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Abstract

This paper examines the passive dynamics of quadrupedal bound-
ing. First, an unexpected difference between local and global
behavior of the forward speed versus touchdown angle in the self-
stabilized Spring Loaded Inverted Pendulum (SLIP) model is ex-
posed and discussed. Next, the stability properties of a simplified
sagittal plane model of our Scout II quadrupedal robot are investi-
gated. Despite its simplicity, this model captures the targeted steady
state behavior of Scout II without dependence on the fine details
of the robot structure. Two variations of the bounding gait, which
are observed experimentally in Scout II, are considered. Surpris-
ingly, numerical return map studies reveal that passive genera-
tion of a large variety of cyclic bounding motion is possible. Most
strikingly, local stability analysis shows that the dynamics of the
open loop passive system alone can confer stability to the motion!
These results can be used in developing a general control method-
ology for legged robots, resulting from the synthesis of feedforward
and feedback models that take advantage of the mechanical sys-
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tem, and might explain the success of simple, open loop bounding
controllers on our experimental robot.
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1. Introduction

Mobility and versatility are the most important reasons for
building legged robots, instead of wheeled and tracked ones,
and for studying legged locomotion. Animals exhibit impres-
sive performance in handling rough terrain, and they can reach
a much larger fraction of the earth landmass on foot than ex-
isting wheeled vehicles. Most mobile robotic applications can
benefit from the improved mobility and versatility that legs
offer.

Early attempts to design legged platforms resulted in slow
moving, statically stable robots; these robot designs are still
the most prevalent today, see Berns (2006) for a survey. In
this paper, however, we restrict our attention to dynamically
stable legged robots. Twenty years ago Raibert (1986) set the
stage with his groundbreaking work on dynamic legged robots
by introducing a three-part controller for stabilizing running
on his one-, two-, and four-legged machines. His controllers,
although very simple, resulted in high performance, robust
running with different gaits, such as the trot, the pace, and the
bound. Inspired by Raibert’s work, Buehler and his collab-
orators at McGill’s Ambulatory Robotics Laboratory (ARL)
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designed and built power autonomous one-, four-, and six-
legged platforms, which demonstrate walking and running in
a dynamic fashion; see Buehler (2002) for an overview. Min-
imal actuation, coupled with a suitably designed mechanical
system featuring compliant legs, and simple control laws that
excite the natural dynamics of the mechatronic system are the
fundamental principles exemplified by ARL’s robots.

Other design and control approaches for dynamically sta-
ble running robots have been proposed, including the Patrush
and Tekken robotic quadrupeds by Kimura and his collab-
orators (Kimura, Akiyama, and Sakurama 1998; Fukuoka,
Kimura, and Cohen 2003). Based on principles from neuro-
biology, they implemented bounding by transitioning from
pronking in Patrush by combining compliant legs with a
neural oscillator network (Kimura, Akiyama, and Sakurama
1998). More recently, Fukuoka, Kimura, and Cohen (2003)
proposed a controller based on a Central Pattern Generator
(CPG) that alters its active phase based on sensory feedback
and results in adaptive dynamic walking on irregular terrain.
Following a different design approach, Cham et al. (2002) in-
troduced Sprawlita, a spectacularly robust dynamic hexapod,
capable of running with speeds over four body lengths per
second on irregular terrains with hip height obstacles. The
authors employed a novel manufacturing technique to con-
struct a biomimetic mechanism with actuators, sensors and
wiring embedded in the robot’s body and limbs.

Despite their morphological and design differences these
robots walk and run using control laws without intense feed-
back. For instance, recent research on our quadrupedal robot
Scout II (Figure 1) demonstrated that simple controllers, re-
quiring only touchdown detection and local feedback from
motor encoders, can be used to stabilize running, (Poulakakis,
Smith, and Buehler 2005a, 2005b). These controllers sim-
ply position the legs at a fixed touchdown angle during the
flight phase, and result in stable bounding with speeds up to
1.3 m/s. A slightly modified control strategy was successfully
implemented on Scout II to result in the first ever reported
robot gallop gait (Smith and Poulakakis 2004; Poulakakis,
Smith, and Buehler 2005b). Similar design and control ideas
as found in Scout II have subsequently been implemented to
generate bounding in a modified (one actuator per leg) ver-
sion of the SONY AIBO dog (Yamamoto et al. 2001), and
in the one-actuator-per-leg hexapedal RHex, (Campbell and
Buehler 2003; see Saranli, Buehler, and Koditschek 2001 for
design and control details). Recently RHex traversed irregu-
lar terrain with speeds over five body lengths per second and
reduced specific resistance (Weingarten et al. 2004). Once
again the controller employs only local feedback from en-
coders, necessary for the leg recirculation strategy, while the
parameters for some of its gaits are determined via Nelder-
Mead optimization (Weingarten et al. 2004).

