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Abstract
Nonholonomic behavior is observed in free-floating
manipulator systems, and is due to the nonintegrability of
the angular momentum.  Free-floating manipulators
exhibit dynamic singularities which cannot be predicted
by the kinematic properties of the system and whose
location in the workspace is path dependent.  Trouble-free
Path Independent Workspaces are defined.  A joint space
planning technique used to control the orientation of the
spacecraft by using joint manipulator motions is
reviewed, and its limitations are discussed.  Finally, a
cartesian space planning method that permits the effective
use of a system’s reachable workspace by planning paths
that avoid dynamically singular configurations is
proposed and demonstrated by an example.

I . Introduction
Space robotic devices are envisioned to assist in the
construction, repair and maintenance of future space stations
and satellites.  To increase the mobility of such devices, free-
flying systems in which one or more manipulators are
mounted on a thruster-equipped  spacecraft, have been
proposed  [1-4].  To increase a system’s life, operation in a
free-floating mode has been considered [1-6].  In this mode of
operation, spacecraft thrusters are turned off, and the spacecraft
is permitted to translate and rotate in response to manipulator
motions.  In practice, this mode of operation can be feasible
if the total system momentum is zero; if non zero
momentum develops, a system’s thrusters must be used to
eliminate it.

Free-floating systems exhibit nonholonomic behavior,
which is due to the nonintegrability of the angular
momentum [5,8].  In addition, in such systems dynamic
singularities exist, which are functions of the system mass
properties and cannot be predicted from its kinematic structure
[6,7].  These characteristics complicate the planning and
control of such systems.  Joint space planning techniques that
take advantage of the nonholonomy in such systems were
proposed [1,5].  A Self Correcting Planning technique allows
the control of a spacecraft’s orientation using the
manipulator’s joint motions [1].  Lyapunov techniques were
explored to achieve simultaneous control of a spacecraft’s
orientation and its manipulator’s joint angles, using the
manipulator’s actuators only.  Convergence problems were
reported in some cases [5].

In this paper, the fundamental kinematic and dynamic nature
of free-floating manipulators is discussed first.  The effects of
the nonintegrability of the angular momentum and of the
dynamic singularities on the behavior of a free-floating
system are presented.  It is shown that dynamic singularities
are path dependent, and that a particular workspace point can
induce a dynamic singularity or not, depending upon the path
taken to reach it.  Path Independent Workspaces are defined as
regions in which no dynamic singularities occur.  The
nonholonomic characteristics of free-floating manipulators
can be exploited to control the orientation of the spacecraft by
closed joint space paths.  A joint space planning technique,
called Self Correcting Planning, is reviewed, and potential
problems in using it are identified.  In particular, it is shown
that there exist configurations at which a closed path in the
joint space will have no effect on the spacecraft orientation.
Finally, a Cartesian space path-planning technique which
yields paths connecting any two points in the workspace, is
presented.  This technique avoids dynamically singular
configurations, and hence permits the effective use of the full
reachable workspace of a free-floating system.

II . Kinematic and Dynamic Modeling of
Free-floating Manipulators

The kinematic and dynamic equations needed to model a rigid
free-floating manipulator system, see Figure 1, were obtained
in [6-8].  A key feature of this modeling is expressing the
kinematic and dynamic variables of the system as functions of
a set of constant length, body-fixed barycentric vectors
[8,9].  The dynamics were written using a Lagrangian
approach.  Here the basic kinematic and dynamic equations are
reviewed.

The manipulator joint angles and velocities are
represented by the N×1 column vectors q and q

.
.  The space-

craft can translate and rotate in response to manipulator move-
ments.  The manipulator is assumed to have revolute joints
and an open chain kinematic configuration so that, in a
system with an N degree-of-freedom (DOF) manipulator, there
will be 6+N DOF.

Assuming that no external forces act on the system, the
system center of mass (CM) does not accelerate, and the
system linear momentum is constant.  With the further
assumption of zero initial momentum, the system C M
remains fixed in inertial space, and can be taken as the origin
of a fixed frame of reference.
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Figure 1.  A spatial free-floating manipulator system.

