



Abstract— Quadrupedal locomotion skills are challenging to
develop. In recent years, deep Reinforcement Learning promis-
es to automate the development of locomotion controllers and
map sensory observations to low-level actions. Moreover, the
full robot dynamics model can be exploited, but no model-
based simplifications are to be made. In this work, a method for
developing controllers for the Laelaps II robot is presented and
applied to motions on slopes up to 15°. Combining deep rein-
forcement learning with trajectory planning at the toe level,
reduces complexity and training time. The proposed control
scheme is extensively tested in a Gazebo environment similar to
the treadmill-robot environment at the Control Systems Lab of
NTUA. The learned policies produced promising results.

I. INTRODUCTION

Recently, there has been an increased interest in legged ro-
bots. Legged systems continuously interact with their sur-
roundings through multiple permanently changing contact
points. Such systems can traverse various terrain types, or
handle terrain discontinuities with the use of accurate foot
placement making them more versatile than wheeled robots.
Yet, quadrupeds have complex dynamics and many degrees
of freedom that must be well orchestrated for achieving a
robust and dynamically stable locomotion pattern. Dealing
with such high-dimensional, non-linear, and underactuated
system is a long-standing research challenge.

In most cases, state-of-the-art model-based control ap-
proaches require an accurate dynamics model of the robot
and include state estimation to contact scheduling, trajectory
optimization, and foot placement planning [1, 2, 3, 4]. In con-
trast, data-driven methods, such as model-free deep Rein-
forcement Learning (deep RL), already have produced prom-
ising results showing that they can overcome the limitations
of prior model-based approaches by learning effective con-
trollers directly from experience. Deep RL attempts to auto-
mate the development of locomotion controllers and map
sensory inputs directly to low-level actions [5]. The main
disadvantage that these methods suffer from is the so-called
reality gap, when trying to apply the learned policy in a real
robot. There are two general approaches for overcoming the
reality-gap: either to improve the simulation accuracy as

* This work was supported by the Hellenic Foundation for Research and
Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to
support Faculty members and Researchers and the procurement of high-cost
research equipment grant” (Project Number: 2182, ARGOS).

A. S. Mastrogeorgiou (e-mail: amast@central.ntua.gr), and E. G. Papa-
dopoulos (egpapado@central.ntua.gr) are with the Department of Mechani-
cal Engineering, National Technical University of Athens, 15780 Athens,
Greece. Y. S. Elbahrawy and A. Kecskeméthy, are with the Faculty of En-
gineering, University of Duisburg-Essen, Duisburg, Germany.

much as possible or employ parameter identification. Very
recent promising research results in the field of legged robots
demonstrated that learned locomotion policies could be trans-
ferred from simulation to reality [6, 7, 8]. To realize this
transfer, it was important to use high-fidelity simulations.
This was achieved by learning parts of the simulated model
from real data [6], or by model parameter estimation [7].
Model-free methods have been applied to bipeds like Cassie
from Agility Robotics [9], without the need for model-based
simplifications commonly used to realize control policies.

This paper presents a framework for learning trotting con-
trollers on sloped terrain employing a realistic 3D model of
the Laelaps II quadruped developed by CSL [10] (Figure 1).

Figure 1. The quadruped robot Laelaps II, built by the Legged Robotics

Team at the Control Systems Lab of NTUA, on the lab’s treadmill.

The focus of this work is to study whether it is possible to
develop a controller using deep RL enabling the Laelaps II
quadruped to handle positive and negative slopes, starting
from trajectory planning at the toe level and open loop stabil-
ity. The Laelaps II is an appropriate testbed to evaluate the
developed algorithm, since it cannot perform hip abduction
which would help to stabilize the robot in cases of increasing
body roll/yaw angles.

The proposed controller displayed robustness in environ-
ment uncertainties and managed to produce stable gaits, i.e.:
bounded body pitch/roll angles. Also, when the quadruped is
trotting on slopes up to , it does not drift away from its
goal, i.e. its body yaw angles are bounded. The control
scheme mainly consists of two parts, of the applied deep RL
algorithm, and of the toe level trajectory planning part. The
performance of this controller is extensively tested using an
accurate Laelaps II robot model in Gazebo, exploiting the full
dynamics of the robot.