On the other hand, Stanford’s Sprawlita runs without any
sensory feedback at all (Cham et al. 2002). Leg placement
in the sagittal plane is achieved via a passive compliant hip

Fig. 1. Scout II: a high performance, power autonomous,
four-legged robot with one actuator per leg.

joint, acting in a manner analogous to that of the trochanter–
femur joint of a cockroach, while the legs are equipped with
prismatic actuators (pneumatic pistons) and behave mainly as
thrusters (Cham et al. 2002). Furthermore, an extreme case,
where no control action is needed, was first presented by
McGeer (1990) in his pioneering work on passive walking.
McGeer built a gravity-powered biped, which was able to
walk on inclined surfaces without the need of sensors and
actuators. He also expanded his analysis to passive bipedal
running in McGeer (1989), without, though, providing exper-
imental results.

In a loose sense, the experimental findings in robotics are
in qualitative agreement with developments in biology. For
instance, experimental evidence suggests that the high level
nervous system is not required for steady state level walking
and running, and that mechanisms entirely located within the
spinal cord are responsible for generating the rhythmic mo-
tions of the legs during locomotion (Pearson 1976; McMa-
hon 1985). Furthermore, locomotion is possible even when
feedback from the afferent pathways is denied1 (de-afferented
spinal walking; McMahon 1985). On the other hand, recent
research in physiology indicates that, during rapid locomo-
tion, the control is dominated by the mechanical system (Full
and Koditschek 1999; Kubow and Full 1999). To explore the
role of the mechanical system in control, Kubow and Full
(1999) developed a simple, two-dimensional, dynamic model
of a hexapedal runner (death-head cockroach, Blaberous dis-
coidalis). The model had no equivalent of nervous feedback
among any of its components and it was found to be inherently
stable. This work first revealed the significance of mechanical
feedback in simplifying neural control, by demonstrating that
stability could result from leg moment arm changes alone.

1. However, when the afferent nerves are intact, sensory input reinforces and
modulates the centrally generated pattern (McMahon 1985).
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Therefore, one can assume that intense control action relying
on complex feedback from a multitude of sensory receptors
is not necessary to generate and sustain walking and running.

In an attempt to set the basis for a systematic approach
in studying legged locomotion Full and Koditschek (1999)
introduced the templates and anchors modeling and control
hierarchy. Schmitt and Holmes (2002) proposed the Lateral
Leg Spring (LLS) template to analyze the horizontal dynam-
ics of sprawl-postured animals. Surprisingly they found that,
despite its conservative nature, the LLS template exhibits
some degree of asymptotic stability without the need of feed-
back control laws. To study the basic properties of sagittal
plane running, the Spring Loaded Inverted Pendulum (SLIP)
template has been proposed (see Schwind 1998 and refer-
ences therein) which, despite its structural simplicity, was
found to sufficiently encode the task-level behavior of animals
and robots (Full and Koditschek 1999). Recent research con-
ducted independently by Seyfarth et al. (2002), and Ghigliazza
et al. (2003), showed that when the SLIP is supplied with the
appropriate initial conditions, and for certain touchdown an-
gles, not only does it follow a cyclic motion, but it also toler-
ates small perturbations without the need of a feedback control
law. The inherent stability of SLIP and LLS models is a very
interesting property since, as is known from mechanics, sys-
tems described by autonomous, conservative, holonomically
constrained flows cannot be asymptotically stable.2 However,
Altendorfer, Koditschek and Holmes (2004) showed that the
stable behavior of piecewise holonomic conservative systems
is a consequence of their hybrid nature.

The formal connection between templates, such as the
SLIP, and more elaborate models, which enjoy a more faithful
correspondence to the morphology of the robot, has not yet
been fully investigated; for preliminary results, see Saranli and
Koditschek (2003). Furthermore, as was shown in Cherouvim
and Papadopoulos (2005), controllers specifically derived for
the SLIP will have to be modified in order to be successful in
inducing stable running in more complete models that include
pitch dynamics and comprise energy losses. However, simpli-
fied models have been proved to be helpful in the design of
controllers that exploit the passive dynamics of the system,
resulting in considerable energy savings, which is a critical
requirement for autonomous legged locomotion.A notable ex-
ample of such controllers is ARL’s Monopod II, see Ahmadi
and Buehler (1997, 1999). Monopod II exploits the passive
dynamics through the use of leg and hip compliance to keep
energy expenditure for maintaining the vertical and hip oscil-
lations at a minimum. Proper initial conditions and selection
of compliant elements, together with a controller that syn-
chronizes the vertical and hip oscillations, result in motions
close to passive dynamic operation with a dramatic decrease

2. By Liouville’s theorem (see Scheck 1999, p. 122), the incompressibility
of the phase fluid precludes the existence of asymptotically stable equilibria
in Hamiltonian systems, for if such points existed, they would reduce a finite
volume in the phase space to a single point.

in energy requirements; 70% reduction in specific resistance
was measured in experiments (Ahmadi and Buehler 1999).