It can be shown that in the absence of external torques, and
for zero initial linear momentum, the conservation of
momentum equation results in:

0
w

0
= - 0D -1  0Dq q

.
(1)

where 0
w

0
 is the spacecraft angular velocity expressed in a

frame fixed to it (frame 0), 0D is the 3×3 inertia matrix of the
system expressed in the spacecraft frame at the system CM,
and 0Dq is a 3×N mixed inertia matrix.  Both 0D and 0Dq are
functions of the configuration q only, and they can be written
as functions of the body-fixed barycentric vectors [6-9].  The
inverse of 0D always exists because the system inertia matrix
is positive definite.

The end-effector inertial linear and angular velocities, r
.
E

,
and w

E
, are functions of the joint rates q

.
 and of the spacecraft

angular velocity, 0
w

0
.  Equation (1) can be used to express

0
w

0
 as a function of q

.
, and hence to derive a free-floating

system’s Jacobian J*, defined by:

[ r
.
E
, w

E
 ]T = J* q

.
 (2)

where J* is a function of the orientation Q of the spacecraft,
and given by [6-7]:

J* (Q,q) = diag(T
0
(Q),T

0
(Q)) 0J*(q) (3)

T
0
(Q) is a rotation matrix which describes the orientation of

the spacecraft.  Due to Eq. (1), J* depends not only on the
kinematic properties of the system, but also on configuration
dependent mass properties, i.e. inertias.  Therefore, the
singular configurations for a free-floating system, i.e. ones in
which 0J* has rank less than six, are not the same to the ones
for fixed based systems, and they depend on the mass
distribution.

The equations of motion for a free-floating system can be
written in the form [7,8]:

H*(q) q
. .

+ C*(q, q
.
) q

.
  =  t (4)

where H*(q), is the reduced system inertia matrix, C*(q, q
.
)

q
.
 contains the nonlinear centrifugal and Coriolis terms.  The

vector t is the torque vector equal to [ τ1, τ2, ..., τN ]T.  It is
easy to show that the system inertia matrix, H*, is an N×N
positive definite symmetric inertia matrix, which depends on
q and the system mass and inertia properties [7,8].

Based on the structural similarity of these equations to
the ones derived for a fixed based system, Reference [7]
suggested that if singularities of J* can be avoided, nearly any
control algorithm applied to fixed-based systems can be used
in free-floating systems.  The nature of free-floating system
singularities and workspaces, in conjunction to the
nonintegrability of the angular momentum, is addressed next.

III.  Characteristics of Free-floating
Systems

A . Nonintegrability of the Angular Momentum
The angular momentum, given by Equation (1), cannot be
integrated to yield the spacecraft’s orientation Q as a function
of the system’s configuration, q, with the exception of a
planar two body system [8].  Obviously,  this equation can be
integrated numerically, but in such case the resulting final
spacecraft orientation will be a function of the path taken in
the joint space.  In other words, different paths in the joint
space, with the same initial and final points, will result in
different spacecraft orientations.  Since the location of the
end-effector is also a function of Q , the same applies to
workspace (Cartesian) paths, i.e. moving from one workspace
location to another one via different paths results in different
final spacecraft orientations.  Therefore, closed joint space or
workspace paths can change the spacecraft’s orientation.  This
nonintegrability property that introduces nonholonomic
characteristics to free-floating systems.  However, the
nonholonomic behavior results from the particular dynamic
structure of the system, and is not due to kinemat ic
nonintegrable constraints, like the ones experienced by a
rolling disk.  The use of this nonholonomic behavior to
achieve various tasks is described in the following sections.

B . Control in the Joint and Cartesian Space
Assume that one task requires control of the system
configuration q , only.  Since H * is positive definite, a
linearizing feedforward control law t = H*(q) u + C*(q, q

.
) q

.
,

where u ∈ R N is an auxiliary control input, reduces the
equations of motion to a decoupled second order system,
controllable in its joint space.