The paper consists of five sections. Section II presents an
overview of the simulation environment and of a detailed
Laelaps II 3D model in Gazebo. In Section III, the control
architectures including the deep RL algorithm and the semi-
elliptic trajectory planner are described. In the last two sec-

Slope Handling for Quadruped Robots
Using Deep Reinforcement Learning and Toe Trajectory Planning*

Athanasios S. Mastrogeorgiou, Yehia S. Elbahrawy, Andrés Kecskeméthy, and
Evangelos G. Papadopoulos, Fellow, IEEE

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 3777

tions, successful experiments in the Gazebo environment are
presented, followed by a discussion and the future work.

II. SIMULATION ENVIRONMENT

Having the goal of transferring the learned policies to a
quadruped, a more convenient approach is to use the same
development frameworks commonly used by researchers in
legged robotics and deep RL. As a result, tools such as the
Gazebo simulator [11], the Gym framework [12] and Robot
Operating System (ROS) [13] were employed. In this
framework different robot models (described in SDF format
[14]) can be loaded and with the appropriate adjustments,
can be trained using state-of-the-art deep RL algorithms.

A. Laelaps II

Laelaps II is a quadruped robot built by the Legged Robotics
Team at the Control Systems Lab of NTUA [10]. The robot
parameters are presented in Table I. The actuation system of
each leg comprises a RE50 Maxon motor for the hip and an
EC45 Maxon motor for the knee. Both are equipped with
gearboxes and belt-pulley transmissions. Since the knee mo-
tor is body-mounted, a parallel mechanism is used to drive
the distal leg segment (tibia). The maximum torque/angular
rate capabilities of the Laelaps II leg are 50 Nm/55 rpm for
the hip, and 50 Nm/75 rpm for the knee; exceeding these
limits will cause damage to the gearboxes, thus the gearbox-
es are responsible for the torque/angular rate limitations.

B. Laelaps II in Gazebo

For the needs of this work, a simulation environment was set
up in Gazebo. Every parameter of the Laelaps II robot pre-
sented in Table I & Figure 3 is used in the Gazebo model in
order to build an accurate simulation model/environment.
This environment consists of the Laelaps robot, of level ter-
rain and of ramps with inclinations of , see Figure 2.

(a)

(b)

Figure 2. Simulation Environment of Laelaps II Quadruped in Gazebo.

(a) Positive and (b) negative slopes are used.

For the ground contacts, the coefficient of restitution used
by the Open Dynamics Engines was utilized. Concerning the
robot model, the original CAD files of the robot’s legs and
body were used and added in the XACRO description [15],
see Figure 3. With xacro, it is possible to construct shorter
and more readable XML files using macros that expand to
larger XML expressions. All robot parts were extracted as

STL or DAE files from the Solidworks CAD design and im-
ported in the xacro description. The mass properties for each
part shown with different color in (mass, inertia matrix, CoM,
etc.) were used also. The robot description xacro files as well
as the Gazebo environment set-up can be found at [16]. The
tendon like part of the leg was modeled as a prismatic joint
with a spring constant equal to the springs used in Laelaps II
robot legs, i.e.: 26,480 N/m. Regarding the max torque and
angular rate values, the calculated outputs of the actuation
system after the gearbox and the belt-pulley transmission
system were used.

(a)

(b)

Figure 3. (a) Detailed model of the Laelaps II leg in Gazebo. CAD files

were used, and all mass properties were added in the SDF description, (b)

Laelaps II Robot in Gazebo. The toes follow semi-elliptical trajectories.

Deep RL produces the center of the semi-elliptical trajectories and the tra-

jectory planner produces the exact toe position.

TABLE I. LAELAPS II PARAMETERS MODELLED IN GAZEBO.