Other models have also been proposed to study sagit-
tal running of dynamically stable quadrupeds. Murphy and
Raibert studied pronking and bounding using a model with
kneed legs, whose lengths were controllable (Murphy 1985).
They discovered that active attitude control in bounding is
not necessary when the body’s moment of inertia is smaller
than the mass times the square of half the hip spacing (see
also Raibert 1986, p. 193). Following that work, Berkemeier
(1998) showed that Murphy’s result applies to a simple, lin-
earized, running-in-place model, and that it can be extended to
pronking under appropriate conditions. These models (Mur-
phy 1985; Berkemeier, 1998) are both actuated and com-
prise energy losses. To the best of the authors’ knowledge,
only Brown (1985) investigated the conditions for obtaining
passive cyclic motion. He studied two limiting cases of sys-
tem behavior: the grounded and the flight regimes, and found
that the system in either regime can passively trot, gallop or
bound under the appropriate initial conditions, only3 when its
properties—mass m, moment of inertia I , and half hip spacing
L—have the particular relationship I/mL2 = 1.

In this paper, motivated by the experimental findings in
our robot and in others, we attempt to provide an explanation
for simple control laws being adequate in stabilizing complex
running tasks such as bounding. It is the simplicity of Scout
II’s design and control together with its experimental success
that initiated our attempts for this study. Our analysis departs
from the recent developments regarding the self-stabilization
property of the SLIP briefly described in Section 3, where
it is shown that self-stabilization cannot be immediately ap-
plied to improve the existing intuitive control algorithms. To
investigate passive stability in Scout II, a simple mechanical
model that encodes the targeted task-level behavior (steady
state bounding) is proposed in Section 4. The model is unac-
tuated and conservative, so that the properties of the natural
dynamics of Scout II can be revealed. In that respect, it repre-
sents an extension of the SLIP suitable for studying bounding,
in which pitching is a very important component of the motion
that is not captured by point-mass models like the SLIP.

Identifying conditions that permit the generation of passive
running cycles and studying their stability properties consti-
tutes the central contribution of this paper. To do so, a Poincaré
return map, whose fixed points describe the cyclic bounding
motion, is derived and studied numerically. Two variations
of the bounding gait, which are of experimental interest in
Scout II, are analyzed. It is found that both can be passively
generated as a response of the system to an appropriate set of
initial conditions. Most strikingly, a regime where the system
is self-stabilized against small perturbations from the nominal
conditions is identified. These results show that bounding is

3. However, in Sections 5 and 6 it will be shown that a conservative model
of Scout II can passively pronk and bound despite the fact that its parameters
satisfy the inequality I/mL2 < 1.
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essentially a natural mode of the system, and that only minor
control action and energy are required keep the robot running.

It must be emphasized that the practical motivation for
studying the passive dynamics is threefold. First, if the system
remains close to its passive behavior, then the actuators have
less work to do to maintain the motion, and energy efficiency,
a very important issue in mobile robots, is improved (an ex-
ample of how this principle is applied conceptually and in ex-
periments is provided by the ARL Monopod II; Ahmadi and
Buehler 1997,1999). Second, if there are operating regimes
where the system is passively stable, then active stabilization
is either not required, or else will require less control effort and
sensing. Finally, passive dynamics can be used as a design tool
to specify the desirable behavior of complex, underactuated
dynamical systems, where reference trajectory tracking is not
possible. It is important to note that the purpose of this paper
is not to propose a model of Scout II that achieves a faithful
correspondence to the robot’s structure and function, and is
suitable for constructing accurate simulations that reproduce
exactly the data collected in experiments. Such a model was
presented in detail in Poulakakis, Smith, and Buehler (2005a).
Rather, in this paper a simplified model is analyzed, which en-
codes the targeted behavior and reveals the basic properties of
quadrupedal bounding, without dependence on the fine details
of the robot structure.

It is worth mentioning that, since our original work on
the stability analysis of the passive dynamics of quadrupedal
bounding, first reported in Poulakakis (2002), Poulakakis,
Papadopoulos, and Buehler (2003) and Poulakakis, Smith,
and Buehler (2005b), other researchers, for example Iida and
Pfeifer (2004) and Zhang, Fukuoka, and Kimura (2004), have
adopted similar approaches to study running, revealing similar
aspects of the passive dynamics of their robotic quadrupeds,
and confirming our early results, which are anticipated to fa-
cilitate the design of legged locomotion controllers that take
advantage of the system’s natural dynamics.