Assume next that the task is to move the end-effector to
some position and orientation, and for simplicity, that N = 6.
Using Equations (2) and (4), one could design a linearizing
and decoupling cartesian space controller, as discussed in [10].
However, such a method would fail at all points where the
Jacobian J* is singular.  Since the rotation matrix T

0
 is not

singular, (with the exception of possible representational
singularities), then J* loses its full rank when:

det[0J*(q)] = 0 (5)

The above condition shows that singularities in free-floating
systems are fixed in joint space.  Since 0J* is a function of
configuration dependent inertias, these singularities are
different than the ones for fixed base systems, and their
location in joint space depend in addition on the dynamic
properties of the system; for these reasons, they were called
dynamic singularities [6].
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It is interesting to examine the location of the dynamic
singularities in a system’s workspace.  To do this we need a
one to one correspondence from the joint space to the
cartesian workspace.  However, such a correspondence does
not exist, even in the case of a six DOF manipulator, because
its end-effector position r

E
, and orientation T

E
, are not only

functions of the system’s configuration q, but also of the
path dependent spacecraft orientation, Q.  Out of all the pairs
(Q, q) with which a workspace point can be reached, some
may correspond to a singular configuration, q

s
.  Then a

workspace point may or may not induce a dynamic
singularity, depending on the joint space path taken to reach
it.

To resolve this ambiguity, Path Dependent Workspaces
(PDW) were defined to contain all workspace locations that
may induce a dynamic singularity [6].  To find these points,
note that the distance of a workspace location from the
system C M ,  R, does not depend on the spacecraft’s
orientation, i.e. R = R(q).  This equation represents a
spherical shell in the workspace.  All the singular
configurations q

s
 are mapped to a set of shells, whose union

gives the PDW.  If we subtract the PDW from the reachable
workspace, we get the Path Independent Workspace, (PIW).
All points in the PIW are guaranteed not to induce dynamic
singularities.  Then, any point in the PIW can be reached
from all other points in the PIW, by any path that belongs
entirely to the PIW.

If the system is in a dynamically singular configuration,
the end-effector can move only along directions which lie in a
subspace of dimension lower than six; some workspace
points are not reachable with small δq, whatever δq is.
However, it may still be possible to reach any PDW point
from any other workspace point, by choosing an appropriate
path.  This will be demonstrated in Section VI.

IV.   Example
Consider the planar free-floating space manipulator shown in
Figure 2.  The system parameters are given in Table I.
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Figure 2.  A planar 2 DOF free-floating manipulator, shown in a
dynamically singular configuration.

Table I.  The system parameters.

Body li (m) ri (m) mi (Kg) Ii   (Kg m2)
0 .5 .5 40 6.667
1 .5 .5 4 0.333
2 .5 .5 3 0.250

The zero angular momentum for this system is written using
Equation (1) as:

 θ̇ = D-1{(D
1
+D

2
) q̇

1
 + D

2
 q̇

2
} (6)

where the inertia scalars D, D
1
, D

2
 are given by Equations

(A1).  Multiplying both sides by dt, a nonintegrable Pfafian
equation results, and therefore θ cannot be found as a function
of q

1
 and q

2
 [11].  Nonholonomic behavior is expected.

The system Jacobian for this system is a 2×2 matrix and
becomes singular when its determinant is zero [6,8].  The
values of q

1 
and q

2 
which result in dynamically singular

configurations can be plotted in joint space as shown in
Figure 3.  Although the conventional kinematic singularities
q

1
=kπ, q

2
=kπ, k=0,±1,... are included in Figure 3, infinitely

more dynamically singular configurations exist which cannot
be predicted from the kinematic structure of the manipulator.

Figure 2 shows the system in the singular configuration
at q

1
=-65°, q

2
=-11.41°, and the spacecraft orientation  at

θ=40°. In this configuration, the local inertial motion of the
end-effector, starting from rest will be the shown in the
figure, no matter how the joint actuators are driven.  The best
a control algorithm can do at such a point is to follow the
available direction.  All algorithms that use a Jacobian
inverse, such as the resolved rate or resolved acceleration
control algorithms, fail at such a point.  Ones that use a
pseudo inverse Jacobian or a Jacobian transpose will likely
follow the available direction, but may result in large errors.
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Figure 3.  Dynamically singular configurations for the system
shown in Figure 2.

