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Abstract— Quadrupedal locomotion skills are challenging to 
develop. In recent years, deep Reinforcement Learning promis-
es to automate the development of locomotion controllers and 
map sensory observations to low-level actions. Moreover, the 
full robot dynamics model can be exploited, but no model-
based simplifications are to be made. In this work, a method for 
developing controllers for the Laelaps II robot is presented and 
applied to motions on slopes up to 15°. Combining deep rein-
forcement learning with trajectory planning at the toe level, 
reduces complexity and training time. The proposed control 
scheme is extensively tested in a Gazebo environment similar to 
the treadmill-robot environment at the Control Systems Lab of 
NTUA. The learned policies produced promising results. 

I. INTRODUCTION 

Recently, there has been an increased interest in legged ro-
bots. Legged systems continuously interact with their sur-
roundings through multiple permanently changing contact 
points. Such systems can traverse various terrain types, or 
handle terrain discontinuities with the use of accurate foot 
placement making them more versatile than wheeled robots. 
Yet, quadrupeds have complex dynamics and many degrees 
of freedom that must be well orchestrated for achieving a 
robust and dynamically stable locomotion pattern. Dealing 
with such high-dimensional, non-linear, and underactuated 
system is a long-standing research challenge.  

In most cases, state-of-the-art model-based control ap-
proaches require an accurate dynamics model of the robot 
and include state estimation to contact scheduling, trajectory 
optimization, and foot placement planning [1, 2, 3, 4]. In con-
trast, data-driven methods, such as model-free deep Rein-
forcement Learning (deep RL), already have produced prom-
ising results showing that they can overcome the limitations 
of prior model-based approaches by learning effective con-
trollers directly from experience. Deep RL attempts to auto-
mate the development of locomotion controllers and map 
sensory inputs directly to low-level actions [5]. The main 
disadvantage that these methods suffer from is the so-called 
reality gap, when trying to apply the learned policy in a real 
robot. There are two general approaches for overcoming the 
reality-gap: either to improve the simulation accuracy as 
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much as possible or employ parameter identification. Very 
recent promising research results in the field of legged robots 
demonstrated that learned locomotion policies could be trans-
ferred from simulation to reality [6, 7, 8]. To realize this 
transfer, it was important to use high-fidelity simulations. 
This was achieved by learning parts of the simulated model 
from real data [6], or by model parameter estimation [7]. 
Model-free methods have been applied to bipeds like Cassie 
from Agility Robotics [9], without the need for model-based 
simplifications commonly used to realize control policies. 

This paper presents a framework for learning trotting con-
trollers on sloped terrain employing a realistic 3D model of 
the Laelaps II quadruped developed by CSL [10] (Figure 1). 

 
Figure 1. The quadruped robot Laelaps II, built by the Legged Robotics 

Team at the Control Systems Lab of NTUA, on the lab’s treadmill. 

The focus of this work is to study whether it is possible to 
develop a controller using deep RL enabling the Laelaps II 
quadruped to handle positive and negative slopes, starting 
from trajectory planning at the toe level and open loop stabil-
ity. The Laelaps II is an appropriate testbed to evaluate the 
developed algorithm, since it cannot perform hip abduction 
which would help to stabilize the robot in cases of increasing 
body roll/yaw angles.  

The proposed controller displayed robustness in environ-
ment uncertainties and managed to produce stable gaits, i.e.: 
bounded body pitch/roll angles. Also, when the quadruped is 
trotting on slopes up to , it does not drift away from its 
goal, i.e. its body yaw angles are bounded. The control 
scheme mainly consists of two parts, of the applied deep RL 
algorithm, and of the toe level trajectory planning part. The 
performance of this controller is extensively tested using an 
accurate Laelaps II robot model in Gazebo, exploiting the full 
dynamics of the robot.  

The paper consists of five sections. Section II presents an 
overview of the simulation environment and of a detailed 
Laelaps II 3D model in Gazebo. In Section III, the control 
architectures including the deep RL algorithm and the semi-
elliptic trajectory planner are described. In the last two sec-
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tions, successful experiments in the Gazebo environment are 
presented, followed by a discussion and the future work.  