Parameter Value

Body mass 40 kg

Hip to hip distance 1
(body length) 0.6 m

Hip to hip distance 2
(body width)

0.4 m

Body inertia matrix {IXX=0.87, IYY=1.23, IZZ=2.03} kg·m2

Femur inertia matrix
{IXX= 0.0030216, IXY=0.0, IXZ = 0.0,
IYY=0.000606, IYZ= 0.0000508, IZZ=
0.0030174} kg·m2

Tibia inertia matrix
{IXX= 0.0069971, IXY= -0.0025079, IXZ = -
0.0000413, IYY= 0.00113, IYZ= 0.0001357, IZZ=
0.0080248} kg·m2

Foot inertia matrix

{IXX= 0.000039, IXY= 0.000114, IXZ =
0.000014,
IYY = 0.000946, IYZ= 0.000003 IZZ= 0.000974}
kg·m2

Transmission arm
inertia matrix

{IXX=0.000238, IXY=-0.000143, IXZ = 0,
IYY=0.000238, IYZ=0 IZZ=0.000326} kg·m2

Spring stiffness 26480 N/m

Max hip torque 50 Nm

Max knee torque 50 Nm

Hip reduction ratio 97.8462

Knee reduction ratio 79.3846

Max hip angular rate 55 rpm

Max knee rate 75 rpm

III. CONTROLLER ARCHITECTURE

The developed control architecture is presented in Figure 4.

3778

First, the deep RL algorithm performs foot placement plan-
ning by choosing the center of the semi-elliptical trajectories
to be applied, see Figure 3. This is passed to the trajectory
planner that produces the exact toe position for every leg.
The diagonal legs are phase shifted by j . Using the toe
position as input and the inverse kinematics of the Laelaps
leg as presented in Subsection D, the angles for the hip and
knee joints are calculated. In turn, they are passed to a PID
controller to produce the motor torques to be applied in the
simulation environment. The position control model eases
the performance and speed of the deep RL algorithm [17].

2. Deep Reinforcement Learning

Deep Deterministic Policy
Gradient (DDPG)

1. Simulation Environment in Gazebo

1. Toe Trajectory planning
e.g. semi-elliptical trajectories, etc.

2. Phase shifts for diagonal legs
3. Trajectory frequency

3. Trajectory planning

5. PID Controller

4. Inverse Kinematics

T
o

e
P

o
si

ti
o

n
s

(x
to

e ,
yt

o
e)

Foot placement
planning (xc,yc)

Motor Torques

Desired Hip &
Knee Angles

• Open Dynamics Engine
• Different levels of inclination

are used for training and
testing.

• Reward function

From Toe Positions to
Joint Angles

ros_control package

controller

Figure 4. Architecture of the control algorithm.

A. Proposed Reinforcement Learning Scheme

The RL problem is formulated as a Markov Decision Pro-
cess (MDP) that is described for each time step t with a
tuple (

s,a, p,r,g), where s is the current robot state, a is

the action applied,

p is the transition probability function

from the current state

s

t
 to the next state

s

t+1
, r is a reward

value obtained due to the transition, and

g Î [0,1] is a dis-

count factor for the long term reward [18].
The robot starts by exploring a stochastic environment to

find an optimal behavior and increase cumulative reward
values over subsequent timestamps t throughout the robot
trajectory [18]. Here, the problem is defined in an episodic
setting, where the agent follows a trajectory of simulation
steps until a predefined termination criterion is reached. The
accumulated reward of one episode with m time steps is
defined as [18]

g t

t=0

m

å r
at

(s
t
,s

t+1
) (1)

where

r

at

 is a reward function under action a .This function
is defined so as to promote robot forward motion and punish
divergence from its goal (e.g.: climb up a ramp)

r

a
t
= w

f
(x

t
- x

t-1
)-w

d
(y

t
- y

t-1
), (2)

where

w

f
 and

w

d
 are the weights for the forward and drift-

ing terms respectively. Since Laelaps II has a forward mo-
tion due to the planned semi-elliptical trajectory, the forward
weight is tuned to

w

f
=1 and the drift weight to

w

d
= 2.

Therefore, the reward function focuses on penalizing drifting
motions.