2. Experiments with Scout II: the Bounding Gait

Scout II has been designed for power autonomous operation;
the hip assemblies contain the actuators and batteries, and the
body houses all computing, interfacing and power distribu-
tion. The most significant feature of Scout II is the fact that it
uses a single actuator per leg located at the hip joint. Each leg
assembly consists of a lower and an upper leg, connected via a
spring to form a compliant prismatic joint. Thus, each leg has
two degrees of freedom (DOF): the hip DOF (actuated), and
the linear compliant DOF (passive); for details regarding the
design of Scout II see Poulakakis, Smith, and Buehler (2005a)
and references therein.

In bounding, Scout II uses its front and back legs in pairs,
thus the essentials of the motion take place in the sagittal plane.
According to the virtual leg concept (Raibert 1986), the back

and front physical leg pairs can be replaced by single back and
front virtual legs, respectively. Each of the back and front vir-
tual legs detects three leg states: “flight”, “stance-retraction”
and “stance-brake”, which are separated by touchdown, sweep
limit, and liftoff events respectively, see Figure 2. During
the “flight” state, the controller places the leg to a desired,
fixed throughout the gait, touchdown angle. Then, during the
“stance-retraction” state, the leg is swept back by applying
a torque according to the saturation limitations of the motor,
until the sweep limit is reached. In the “stance-brake” state
the leg is kept at the sweep limit angle. There is no actively
controlled coupling between the back and front virtual legs –
the bounding motion is purely the result of the controller inter-
action through the multi-body dynamic system. Furthermore,
it must be emphasized that state changes are made based on
data from only two types of sensors: the legs’ linear poten-
tiometers, which are used to detect touchdown and liftoff, and
the legs’ motor encoders, which allow state transition when
the pre-specified sweep limit angle is reached.

This controller, documented in detail in Poulakakis, Smith,
and Buehler (2005a), results in the bounding gait presented in
Figure 3, where two variations in the footfall pattern can be ob-
served. In the first variation, which is referred to as bounding
with double stance, the front leg touchdown occurs directly
after the back leg touchdown event, thus there is a portion of
the cycle where both the front and back legs are in stance (dou-
ble leg stance phase), see Figure 3. On the other hand, in the
second bounding variation, which is referred to as bounding
without double stance, the front leg touchdown occurs after
the back leg liftoff event, thus the back and front leg stance
phases are separated by a double flight phase, as the dashed
line shows in Figure 3. In experiments, the robot converges
to either of the two variations depending on the system’s en-
ergy content at steady state; for instance, at higher speeds
and pitch rates the robot shows preference for the bounding
without double stance.

Scout II is a nonlinear, highly underactuated, system that
exhibits intermittent dynamics. The complexity is further in-
creased by the limited ability in applying hip torques due to
actuator and friction constraints, and by the existence of uni-
lateral ground forces. On the other hand, running is generally
considered a complex task involving the coordination of many
limbs and redundant degrees of freedom, and in general, it
cannot be encoded in a set of outputs following prespecified
desired trajectories, imposed on the system using the actuator
inputs.4

Despite this complexity, simple control laws requiring min-
imal sensing, such as the one presented in Figure 2, were

4. It must be pointed out that, for certain legged systems exhibiting one degree
of underactuation, it is possible to define a set of outputs whose tracking guar-
antees the successful accomplishment of the task (Grizzle, Abba, and Plestan
2001). However, Scout II not only exhibits two degrees of underactuation
during the stance phases, but also certain outputs are related to the inputs
via coupling terms that become singular during the motion, thus significantly
reducing control affordance.
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found to excite and stabilize periodic motions, resulting in ro-
bust and fast running. Indeed, the controller described above
does not require any task-level feedback such as forward ve-
locity. The absence of forward velocity feedback in adjusting
the back and front leg touchdown angles, which are kept con-
stant throughout the motion, constitutes a significant differ-
ence between the controller described here and in Poulakakis,
Smith, and Buehler (2005a), and Raibert’s (1986) bounding
controller. Interestingly, as will be described in Section 3,
Raibert’s velocity controller cannot predict the fact that sta-
ble cyclic motion can be achieved in the SLIP template by
keeping the touchdown angle constant throughout the motion.

In fact, Scout II’s controller, not only does not require any
task-level feedback, but it also does not require any body state
feedback: one only needs to know the position of the leg with
respect to the body and its state (flight, stance-retraction and
stance-brake). It is therefore natural to ask why such a complex
system can accomplish such a complex task via minor control
action. As outlined in this paper, a possible answer is that
Scout II’s unactuated, conservative dynamics already exhibits
stable bounding cycles, and hence a simple controller is all
that is needed for keeping the robot bounding.