II. SIMULATION ENVIRONMENT 

Having the goal of transferring the learned policies to a 
quadruped, a more convenient approach is to use the same 
development frameworks commonly used by researchers in 
legged robotics and deep RL. As a result, tools such as the 
Gazebo simulator [11], the Gym framework [12] and Robot 
Operating System (ROS) [13] were employed. In this 
framework different robot models (described in SDF format 
[14]) can be loaded and with the appropriate adjustments, 
can be trained using state-of-the-art deep RL algorithms.  

A. Laelaps II 

Laelaps II is a quadruped robot built by the Legged Robotics 
Team at the Control Systems Lab of NTUA [10]. The robot 
parameters are presented in Table I. The actuation system of 
each leg comprises a RE50 Maxon motor for the hip and an 
EC45 Maxon motor for the knee. Both are equipped with 
gearboxes and belt-pulley transmissions. Since the knee mo-
tor is body-mounted, a parallel mechanism is used to drive 
the distal leg segment (tibia). The maximum torque/angular 
rate capabilities of the Laelaps II leg are 50 Nm/55 rpm for 
the hip, and 50 Nm/75 rpm for the knee; exceeding these 
limits will cause damage to the gearboxes, thus the gearbox-
es are responsible for the torque/angular rate limitations. 

B. Laelaps II in Gazebo 

For the needs of this work, a simulation environment was set 
up in Gazebo. Every parameter of the Laelaps II robot pre-
sented in Table I & Figure 3 is used in the Gazebo model in 
order to build an accurate simulation model/environment. 
This environment consists of the Laelaps robot, of level ter-
rain and of ramps with inclinations of , see Figure 2.  

 

(a) 

 
(b) 

Figure 2. Simulation Environment of Laelaps II Quadruped in Gazebo. 

(a) Positive and (b) negative slopes are used.  

For the ground contacts, the coefficient of restitution used 
by the Open Dynamics Engines was utilized. Concerning the 
robot model, the original CAD files of the robot’s legs and 
body were used and added in the XACRO description [15], 
see Figure 3. With xacro, it is possible to construct shorter 
and more readable XML files using macros that expand to 
larger XML expressions. All robot parts were extracted as 

STL or DAE files from the Solidworks CAD design and im-
ported in the xacro description. The mass properties for each 
part shown with different color in (mass, inertia matrix, CoM, 
etc.) were used also. The robot description xacro files as well 
as the Gazebo environment set-up can be found at [16]. The 
tendon like part of the leg was modeled as a prismatic joint 
with a spring constant equal to the springs used in Laelaps II 
robot legs, i.e.: 26,480 N/m. Regarding the max torque and 
angular rate values, the calculated outputs of the actuation 
system after the gearbox and the belt-pulley transmission 
system were used. 

 

(a) 

 

 

 

 

(b) 

Figure 3. (a) Detailed model of the Laelaps II leg in Gazebo. CAD files 

were used, and all mass properties were added in the SDF description, (b) 

Laelaps II Robot in Gazebo. The toes follow semi-elliptical trajectories. 

Deep RL produces the center of the semi-elliptical trajectories and the tra-

jectory planner produces the exact toe position. 

TABLE I.  LAELAPS II PARAMETERS MODELLED IN GAZEBO. 

Parameter Value 

Body mass 40 kg 

Hip to hip distance 1 
(body length) 0.6 m 

Hip to hip distance 2 
(body width) 

0.4 m 

Body inertia matrix {IXX=0.87, IYY=1.23, IZZ=2.03} kg·m2 

Femur inertia matrix 
{IXX= 0.0030216, IXY=0.0, IXZ = 0.0, 
IYY=0.000606, IYZ= 0.0000508, IZZ= 
0.0030174} kg·m2 

Tibia inertia matrix 
{IXX= 0.0069971, IXY= -0.0025079, IXZ = -
0.0000413, IYY= 0.00113, IYZ= 0.0001357, IZZ= 
0.0080248} kg·m2 