The control algorithm receives from Gazebo propriocep-
tive sensory information s regarding the Laelaps II body, i.e.

roll/pitch/yaw angles and angular rates, building a compact
observation space. Reducing the observation space has a sig-
nificant influence in simplifying the reinforcement learning
problem [19].

For consistency, all sensor measurements were taken from
the same ROS topic, i.e.: /Gazebo/model_states. It was
cross-checked that the measurements from this topic com-
pared to the measurements from an equivalent virtual sensor
that Gazebo provides (e.g. IMU) are the equal. Given the
roll/pitch/yaw angles and angular rates as input, the algorithm
outputs a vector of actions

[x

C1
, y

C1
,.., x

C 4
, y

C 4
]T , with

(x

c
, y

c
)

the center of the semi-elliptical trajectory (Figure 3) w.r.t. the
reference frame fixed at the hip of each leg (c1, c2, c3, c4),
where:

x

c
Î [-0.1,0.1] and

y

c
Î [-0.55,-0.50].

To solve the MDP problem, the robot must find a policy
m that maximizes (1). With an optimal policy learned, the
agent discovers the interconnection between states, actions,
and rewards [18]. In the implemented algorithm, the toe posi-
tions

(x

toe
, y

toe
) are chosen individually for every leg as the

robot climbs up/down the ramp. This means that the algo-
rithm is adjusting the CoM height accordingly for slope
climbing, it is stabilizing the robot (bounding roll and pitch
angles) and it is keeping the robot moving straight (bounding
yaw angle). Alternatively, training at the joint level could be
performed but this could easily lead to invalid configurations,
singularities etc. Defining the toe workspace that the algo-
rithm could choose actions from, guarantees that no invalid
actions would be applied to the robot.

B. Deep Deterministic Policy Gradient (DDPG)

The DDPG is a model-free algorithm that requires sensor
reading from the environment and maps the current state, s ,
using a deterministic policy

m(s |qm) : s® a to a single pre-

dicted action, a . The algorithm adjusts the parameter q
towards the direction of the policy gradient, that should in-
crease with better predicted actions corresponding to better
total reward values [20].

Deterministic policy algorithms are computationally sim-
pler compared to algorithms with stochastic policy, which
output a probability function of all possible actions given a
state. Furthermore, their gradients can be approximated effi-
ciently, as the estimation of the gradient involves integration
over the state space instead of over a combination of state-
action spaces. Therefore, estimation of the stochastic policy
gradient requires more data samples [18, 21].

As proposed in [20, 21], the DDPG algorithm is based on
actor-critic deep neural network architecture shown in Figure
5. The actor network uses the target policy

m(s |qm) to pre-

dict the actions for a given state, while the critic network es-
timates the action-value function

Q , which is the total dis-

counted reward of an action applied on the given state. In
other words, the

Q value gives an insight for the quality of

the action applied.
For training stability, a target network for the actor and

critic is used. The target critic network estimates

Q

target
of the

next state using the actions obtained from the target actor

3779

network. The Bellman equation using the estimated

Q

target
 is

defined as [20]:

y

t
= r(s

t
,a

t
)+gQ

target
(s

t+1
,a

t+1
) |qQ() . (3)

Figure 5. Actor-Critic DNN architecture.

The main critic network loss is determined by the Bellman
error, which is a mean square error (MSE) between the main
network estimated

Q value and the

y

t
values estimated by the

Bellman equation updating the critic network weights q
Q .

The main actor network loss is defined by the negative of the
critic output

Q -value, which can be seen as the actor network

updates its weights qm by backpropagation to maximize the
critic output. At the end of every training step the target net-
work weights are updated by soft update strategy that copy a
small ratio of the learned updates in the main network [20].

To enhance learning, the training samples are required to
be independent and identically distributed. As an off-policy
algorithm, DDPG guarantees this requirement by using re-
play buffer, i.e.: fixed saved experiences

(s

t
,a

t
,r

t
,s

t+1
,d),

where d is a Boolean variable, with true/false corresponding
to episode termination [20]. Correspondingly, the neural net-
works learn from uncorrelated training samples using uni-
formly sampled mini batches from the buffer, whereas the
PTAN package introduced in [22] was utilized to save the
experiences and fill the buffer. However, off-policy algo-
rithms have the disadvantage of environment exploration.
Using an Ornstein-Uhlenbeck process as in [20], the explora-
tion strategy was implemented by adding noise to the actor
output actions with temporally correlated values.