3. Self-stabilization in the SLIP: a Starting Point

The purpose of this section is to motivate the analysis of
the stability of the passive dynamics of quadrupedal bound-
ing through a brief description of the self-stabilization prop-
erty recently discovered in the SLIP. Rather than analyzing
the much studied SLIP (Schwind 1998; Full and Koditschek
1999; Cham, Bailey, and Cutkosky 2000; Seyfarth et al.
2002; Ghigliazza et al. 2003; Altendorfer, Koditschek, and
Holmes 2004; Cherouvim and Papadopoulos 2005), we turn
our attention to its implications for the control of legged
robots. We demonstrate that the mechanism that results in
self-stabilization is not yet fully understood, at least in a way
that would immediately be applicable to improve the existing
intuitive control algorithms.

The SLIP, see Figure 4, consists of a point mass atop a
spring and it is passive (no torque inputs) and conservative
(no energy losses). A stride of the SLIP can be divided into
a stance phase, with the foothold fixed on the ground, and
a flight phase, where the body follows a ballistic trajectory
under the influence of gravity. In the flight phase, the springy
leg kinematically obtains its desired position given by the
touchdown angle γ td , and in the stance phase, the mass moves
forward by compressing and then decompressing the spring.
The system is open loop since there is no feedback adjusting
the touchdown angle according to the state.

A simulation of the SLIP was constructed in Simulink™.
The initial conditions include the forward speed ẋ and the
vertical height y at apex, while the touchdown angle γ td is kept
constant during the periodic motion. In agreement with other
results in the literature (cf. Seyfarth et al. 2002; Ghigliazza

et al. 2003), it was found that there exists a range of parameter
values and initial conditions where the SLIP is asymptotically
stable within a particular total energy level.

It is known that for a set of initial conditions, there exists
a touchdown angle at which the system maintains its initial
forward speed. As Raibert (1986) noted, if the fixed point is
perturbed by changing the touchdown angle, e.g. by decreas-
ing it (steeper angles), then the system will accelerate in the
first cycle. Thus, at the second step the forward speed will
be greater than that at the first, and if the touchdown angle
is kept constant and equal to the initial one, the system will
accelerate in the subsequent steps and finally fail due to toe
stubbing (the kinetic energy increases at the expense of the
potential energy resulting in lower apex heights). However,
when the parameters are within the self-stabilization regime,
the system does not fail. This fact is not captured by Raibert’s
linear steady state argument, based on which one would be
unable to predict the self-stabilization behavior of the system.

A question we address next regards the relationship be-
tween the forward speed at which the system converges, called
the speed at convergence, and the touchdown angle. To this
end, simulation runs have been performed, in which the ini-
tial apex height and initial forward velocity are fixed, thus the
total energy is fixed, while the touchdown angle changes in
a range where cyclic motion is achieved. For a given energy
level, this results in a curve relating the speed at convergence
to the touchdown angle. Subsequently, the apex height is kept
constant, while the initial forward velocity varies between 5
and 7 m/s. This results in a family of constant energy curves,
which are plotted in Figure 5. It is interesting to see in Fig-
ure 5 that in the self-stabilizing regime of the SLIP, an in-
crease in the touchdown angle at constant energy results in
a lower forward speed at convergence. This means that lo-
cally, for constant energy levels, higher forward speeds can
be accommodated by smaller touchdown angles, which, at
first glance, is not in agreement with the global behavior that
higher speeds require larger (flatter) touchdown angles. This
global behavior is also evident in Figure 5, where it can be
seen that forward speeds of about 5 m/s require touchdown
angles in the range 21◦–23.75◦, while higher speeds, such as
those about 7 m/s, require larger touchdown angles, which lie
in the range 25.75◦–30◦.

The fact that globally fixed points at higher speeds require
greater (flatter) touchdown angles was reported by Raibert
(1986), and it was used to control the forward speed of his
robots based on a feedback control law. However, Figure 5
suggests that in the absence of control, i.e., when the sys-
tem is open loop, and for a constant energy level, a reduction
in the touchdown angle results in an increase of the speed
at convergence.5 These findings illustrate that direct applica-

5. It must be mentioned here that the behavior shown in Figure 5 refers to
the particular values of initial speed, total energy and touchdown angle used
in simulations, and may not be the same for all the possible combinations of
values of these parameters.
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tion of the above results in intuitive controllers is not trivial
(Poulakakis 2002). Note that similar behavior may also hold
in quadrupedal models, although the connection with Figure 5
may not be straightforward. These issues, as well as the de-
sign of controllers that take into account these properties, are
currently under consideration.