Foot inertia matrix 

{IXX= 0.000039, IXY= 0.000114, IXZ = 
0.000014,  
IYY = 0.000946, IYZ= 0.000003 IZZ= 0.000974} 
kg·m2 

Transmission arm 
inertia matrix 

{IXX=0.000238, IXY=-0.000143, IXZ = 0, 
IYY=0.000238, IYZ=0 IZZ=0.000326} kg·m2 

Spring stiffness 26480 N/m 

Max hip torque 50 Nm 

Max knee torque 50 Nm 

Hip reduction ratio 97.8462 

Knee reduction ratio 79.3846 

Max hip angular rate 55 rpm 

Max knee rate 75 rpm 

III. CONTROLLER ARCHITECTURE 

The developed control architecture is presented in Figure 4. 
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First, the deep RL algorithm performs foot placement plan-
ning by choosing the center of the semi-elliptical trajectories 
to be applied, see Figure 3. This is passed to the trajectory 
planner that produces the exact toe position for every leg. 
The diagonal legs are phase shifted by j . Using the toe 
position as input and the inverse kinematics of the Laelaps 
leg as presented in Subsection D, the angles for the hip and 
knee joints are calculated. In turn, they are passed to a PID 
controller to produce the motor torques to be applied in the 
simulation environment. The position control model eases 
the performance and speed of the deep RL algorithm [17]. 

2. Deep Reinforcement Learning

Deep Deterministic Policy 
Gradient (DDPG)

1. Simulation Environment in Gazebo

1. Toe Trajectory planning
e.g. semi-elliptical trajectories, etc.

2. Phase shifts for diagonal legs
3. Trajectory frequency

3. Trajectory planning

5. PID Controller

4. Inverse Kinematics
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Figure 4. Architecture of the control algorithm.  

A. Proposed Reinforcement Learning Scheme 

The RL problem is formulated as a Markov Decision Pro-
cess (MDP) that is described for each time step  t  with a 
tuple (

  
s,a, p,r,g ), where  s  is the current robot state,  a  is 

the action applied, 
 
p  is the transition probability function 

from the current state 
 
s

t
 to the next state 

  
s

t+1
,  r  is a reward 

value obtained due to the transition, and 
 
g Î [0,1] is a dis-

count factor for the long term reward [18].  
The robot starts by exploring a stochastic environment to 

find an optimal behavior and increase cumulative reward 
values over subsequent timestamps  t  throughout the robot 
trajectory [18]. Here, the problem is defined in an episodic 
setting, where the agent follows a trajectory of simulation 
steps until a predefined termination criterion is reached. The 
accumulated reward of one episode with  m  time steps is 
defined as [18] 

 

  

g t

t=0

m

å r
at

(s
t
,s

t+1
)  (1) 

where 
 
r

at

 is a reward function under action a .This function 
is defined so as to promote robot forward motion and punish 
divergence from its goal (e.g.: climb up a ramp) 

 
  
r

a
t
= w

f
(x

t
- x

t-1
)-w

d
( y

t
- y

t-1
),  (2) 

where
 
w

f
 and 

 
w

d
 are the weights for the forward and drift-

ing terms respectively. Since Laelaps II has a forward mo-
tion due to the planned semi-elliptical trajectory, the forward 
weight is tuned to 

  
w

f
=1 and the drift weight to 

  
w

d
= 2. 

Therefore, the reward function focuses on penalizing drifting 
motions.  

The control algorithm receives from Gazebo propriocep-
tive sensory information  s  regarding the Laelaps II body, i.e. 

roll/pitch/yaw angles and angular rates, building a compact 
observation space. Reducing the observation space has a sig-
nificant influence in simplifying the reinforcement learning 
problem [19].  