C. Semi elliptical trajectories

The semi-elliptical trajectory equations with respect to the
frame fixed at the hip is given by

x
toe
= x

c
+ a × cos(w

toe
t
sim
+j)

y
toe
=

y
c
+ b × sin(w

toe
t
sim
+j), if y

c
< y

toe

y
c
, otherwise

ì
í
ï

îï

 (4)

where

xtoe,ytoe
éë ùû

T
are the coordinates of the elliptical trajec-

tory that the toe should be placed at,

xc,yc
éë ùû

T
is the ellipse

center,

a = 0.06 m and

b = 0.03 m are the ellipse semi-axis,

 wtoe
= 30rad / s is the angular velocity of the toe motion

along the elliptical trajectory, tsim is the simulation time and
j is the phase shift between the diagonal pair legs. The
phase shift variable is set to 0 rad for legs 1 and 3 and to π
rad for legs 2 and 4, see Figure 3 (b). Last, if the calculated

 ytoe
 is greater than yc

 then ytoe
 is set to be equal to yc

 so
that the toe follows a semi-elliptical trajectory. DDPG plans
the next step by choosing the center

xc,yc
éë ùû

T
 of the semi-

elliptical trajectories that will be applied. The center coordi-
nates are passed to the trajectory planner that produces the
exact toe position coordinates

xtoe,ytoe
éë ùû

T
, for every leg. For

this part, the ros_control package is utilized. Specifically, the
ros_control position controller is running at 1 kHz and pro-
duces the torques that the simulated hip and knee motors
apply. The gains of the PID controller can be found at [16].

D. Inverse kinematics

Concerning the leg inverse kinematics, the two distal seg-
ments of the Laelaps II leg, are considered equivalent to a
single virtual rigid segment since the connecting tendon-like
spring is very stiff. As a result, given the

xtoe,ytoe
éë ùû

T
 toe po-

sition, the virtual links l1 and l2 see Figure 3 (a), are used to
calculate the hip and knee joint angles. In turn, these angles
are translated to actual motor angles that will be applied to
the model based on the original leg design. As a result:

c = x2

toe+y2
toe-l1

2-l2
2() / 2l

1
l
2
, s = ± 1- c

2
 (5)

q

2
= atan2(y

toe
, x

toe
) - atan2(l

1
s, l

2
x
toe

+ l
1
c) (6)

 q1

= q
2
+ atan2(s, c) (7)

j

hip
= p / 2+q

2
 and j

knee
= q

1
 (8)

IV. RESULTS

All trainings were carried out with a mid-range desktop
computer equipped with Intel® i5-3470 CPU @ 3.20GHz,
Nvidia GeForce GTX 950 GPU, and 12GB of DD3 RAM
running Ubuntu 18.04 with kernel 5.3 and ROS Melodic
Morena installed with Gazebo 9.12.

Controllers and trajectory planning that can produce stable
gaits were employed [23]. When tested with the detailed 3D
Laelaps II model presented earlier, they could produce for-
ward motion, but the quadruped was diverging from its goal,
i.e. increasing yaw angles were observed, Figure 6. More
sophisticated solutions were needed for negative or positive
slope handling. Foot placement planning should be per-
formed to balance the robot, especially when realistic friction
coefficients were used. It turned out that deep RL, i.e. DDPG
in this case, can enhance the implementations presented in
[23]. Comparisons with and without the DDPG layer are pre-
sented in figures 7 & 10. Even though the quadruped physi-
cally cannot perform hip abduction, it is trotting stably as
presented in Figures 8 & 9.