4. Modeling the Passive Dynamics of Bounding

Motivated by the stable behavior discovered in the conserva-
tive, open loop SLIP, an investigation of the passive dynamics
of Scout II in the bounding gait is undertaken in this and
the following sections. Despite its utility for describing run-
ning in animals and machines of various structures (Full and
Koditschek 1999), the SLIP does not capture the body pitch
stabilization problem, which is a significant component of the
motion in the bounding gait. To overcome this issue, a model
for studying the passive dynamics of Scout II in bounding is
developed in this section. The goals of the analysis are to de-
termine the conditions required to permit steady state cyclic
motion, to understand the fundamentals of the bounding gait
followed by the robot, and to find ways to apply these results
to improve the performance of dynamically stable robots such
as Scout II.

It is well known that legged robots belong in the category
of hybrid systems and cannot be mathematically described by
a single flow. A collection of continuous flows together with
discrete transformations governing transitions from one flow
to the next are required to model the dynamics of such systems.
In this paper we follow the terminology and notation used in
Guckenheimer and Johnson (1995). Let J represent a finite
index set enumerated by α, and X̂α, α ∈ J , a collection of
charts. Here, we are interested in systems that are described by
conservative, autonomous, holonomically constrained vector
fields fα with state variables x̂ = [

qT q̇T
]T ∈ X̂α and

dynamics ˙̂x = fα

(
x̂
)
. Transitions from vector field fα to fβ are

governed by discrete equations hβ
α
, called threshold functions.

Each threshold function specifies an event at its zero crossing.
In this paper we are interested in studying the stability of
certain orbits, whose appropriate projections are periodic on
a recurring sequence of charts, and correspond to the bounding
gait.

The model for analyzing the passive dynamics of Scout II in
the sagittal plane is presented in Figure 6, while the associated
parameters are given in Table 1. Note that this model can also
be used to study other sagittal plane running gaits such as
pronking, pacing, or trotting, in which the pitch motion is
important and cannot be modeled by point mass hoppers like
the SLIP.

The index set J = {1, 2, 3, 4} includes the four phases that
compose the bounding gait described in Figure 3. The indices
1, 2, 3, 4 refer to the flight, the back leg stance, the double leg
stance and the front leg stance phase, respectively. The con-

Table 1. Basic Mechanical Properties of Scout II

Parameter Value Units

Body mass, m 20.865 kg
Body inertia, I 1.3 kg m2

Spring constant, k 3520 N/m
Hip separation, 2L 0.552 m
Leg rest length, l0 0.323 m

figuration space of each of the phases is parameterized by the
Cartesian coordinates (x, y) ∈ R2 of the torso’s COM (center
of mass) and the torso’s pitch angle θ ∈ S1. Thus, all the charts
have the same parameterization X̂α = R2 × S1 × R3 = X̂,
α ∈ J with state variables x̂ = [

x y θ ẋ ẏ θ̇
]T

. To
derive a simplified mathematical model for Scout II in all the
phases, we assume massless legs. Also, a toe in contact with
the ground is treated as a frictionless pin joint. In each phase,
the equations of motion are obtained using the Lagrangian
approach and can be stated in the form

˙̂x = d

dt

[
q
q̇

]
=

[
q̇

−M (q)
−1

(F (q) +G (q))

]
= fa(x̂),

(1)

where q = [ x y θ ]T , see Figure 6, and α ∈ J , M is the
mass matrix, and F and G are the vectors of the elastic and
the gravitational forces, respectively.

As was mentioned in Section 2, we consider two different
phase sequences resulting in the two variations of the bound-
ing gait shown in Figure 3. These gaits have been observed
in experiments with Scout II. The threshold functions, whose
zero crossings determine the touchdown and liftoff events of
the front and back virtual legs, are given by the following
equations for the bounding with double stance (see Figure 3),

h2
1 = y − L sin θ − l0 cos γ td

b
, (2a)

h3
2 = y + L sin θ − l0 cos γ td

f
, (2b)

h4
3 = lb − l0, (2c)

h1
4 = lf − l0, (2d)

and by the following equations for the bounding without dou-
ble stance (see Figure 3),

h2
1 = y − L sin θ − l0 cos γ td

b
, (3a)

h1
2 = lb − l0, (3b)

h3
1 = y + L sin θ − l0 cos γ td

f
, (3c)

h1
3 = lf − l0, (3d)

where the superscript td denotes touchdown, the subscripts
b and f denote the back and front virtual legs respectively,
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Fig. 6. A template for studying sagittal plane running on Scout II.

and l0 is the uncompressed leg length, see Table 1. In (2) and
(3), zeroing of hβ

α
corresponds to the event that signifies the

transition from the flow describing phase α to that describing
phase β. All the other variables in (2) and (3) are defined in
Figure 6. Note that in the second variation of the bounding
phase sequence, the dynamics of the double stance phase can
be dropped in the calculation of the return map.