For consistency, all sensor measurements were taken from 
the same ROS topic, i.e.:  /Gazebo/model_states. It was 
cross-checked that the measurements from this topic com-
pared to the measurements from an equivalent virtual sensor 
that Gazebo provides (e.g. IMU) are the equal. Given the 
roll/pitch/yaw angles and angular rates as input, the algorithm 
outputs a vector of actions 

  
[x

C1
, y

C1
,.., x

C 4
, y

C 4
]T , with 

  
(x

c
, y

c
)  

the center of the semi-elliptical trajectory (Figure 3) w.r.t. the 
reference frame fixed at the hip of each leg (c1, c2, c3, c4), 
where: 

  
x

c
Î [-0.1,0.1] and 

  
y

c
Î [-0.55,-0.50]. 

To solve the MDP problem, the robot must find a policy 
m  that maximizes (1). With an optimal policy learned, the 
agent discovers the interconnection between states, actions, 
and rewards [18]. In the implemented algorithm, the toe posi-
tions 

  
(x

toe
, y

toe
)  are chosen individually for every leg as the 

robot climbs up/down the ramp. This means that the algo-
rithm is adjusting the CoM height accordingly for slope 
climbing, it is stabilizing the robot (bounding roll and pitch 
angles) and it is keeping the robot moving straight (bounding 
yaw angle). Alternatively, training at the joint level could be 
performed but this could easily lead to invalid configurations, 
singularities etc. Defining the toe workspace that the algo-
rithm could choose actions from, guarantees that no invalid 
actions would be applied to the robot.  

B. Deep Deterministic Policy Gradient (DDPG) 

The DDPG is a model-free algorithm that requires sensor 
reading from the environment and maps the current state,  s , 
using a deterministic policy 

  
m(s |qm ) : s® a  to a single pre-

dicted action,  a . The algorithm adjusts the parameter q  
towards the direction of the policy gradient, that should in-
crease with better predicted actions corresponding to better 
total reward values [20].  

Deterministic policy algorithms are computationally sim-
pler compared to algorithms with stochastic policy, which 
output a probability function of all possible actions given a 
state. Furthermore, their gradients can be approximated effi-
ciently, as the estimation of the gradient involves integration 
over the state space instead of over a combination of state-
action spaces. Therefore, estimation of the stochastic policy 
gradient requires more data samples [18, 21].  

As proposed in [20, 21], the DDPG algorithm is based on 
actor-critic deep neural network architecture shown in Figure 
5. The actor network uses the target policy 

  
m(s |qm ) to pre-

dict the actions for a given state, while the critic network es-
timates the action-value function 

 
Q , which is the total dis-

counted reward of an action applied on the given state. In 
other words, the 

 
Q  value gives an insight for the quality of 

the action applied.  
For training stability, a target network for the actor and 

critic is used. The target critic network estimates 
  
Q

target
of the 

next state using the actions obtained from the target actor 
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network. The Bellman equation using the estimated 
  
Q

target
 is 

defined as [20]:  

 
  
y

t
= r(s

t
,a

t
)+gQ

target
(s

t+1
,a

t+1
) |qQ( ) . (3) 

 
Figure 5. Actor-Critic DNN architecture. 

The main critic network loss is determined by the Bellman 
error, which is a mean square error (MSE) between the main 
network estimated 

 
Q value and the 

 
y

t
values estimated by the 

Bellman equation updating the critic network weights  q
Q . 

The main actor network loss is defined by the negative of the 
critic output

 
Q -value, which can be seen as the actor network 

updates its weights qm  by backpropagation to maximize the 
critic output. At the end of every training step the target net-
work weights are updated by soft update strategy that copy a 
small ratio of the learned updates in the main network [20].  

To enhance learning, the training samples are required to 
be independent and identically distributed. As an off-policy 
algorithm, DDPG guarantees this requirement by using re-
play buffer, i.e.: fixed saved experiences 

  
(s

t
,a

t
,r

t
,s

t+1
,d), 

where  d  is a Boolean variable, with true/false corresponding 
to episode termination [20]. Correspondingly, the neural net-
works learn from uncorrelated training samples using uni-
formly sampled mini batches from the buffer, whereas the 
PTAN package introduced in [22] was utilized to save the 
experiences and fill the buffer. However, off-policy algo-
rithms have the disadvantage of environment exploration. 
Using an Ornstein-Uhlenbeck process as in [20], the explora-
tion strategy was implemented by adding noise to the actor 
output actions with temporally correlated values. 