The algorithm was trained for trotting up and down a
slope of ±10°. To evaluate if this control model can learn in
different tasks, for both scenarios the same control scheme

3780

and hyperparameters were used. Concerning the DDPG ar-
chitecture, the actor and critic neural networks have two
hidden layers with 500 and 400 hidden neurons respectively
and learning rate of 0.0001. To simplify dealing with gradi-
ents during training, two optimization steps using ADAM
algorithm [24] were used for the actor and critic networks.
The training samples were randomly chosen from a replay
buffer of 10K transitions. The replay buffer’s size was cho-
sen to have stable behavior and avoid overfitting.

One common evaluation metric for RL performance is
tracking the average episode reward. In this work, testing the
learned policy periodically (every 500 steps) was additional-
ly used. Figures 11 & 12 indicate that the agent learns both
tasks in about 3 h. Specifically, it converged to a validation
reward of ~3, corresponding to the ramp end. To demon-
strate that the trained model is general enough, it was tested
on a slope of 15° as shown in Figure 13. Laelaps reaches the
top of the ramp in this case also. All tasks were accom-
plished with a torque limit of 50 Nm (Figures 14 & 15).

Figure 6. Application of a controller similar to [23] on the Laelaps II 3D

model in Gazebo without the developed control scheme, and on level ter-

rain. The body roll angle is bounded but yaw angle is increasing.

Figure 7. Laelaps CoM while trotting up a ramp of 10°. Without the DDPG

layer (blue line), the robot is diverging from its goal and eventually falls.

Using the trained policy (red line), the robot manages to reach the end of the

3.2 m ramp.

Figure 8. The Laelaps phase plane diagram at trotting up a ramp of 10°.

Figure 9. Roll and yaw angles of the Laelaps robot as it is trotting up a

ramp of 10° with the developed control scheme. The values are bounded for

the entire experiment.

Figure 10. Laelaps CoM position while trotting down a ramp of 10°. With-

out the developed control scheme, (blue line), the robot is diverging from its

goal and eventually falls. Using the trained policy, the robot manages to

reach the end of the ramp.

Figure 11. Training and evaluation reward values for inclination of +10°.

Figure 12. Training and evaluation reward values for inclination of -10°.

3781

Figure 13. Testing of the learned policy on 10° (red line) and 15° (blue line).

In both cases the quadruped reaches the goal. 10° ending point (x= 3.18m,

y=-0.0078m, z=0.579m). 15° ending point (x= 3.01m, y=-0.17m, z=0.68m).

Figure 14. Right hint hip motor torques while Laelaps is trotting up a ramp

of 10°. Torques are limited to 50Nm, the same limit that the real Laelaps hip

motors are subject to.

Figure 15. Right hint knee motor torques while Laelaps is trotting up a

ramp of 10°. Torques are limited to 50Nm, the same limit that the real

Laelaps knee motors are subject to.

V. CONCLUSION

A new method for developing controllers for the Laelaps II
quadruped was proposed. Using a detailed model of the
quadruped, its full dynamics were exploited, and no model-
based simplifications were made. The training was carried
out in a Gazebo simulation environment and tested in vari-
ous ramp inclinations to prove the generalization of the
trained policies, with coefficients of friction close to 1, simi-
lar to the foot-treadmill coefficient at CSL. Having the tra-
jectory planning on the toe level as a starting point, the train-
ing time was significantly reduced to almost three hours on a
mid-range PC. The simulation environment in Gazebo is as
close as possible to the treadmill-robot setup at CSL. This
will allow us to apply the method on Laelaps II, as soon as it

is ready for experiments. In addition, the combination of
Gazebo and Gym employed here will enable testing and
comparing of various state-of-the-art deep RL algorithms in
the future. Last, using the same setup, Laelaps can be trained
to perform on more challenging terrains, such as mixed
slopes, stairs etc.

REFERENCES

[1] Taylor A., Patrick C., Kevin G., Alan F., and Jonathan W. H., “Fast
online trajectory optimization for the bipedal robot cassie,” Robotics:
Science and Systems (RSS), 2018.

[2] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S.
Kim, “MIT cheetah 3: Design and control of a robust, dynamic quad-
ruped robot,” Proc. International Conference on Intelligent Robots
and Systems (IROS), Madrid, Spain, Oct. 1-5, 2018.

