 
additional impacts; however this is an undesirable design due 
to the uncertainty involved. Figure 7b displays the case with 

, 0.303 /i
relx sU m s− = 0.5031 /m s< . Two impacts occur and 

latching is successful. However, this case is not desirable as 
mentioned above. 

 
Figure 7. Impact for , 0.303 / 0.5031 /i

relx sU m s m s− = < . (a) Taking into 

account the first impact only, (b) multiple impacts. 

Fulfillment of all Conditions. As an example, we use case F 
in Table 1, and select 40fm kg= , as explained earlier. The 
stiffness of the impedance filter is chosen from Figure 4 for a 
specific value of Target stiffness. Assuming this stiffness to 
be 360 /tk N m= , i.e. a common value for the flexibility 
between the drogue and the Target main body, the impedance 
parameters should be 513.3 /fk N m=  

(computed and given 
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in Table 1), and 282.8 /fb Ns m= , (computed using (29)). 
As a result, using (7), the gains of the controller are found to 
be 500pk N m=

 
and 279dk Ns m= . It is assumed that the 

impact is elastic, * 1e = . Before the impact, point A is at 

3 2 yy r= − ; to be compressed enough so that the probe tip can 
be inserted, it must reach 3 0y = . To achieve this, (28) yields 
the minimum initial relative velocity as , 0.503 /relx sU m s− = . 
This relatively high velocity indicates the difficulty of 
performing robotic docking in space. As shown in Figure 8a, 
a single impact for docking is necessary, during which the 
probe and latching mechanism are in contact continuously. 
As shown in Figure 8b, the actuator force and commanded by 
the controller is smooth, and reasonable in magnitude, while 
due to the selection of critical damping, the closed-loop 
cyclical frequency is 3.58 rad/s and the applied actuator force 
settles in   1.6s,  as expected. 

 
Figure 8. (a) Impact force and (b) actuator force acting on the probe. 

Figure 9 shows the positions of the Chaser and the Target, 
their relative positions, and the y-axis position of 3m . When 

2 3x x= , an impact occurs. The spring tyk  starts being 
compressed while the Target starts moving in the x-axis as a 
system. Bodies 2 3,  m m  oscillate because of the impact force 
and also move in the x-axis as they are connected with the 
larger masses 1 4,  m m  whose oscillations are negligible.  

 
Figure 9. (a) Position of probe (Chaser) and drogue (Target). - Relative 

Position of Chaser- Target (b) in the x-axis and (c) in the y-axis.  

Latching is considered to be successful when points A and C 
(see Figure 2) acquire the same position in both axes. It can 

be seen from Figure 9 that when the Chaser has the minimum 
velocity as given by (28), 3m  is compressed so as to reach 
the position of point C (relative position along y-axis is 
zeroed). At the same time, the x-axis relative position of 2m  
and 3m  is also zeroed and latching is successful. Mass 3m  
returns to its original position following a successful latch, 
see Figure 9c. 

V. CONCLUSION 

The robotic impact docking between two space systems was 
considered. The conditions for successful docking were 
studied analytically. The effect of the ratio of masses between 
multibody systems during impact was developed and the 
effect of the stiffness ratio between them was analyzed. The 
minimum impact velocity for successful latch between a 
Chaser robotics system and a Target satellite has been 
calculated. An impedance controller was used to control the 
chaser manipulator and a methodology for choosing its 
parameters for successful docking was developed. 
Simulations validated the developed analysis. 
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