C. Semi elliptical trajectories 

The semi-elliptical trajectory equations with respect to the 
frame fixed at the hip is given by 

 

  

x
toe
= x

c
+ a × cos(w

toe
t
sim
+j )

y
toe
=

y
c
+ b × sin(w

toe
t
sim
+j ), if  y

c
< y

toe

y
c
,  otherwise

ì
í
ï

îï

 (4) 

where 
  
xtoe,ytoe
éë ùû

T
are the coordinates of the elliptical trajec-

tory that the toe should be placed at, 
  
xc,yc
éë ùû

T
is the ellipse 

center, 
  
a = 0.06 m  and   

b = 0.03 m  are the ellipse semi-axis, 

  wtoe
= 30rad / s  is the angular velocity of the toe motion 

along the elliptical trajectory, tsim  is the simulation time and 
j  is the phase shift between the diagonal pair legs. The 
phase shift variable is set to 0 rad for legs 1 and 3 and to π 
rad for legs 2 and 4, see Figure 3 (b). Last, if the calculated 

 ytoe
 is greater than  yc

 then  ytoe
 is set to be equal to  yc

 so 
that the toe follows a semi-elliptical trajectory. DDPG plans 
the next step by choosing the center 

  
xc,yc
éë ùû

T
 of the semi-

elliptical trajectories that will be applied. The center coordi-
nates are passed to the trajectory planner that produces the 
exact toe position coordinates 

  
xtoe,ytoe
éë ùû

T
, for every leg. For 

this part, the ros_control package is utilized. Specifically, the 
ros_control position controller is running at 1 kHz and pro-
duces the torques that the simulated hip and knee motors 
apply. The gains of the PID controller can be found at [16].  

D. Inverse kinematics 

Concerning the leg inverse kinematics, the two distal seg-
ments of the Laelaps II leg, are considered equivalent to a 
single virtual rigid segment since the connecting tendon-like 
spring is very stiff. As a result, given the 

  
xtoe,ytoe
éë ùû

T
 toe po-

sition, the virtual links l1 and l2  see Figure 3 (a), are used to 
calculate the hip and knee joint angles. In turn, these angles 
are translated to actual motor angles that will be applied to 
the model based on the original leg design. As a result: 

 
  
c = x2

toe+y2
toe-l1

2-l2
2( ) / 2l

1
l
2
, s = ± 1- c

2
  (5) 

 
  
q

2
= atan2( y

toe
, x

toe
) - atan2(l

1
s, l

2
x
toe

+ l
1
c) (6) 

 
  q1

= q
2
+ atan2(s, c)  (7) 

 
  
j

hip
= p / 2+q

2
 and j

knee
= q

1
 (8) 

IV. RESULTS 

All trainings were carried out with a mid-range desktop 
computer equipped with Intel® i5-3470 CPU @ 3.20GHz, 
Nvidia GeForce GTX 950 GPU, and 12GB of DD3 RAM 
running Ubuntu 18.04 with kernel 5.3 and ROS Melodic 
Morena installed with Gazebo 9.12.  

Controllers and trajectory planning that can produce stable 
gaits were employed [23]. When tested with the detailed 3D 
Laelaps II model presented earlier, they could produce for-
ward motion, but the quadruped was diverging from its goal, 
i.e. increasing yaw angles were observed, Figure 6. More 
sophisticated solutions were needed for negative or positive 
slope handling. Foot placement planning should be per-
formed to balance the robot, especially when realistic friction 
coefficients were used. It turned out that deep RL, i.e. DDPG 
in this case, can enhance the implementations presented in 
[23]. Comparisons with and without the DDPG layer are pre-
sented in figures 7 & 10. Even though the quadruped physi-
cally cannot perform hip abduction, it is trotting stably as 
presented in Figures 8 & 9. 