Figure 4 depicts the reachable, PDW, and PIW spaces for this
example.  When the end-effector path has points belonging to
the PDW, such as path B in Figure 4, the manipulator may
assume a dynamically singular configuration, depending on
the path.  On the other hand, paths totally within the PIW
region, such as path A, can never lead to dynamically singular
configurations.  In the next section two path planning
techniques that take advantage of nonholonomy in free-
floating systems are presented.
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Figure 4.  The reachable, Path Dependent, and Path Independent
Workspaces, for the system shown in Figure 2.

V . Path Planning in Joint Space
A free-floating system may operate under the Spacecraft-
Referenced End-Point Motion Control, in which either the
manipulator end-point is commanded to move to a location
fixed to its own spacecraft, or a simple joint motion is
commanded, such as when the manipulator is to be driven at
its stowed position [7].  In general, these motions will
change the spacecraft’s orientation.  However, there are many
cases in which this effect may be highly undesirable.  For
example, the spacecraft may be required to maintain a
constant orientation for communication purposes.  Therefore,
it would be useful to use a special joint path to control a
system’s orientation, without using limited thruster fuel [1].

Due to the nonholonomic behavior of a free-floating
system, a closed path in the manipulator’s joint space, will
result in a net change in the spacecraft’s orientation.  Based
on this observation, a Self Correcting Planning technique that
can correct for deviations from a desired orientation by
executing closed joint space paths, has been proposed [1].
Here, this technique is reviewed briefly.

If a spacecraft’s orientation is described by the 3-2-1
Euler angles, Q  = [θ1,θ2,θ3]T, then Q̇  is written using
Equation (1) as [12]:

Q̇ = - S-1(Q) w
0
 =  G(Q, q)q

.
(7)

where  S-1(Q ) is a nonsingular matrix, except at some
isolated points, and G(Q , q) = - S-1(Q) T

0
0D -1  0Dq.  For

small changes in the configuration q, Equation (7) is written
as:

δQ = G(Q, q)δq (8)

where G is a 3×N matrix.  Using a Taylor series expansion
of Equation (8), and assuming a joint space closed path along
the vectors δV, δW, -δV, - δW, the resulting change in the
Euler angles δQ is given by [1]:

δθi ≈ ∑
l=1

N
  ∑

m=1 

N
 g

ilm
 δV

l
 δW

m
   (i = 1,2,3) (9a)

g
ilm

 = ∑
n=1

3
 (

∂G
im

∂θ
n

 G
nl 

- 
∂G

il

∂θ
n

 G
nm

) + 
∂G

im

∂q
l

 - 
∂G

il

∂q
m

 (9b)

Equation (9) can be used to find the joint space path, as
described by vectors δV, and δW, to achieve a correction in
the spacecraft’s orientation by δQ.  Note that this is possible
only if at least one g

ilm
 is non zero.

If the dimension of the manipulator’s joint space is three,
Equation (9) represents three equations in six unknowns, i.e.
δV

i
, δW

i
, for i=1,2,3.  The additional constraints:

δVT δW = 0 (10a)

δVT δV = δWT δW (10b)
δV

3
= (δV

1
 + δV

2
)/2 (10c)

allow complete determination of the required joint space path.
This technique assumes that δQ  is small.  If a large
correction is required, this is broken in smaller ones, and
more than one correction cycles are performed.  The
implementation and the limitation of this method are
addressed through the following example.

Example
Consider the system introduced in Section IV.  It is desired to
estimate the number of joint space closed square paths
required to achieve a specified change in the spacecraft’s
orientation.  For this system, and for δV = [δq, 0]T, δW = [0,
δq]T, where δq represents a small change in a joint angle,
Equation (9) reduces to:

δθ = (
∂G

2

∂q
1

 - 
∂G

1

∂q
2

 )δq2= g(q
1
, q

2
) δq2 (11)

where g(q
1
,q

2
) is a measure of the influence of a closed joint

path on a spacecraft’s orientation, and given by:

g = -2 
d

01
D

2
tan(q

1
)+d

12
D

0
tan(q

2
)-d

02
D

1
tan(q

1
+q

2
)

D2 (12)

Assuming that at some particular configuration g(q
1
,q

2
) is

non zero, Equation (12) yields the change in orientation of the
spacecraft as a function of the area of the closed joint space
path.  If this path is a square with side δq, the number of
paths required to achieve a change ∆θ in the orientation, is
obtained from Equation (13) as:

m ≈ ∆θ 180°
(δq)2 π g-

(13)

where both ∆θ and δq are in degrees, g-  is the value of g(q
1
,q

2
)

evaluated at (q
1
+ δq/2,q

2
+ δq/2), and π = 3.14.