To define the return map, we first consider a convenient
point in the bounding running cycle. In this work we use the
apex height in the double leg flight phase; however, any other
point could have been used. We define the Poincaré section
(Guckenheimer and Holmes 1983) to be the hyperplane

�̂ = {
x̂ ∈ X̂|ẏ = 0, y − L sin θ > l0 cos γ td

b
, y

+ L sin θ > l0 cos γ td

f

}
, (4)

where the conditions y−L sin θ > l0 cos γ td
b

and y+L sin θ >

l0 cos γ td
f

were added to indicate that the robot is in dou-
ble leg flight (ẏ becomes zero not only at the apex but
also at the lowest height). The system is at its apex when
its orbit pierces the hyperplane �̂. For the Poincaré map
to be properly defined it is necessary that �̂ satisfies the
transversality condition (cf. Guckenheimer and Holmes 1983)
i.e., the inner product of the vector field and the hyper-
plane’s normal vector must never be zero. In the coordinates(
x, y, θ, ẋ, ẏ, θ̇

)
, the normal vector to the hyperplane �̂

is simply n = [
0 0 0 0 1 0

]T
. At apex the vec-

tor field is f1

(
x̂apex

) = [
ẋ 0 θ̇ 0 −g 0

]T
, where

ẋ, θ̇ ∈ R, since when the system is in the double flight phase it
follows a ballistic trajectory. Hence, nT f1

(
x̂apex

) = −g �= 0,
i.e., the transversality condition is satisfied.

We seek a function that maps the apex height states of the
nth stride to those of the (n + 1)th stride. The states at the
nth apex height constitute the initial conditions for the cycle,
based on which we integrate the double flight phase equations,
until the back leg touchdown event occurs. This event triggers
the back leg stance phase, whose dynamic equations are in-
tegrated using as initial conditions the final conditions of the
previous phase (since massless legs are considered there are
no impacts at touchdown). Successive forward integration of
the dynamic equations of all the phases, according to (2) and
(3) for the two variations of the bounding gait, yields the state
vector x̂ at the (n + 1)

th apex height, which is the value of the
Poincaré return map evaluated at the nth apex height. If the
state vector at the new apex height is identical to the initial
one the cycle is repetitive.

Note though that the state vector contains the horizontal
coordinate x of the torso’s COM, which is a monotonically
increasing function of time. Therefore, x does not map to itself
after a cycle, and a function that has been obtained by integrat-
ing (1) according to (2) and (3) cannot have fixed points that
correspond to the bounding gait. This issue can be resolved by
projecting out the horizontal component x of the state vector
x̂, which is not relevant to describing the running gait. A fur-
ther dimensional reduction can be obtained by noticing that on
the Poincaré section �̂ the variable ẏ is identically zero (this
dimensional reduction is inherent to the Poincaré method for
stability, see Guckenheimer and Holmes 1983). After the pro-
jection � : X̂ → X; x̂ �→ x = [

y θ ẋ θ̇
]T

of the state

vector x̂ ∈ X̂ onto its non x and ẏ components, the task of
studying passive bounding reduces to finding the fixed points
of the return map P acting on the reduced Poincaré section
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with independent coordinates x ∈ X = R × S1 × R2, i.e.,

xn+1 = P (xn, un) , (5)

with u = [
γ td

b
γ td

f

]T
, and the subscript n indicates the

stride number.
Equation (5) represents a nonlinear discrete time system.

As expected, despite the fact that the touchdown angles are
not part of the state vector and they do not participate in the
dynamics, they directly affect the value of the return map. The
appearance of the touchdown angles in the right hand side
of (5) is a consequence of the dependence of the threshold
functions (2) and (3) on the touchdown angles’ values. It is
apparent from (5) that the touchdown angles are kinematic
inputs available for “cheap” control, since, in Scout II, it is
very easy to place the legs at their target angles during the
flight phase. The significance of the flight phase in the control
of running has also been outlined in Altendorfer, Koditschek,
and Holmes (2004), where it was shown that, in the passive
and conservative SLIP, the stance phase has no contribution to
the stability of the gait, while different leg placement strategies
during flight result in different stability properties.

5. Existence of Passive Bounding Cycles

5.1. Fixed Points and their Properties

The goal of the analysis in this section is to determine the
conditions required to permit steady state cyclic bounding
motion of Scout II. In other words we want to find an argument
x in (5) that maps onto itself, i.e., we want to solve the equation

x − P (x, u) = 0, (6)

for all (experimentally) reasonable values of touchdown an-
gles u. Existence of solutions for (6) is not guaranteed, but
seems to be the rule rather than the exception.