The algorithm was trained for trotting up and down a 
slope of ±10°. To evaluate if this control model can learn in 
different tasks, for both scenarios the same control scheme 
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and hyperparameters were used. Concerning the DDPG ar-
chitecture, the actor and critic neural networks have two 
hidden layers with 500 and 400 hidden neurons respectively 
and learning rate of 0.0001. To simplify dealing with gradi-
ents during training, two optimization steps using ADAM 
algorithm [24] were used for the actor and critic networks. 
The training samples were randomly chosen from a replay 
buffer of 10K transitions. The replay buffer’s size was cho-
sen to have stable behavior and avoid overfitting. 

One common evaluation metric for RL performance is 
tracking the average episode reward. In this work, testing the 
learned policy periodically (every 500 steps) was additional-
ly used. Figures 11 & 12 indicate that the agent learns both 
tasks in about 3 h. Specifically, it converged to a validation 
reward of ~3, corresponding to the ramp end. To demon-
strate that the trained model is general enough, it was tested 
on a slope of 15° as shown in Figure 13. Laelaps reaches the 
top of the ramp in this case also. All tasks were accom-
plished with a torque limit of 50 Nm (Figures 14 & 15). 

 
Figure 6. Application of a controller similar to [23] on the Laelaps II 3D 

model in Gazebo without the developed control scheme, and on level ter-

rain. The body roll angle is bounded but yaw angle is increasing. 

 
Figure 7. Laelaps CoM while trotting up a ramp of 10°. Without the DDPG 

layer (blue line), the robot is diverging from its goal and eventually falls. 

Using the trained policy (red line), the robot manages to reach the end of the 

3.2 m ramp. 

 
Figure 8. The Laelaps phase plane diagram at trotting up a ramp of 10°. 

 
Figure 9. Roll and yaw angles of the Laelaps robot as it is trotting up a 

ramp of 10° with the developed control scheme. The values are bounded for 

the entire experiment. 

 

 
Figure 10. Laelaps CoM position while trotting down a ramp of 10°. With-

out the developed control scheme, (blue line), the robot is diverging from its 

goal and eventually falls. Using the trained policy, the robot manages to 

reach the end of the ramp. 

 
Figure 11. Training and evaluation reward values for inclination of +10°. 

 
Figure 12. Training and evaluation reward values for inclination of -10°. 
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Figure 13. Testing of the learned policy on 10° (red line) and 15° (blue line). 

In both cases the quadruped reaches the goal. 10° ending point (x= 3.18m, 

y=-0.0078m, z=0.579m). 15° ending point (x= 3.01m, y=-0.17m, z=0.68m). 

 
Figure 14. Right hint hip motor torques while Laelaps is trotting up a ramp 

of 10°. Torques are limited to 50Nm, the same limit that the real Laelaps hip 

motors are subject to. 

 
Figure 15. Right hint knee motor torques while Laelaps is trotting up a 

ramp of 10°. Torques are limited to 50Nm, the same limit that the real 

Laelaps knee motors are subject to. 

V. CONCLUSION 

A new method for developing controllers for the Laelaps II 
quadruped was proposed. Using a detailed model of the 
quadruped, its full dynamics were exploited, and no model-
based simplifications were made. The training was carried 
out in a Gazebo simulation environment and tested in vari-
ous ramp inclinations to prove the generalization of the 
trained policies, with coefficients of friction close to 1, simi-
lar to the foot-treadmill coefficient at CSL. Having the tra-
jectory planning on the toe level as a starting point, the train-
ing time was significantly reduced to almost three hours on a 
mid-range PC. The simulation environment in Gazebo is as 
close as possible to the treadmill-robot setup at CSL. This 
will allow us to apply the method on Laelaps II, as soon as it 

is ready for experiments. In addition, the combination of 
Gazebo and Gym employed here will enable testing and 
comparing of various state-of-the-art deep RL algorithms in 
the future. Last, using the same setup, Laelaps can be trained 
to perform on more challenging terrains, such as mixed 
slopes, stairs etc. 
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