To demonstrate the use of Equation (13), assume that the
system is at (θ,q

1
,q

2
) = (14°,-48°,145°).  Then g-  = g(-

43°,150°) = -0.0495.  If the desired final θ is 10°, then ∆θ =
-4°.  Assuming a square joint path of side δq = 10°, and using
Equation (13), we find that the required number of square
paths is m = 46.  Figure 5 shows the orientation as a
function of m.  After the execution of 46 closed joint paths,
the spacecraft’s orientation becomes 10.06°.
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Figure 5.  Changes in the spacecraft orientation q, during the
execution of closed joint space paths.

As discussed earlier, this technique can be used if g-  is non
zero.  However, g-  becomes zero for certain configurations q,
shown in Figure 6.  Note the similarity with Figure 3.
When the system manipulator is in one of these
configurations, its spacecraft orientation cannot be affected by
small joint space closed paths.

q   (degrees)
1

q 
  (

de
gr

ee
s)

2

Figure 6.  Configurations at which joint motions have no
effect on the spacecraft’s orientation q.

In addition, a workspace location may have this property or
not depending on the path taken to reach it.  These
configurations can be mapped to cartesian space areas, using
R = R(q) as discussed in Section III B.  For this example, one
can show that g is non zero everywhere in the system’s PIW.
In other words, if the end-effector is in the PIW, the spacecraft
orientation is always affected by closed joint space paths.
However, when the end-effector is in the PDW, closed joint
paths may not result in changes in the orientation, and hence
this is limiting the extent to which this method can be used.

VI. Path-planning in the Cartesian
Workspace

The previous techniques can be used to find joint paths that
either correct a spacecraft’s orientation during a manipulator’s
motion, or simultaneously control the spacecraft orientation,
and the manipulator’s configuration; they don't deal with
Cartesian space path planning.  However, in many important
applications, the system will operate under an Inertially-
Referenced End-Point Motion Control mode [7].  Here, the
primary task is to move the end-effector of the manipulator,
from one inertial location to another.  As discussed in Section
IV, if the path has segments in the PDW, dynamic
singularities may occur.  This problem becomes even more
serious when the end-effector carries a load, because in such a
case, the PIW is severely reduced [8].  To avoid these
problems, either the workspace should be restricted to the
PIW, or a planning technique that can avoid dynamic
singularities should be employed.  In this section, one such
technique is developed.

Assume that the task is to move the end-effector from
point A to point D, without encountering dynamic
singularities that will prevent reaching the destination point.
Then, the following strategy can be used:

(a) Start from the final desired spacecraft orientation and
end-effector position/orientation, and move under joint space
control to some point C of the PIW.  Such a motion is not
subject to the effects of dynamic singularities, because these
affect the cartesian motion, only.  Record the path taken.  The
system reaches point C with q

DC
 and Q

DC
.

(b) Start from the initial desired spacecraft orientation and
end-effector position/orientation, and move under joint space
control to some point B of the PIW.  The system reaches
point C with q

AB
 and Q

AB
.  Note that other points B or C

located outside the PIW can be used also, if they are reachable
from A, and D at configurations “sufficiently” away from
singular ones.  Such points can be useful in the event that the
PIW is zero.  However, more research is needed in this case.

(c) Move from point B to point C, using any path.  The
system reaches point C with q

AC
 and Q

AC
.  In general, these

are different than q
DC

 and Q
DC

.
(d) Using small cyclical motions of the end-effector,

change the spacecraft orientation  from Q
AC

 to Q
DC

.  The
configuration changes from q

AC
 to q

DC
, since the end-effector

does move around the same point in cartesian space.  This is
in contrast to the technique in Section V, where the
configuration q remains constant after one cycle.

(e) Use the recorded path during step (a), to move to
point D.