[3] C. Gehring, M. Coros, S. Hutler, C. D. Bellicoso, H. Heijnen, R. Di-
ethelm, M. Bloesch, P. Fankhauser, J. Hwangbo, M. Hoepflinger, et
al., “Practice makes perfect: An optimization-based approach to con-
trolling agile motions for a quadruped robot,” IEEE Robotics & Auto-
mation Magazine, 23(1):34–43, 2016

[4] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
et al. “Anymal-a highly mobile and dynamic quadrupedal robot,”
Proc. International Conference Intelligent Robots and Systems
(IROS), Daejeon, Korea, October 9-14, 2016, pp. 38–44.

[5] Haarnoja, Tuomas & Zhou, Aurick & Ha, Sehoon & Tan, Jie & Tuck-
er, George & Levine, Sergey, “Learning to Walk via Deep Reinforce-
ment Learning,” arXiv:1812.11103, 2018.

[6] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso,
Vassilios Tsounis, Vladlen Koltun, and Marco Hutter, “Learning Ag-
ile and Dynamic Motor Skills for Legged Robots,” Science Robotics,
4(26), 2019.

[7] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai,
Danijar Hafner, Steven Bohez, and Vincent Vanhoucke, “Sim-to-Real:
Learning Agile Locomotion for Quadruped Robots,”
arXiv:1804.10332, 2018.

[8] Lee, Joonho, Jemin Hwangbo and Marco Hutter. “Robust Recovery
Controller for a Quadrupedal Robot using Deep Reinforcement Learn-
ing,” ArXiv abs/1901.07517, 2019.

[9] Xie, Zhaoming & Berseth, Glen & Clary, Patrick & Hurst, Jonathan &
Panne, Michiel. (2018). Feedback Control for Cassie With Deep Rein-
forcement Learning. 1241-1246. 10.1109/IROS.2018.8593722.

[10] http://nereus.mech.ntua.gr/legged/
[11] http://Gazebosim.org/
[12] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.

Tang, and W. Zaremba, “Openai gym,” arXiv:1606.01540v1, 2016
[13] https://www.ros.org/
[14] http://sdformat.org/
[15] https://wiki.ros.org/xacro
[16] https://github.com/mastns/Laelaps2_DDPG
[17] Peng, Xue & Panne, Michiel, “Learning locomotion skills using

DeepRL: does the choice of action space matter?” ACM 1-13.
10.1145/3099564.3099567, 2017.

[18] Sewak, Mohit, “Deep Reinforcement Learning: Frontiers of Artificial
Intelligence,” 10.1007/978-981-13-8285-7, 2019.

[19] Kober, Jens & Peters, Jan, Learning Motor Skills: From Algorithms to
Robot Experiments, 10.1007/978-3-319-03194-1, Springer 2014.

[20] Lillicrap, Timothy & Hunt, Jonathan & Pritzel, Alexander & Heess,
Nicolas & Erez, Tom & Tassa, Yuval & Silver, David & Wierstra,
Daan, “Continuous control with deep reinforcement learning, CoRR,”
arXiv:1509.02971, 2015.

[21] Silver, David & Lever, Guy & Heess, Nicolas & Degris, Thomas &
Wierstra, Daan & Riedmiller, Martin, “Deterministic Policy Gradient
Algorithms,” 31st Int. Conference on Machine Learning, ICML 2014.

[22] Maxim Lapan., Deep Reinforcement Learning Hands-On: Apply
modern RL methods, with deep Q-networks, value iteration, policy
gradients, TRPO, AlphaGo Zero and more. Packt Publishing, 2018

[23] Machairas, K. and Papadopoulos, E., “An Active Compliance Control-
ler for Quadruped Trotting,” 24th Mediterranean Conference on Con-
trol and Automation (MED ‘16), Athens, Greece, June 21-24, 2016.

[24] Kingma, Diederik P. and Ba, Jimmy, “Adam: A Method for Stochastic
Optimization”, 3rd International Conference for Learning Representa-
tions, San Diego, 2015.

3782