The fact that small cyclical motions in the cartesian
space can change a spacecraft’s orientation is due to the
following equation, obtained by combining Equations (2) and
(7), and using an Euler angle representation for the end-
effector orientation:

δQ = G(Q,q){diag(I,S-1(Q
E
))J*}-1δx

E
 = G*(Q,x

E
)δx

E
(14)

where δx
E
 = δ[r

E
,Q

E
]T is a small change in the end-effector

position/orientation.  The 3×6 matrix G* is written as a
function of Q, and x

E
, because if these are given, and if N=6,
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then q can be found uniquely.  Note that Equation (14) has
the same structure to Equation (8), though more complicated.
Since J* is invertible in the PIW, G* exists and hence, closed
paths in the cartesian space will result in changes in the
orientation of a system’s spacecraft.  This technique is
illustrated below by an example.

Example
Consider again the example system introduced in Section IV.
The end-effector is initially at point A: (x,y) = (2,0), which
belongs in the system’s PDW, see Figure 7.  The initial
configuration of the system is (q

1
,q

2
) = (-58°, 60.3°) which

corresponds to an initial spacecraft orientation θ = 21°.
Assume that the end-effector is commanded to reach point D:
(x,y) = (1.5,1.5).  As the end-effector moves on a straight line
from the initial to the desired location, a dynamic singularity
occurs at point E, where  (θ, q

1
, q

2
)  =  (-32.4°, 74.24°,

10.6°), see Figure 7.

A

B=C

D

x (m)

y 
(m

)

E

Figure 7.  A Dynamic Singularity at point E does not allow the
end-effector to move from point A to D.  Path ABCD avoids

singularities by employing small circles at point B.
The end-effector stops at this point if an inverse Jacobian
planning or control algorithm is used, or deviates from the
desired final point if a transposed Jacobian control algorithm
is used [7,8].

Next, the algorithm introduced above is applied.  The
task is to reach point D, with θ ≈ 3°.   This θ corresponds to
(q

1
,q

2
) = (39.4°, 22.2°).  First, the end-effector is moved

from the desired point D, to some PIW point C: (0.8, 0.5),
see path DC in Figure 7.  Here a straight line motion is used,
and C is reached with θ

DC
=49.1°.  Next, the end-effector is

moved from the initial point A, to point B, which for
simplicity is taken equal to point C.  The end-effector reaches
point B: (0.8, 0.5) with (θ,q

1
,q

2
) = (14.5°, -49.4°, 145.9°).

The next task is to change the orientation of the spacecraft,
from θ

AC
=14.5°, to θ

DC
=49.1°.  To this end, the end-effector

is commanded to follow 11 circular paths, with radius .2m, as
shown in Figure 7.

The required number of circles has been found by trial and
error.  After the execution of these circles, the orientation θ
changes to 48.9°.  Next, the end-effector is moved to D,
following the prerecorded path DC in the opposite direction,
and reaches D with (θ,q

1
,q

2
) = (3.3°, 38.9°, 22.7°).  Note that

not only the destination point D, but also the desired final
spacecraft orientation has been reached.  If a closer match in
orientation is required, a smaller circle radius and more circles
should be employed.  Figure 8 depicts the change of θ during
as a function of the length of the total path ABCD.
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100500

C
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A

Figure 8.  The orientation of the spacecraft q as a function of the
path ABCD, shown in Figure 6.

VII. Conclusions
In this paper the nonholonomic behavior of free-floating
manipulators is addressed and attributed to the
nonintegrability of the angular momentum.  It is shown that
free-floating manipulators exhibit dynamic singularities
which cannot be predicted by the kinematic properties of the
system and whose location in the workspace is path
dependent.  Trouble-free Path Independent Workspaces are
defined.  A joint space planning technique that uses
manipulator joint motions to control a spacecraft’s
orientation was reviewed.  It was shown that in some system
configurations, joint manipulator motions cannot affect a
spacecraft’s orientation, and hence, such a technique must be
used with caution.  Finally, a Cartesian space planning
method was presented that permits the effective use of a
system’s reachable workspace by planning paths which avoid
dynamically singular configurations.
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Appendix A
The inertia terms used in the example are, see also [7]:
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where the d
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 terms are given by:
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The lengths l
i
, r

i
 (i=0,1,2) are defined in Figure 2.  M is the

total system mass, M = m
0
+m

1
+m

2
.