The search space is 4-dimensional with two free parame-
ters, since for different values of touchdown angles, different
solutions may be obtained. The complexity of the equations
precludes describing P as a nonlinear function by analyti-
cally integrating the dynamics. Therefore, we resort to numer-
ical evaluation of the return map, and use a Newton-Raphson
method for finding its fixed points. Thus, an initial guess x〈0〉

n

for the fixed point is assumed and then updated using the
equation

x〈k+1〉
n

= x〈k〉
n

+ (
I − ∇P

(
x〈k〉

n

))−1 [
P

(
x〈k〉

n

) − x〈k〉
n

]
, (7)

where n corresponds to the nth apex height, k corresponds to
the number of iterations, and the gradient matrix (Jacobian)
of the return map is given by

∇P = ∂P
∂x

=
[

∂P
∂y

∂P
∂θ

∂P
∂ẋ

∂P

∂θ̇

]
. (8)

To find a solution, we evaluate (7) iteratively until con-
vergence (the error

∥∥ x〈k+1〉
n

− x〈k〉
n

∥∥
∞ < 10−5). The value

of P at x〈k〉
n

is calculated through the numerical integration
of the dynamic equations during a complete cycle. To do
that, the adaptive step Dormand-Price method was used in
MATLAB™ with 1e − 10 and 1e − 9 relative and absolute
tolerances, respectively. To evaluate numerically the Jacobian
of the return map, the related partial derivatives are approxi-
mated using central differences. Each iteration involves nine
evaluations of the return map P: one corresponds to calculat-
ing P at the nominal point x〈k〉

n
, and eight to calculate the gra-

dients. More specifically to compute the components ∂P
/
∂xi ,

i = 1, . . . , 4, of the gradient matrix ∇P, we need four evalu-
ations of P at x〈k〉

n
−dx (fore of the nominal point), and four at

x〈k〉
n

+ dx (aft of the nominal point), where dx is obtained by
perturbing each of the components of x by some small scalar
quantity ε (in implementing this scheme we used ε = 1e−6).
Evaluating (7) is computationally intensive; however, if the
initial guess is reasonable6 and a solution exists, this method
usually finds it in less than eleven iterations.

Using the above method, a large number of fixed points
of the return map P was found, for different initial guesses
and different touchdown angles. All these fixed points ex-
hibited some very useful properties concerning the symme-
try of the bounding motion. Figure 7 illustrates the evolution
of the states during one cycle of the bounding with double
stance corresponding to a sample fixed point obtained for
touchdown angles

(
γ td

b
, γ td

f

)
= (16 deg, 14 deg), with initial

guess
(
y, θ, ẋ, θ̇

) = (0.33 m, 0 deg, 1.3m/s, 120 deg/s).
The corresponding fixed point, found after three iterations,
is

(
y, θ, ẋ, θ̇

) = (0.324 m, 0 deg, 1.39 m/s, 145.9 deg/s).
It can be seen from Figure 7 that the passively gener-

ated bounding motion exhibits symmetric properties about
the middle of the double stance phase. Furthermore, as shown
in Figure 7, the pitch angle, θ , is zero at the apex height. These
characteristics were present in all the fixed points found us-
ing the method described above and a large number of initial
guesses. Figure 8 illustrates projections of closed bounding
orbits of the fixed point presented in Figure 7 on the tangent
space showing periodicity. Although Figures 7 and 8 corre-
spond to bounding with double stance phase, the same prop-
erties have been observed for the bounding without double
stance phase, with the difference that the double stance phase
separating the back and front stance phases is replaced by a
double flight phase. The corresponding plots for the bounding
without double stance phase are not presented here because
of space limitations.

Figure 9 presents the leg lengths and the leg angles for the
back and front virtual legs during one cycle and for the fixed
point of Figure 7. Careful inspection of Figure 9 reveals an-
other important property of the fixed points. It can be seen that

6. Experimentally measured values of the states have been used as initial
guesses for finding a fixed point of the return map.
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Fig. 7. Evolution of the states at bounding with double stance during one cycle. The vertical lines show the events: back leg
touchdown, front leg touchdown, back leg liftoff, and front leg liftoff.

Fig. 8. Projections of bounding orbits on the tangent space for the fixed point shown in Figure 7 (bounding with double leg
stance).
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Fig. 9. Evolution of the leg length and angle during a bounding cycle with double stance.

the touchdown angle of the front leg is equal to the negative
of the liftoff angle of the back leg, while the touchdown angle
of the back leg is equal to the negative of the liftoff angle of
the front leg, i.e.,

γ td

f
= −γ lo

b
, γ td

b
= −γ lo

f
, (9)

where td and lo denote touchdown and liftoff, while b and f

correspond to the back and front legs respectively. The same
property has been observed for the bounding without dou-
ble stance phase. It is interesting to note here that a property
similar to (9) was found to hold in the SLIP model, where a
necessary and sufficient7 condition for the existence of fixed
points is the stance phase be symmetric, i.e., the liftoff an-
gle is equal to the negative of the touchdown angle (Schwind
1998). Note also, that the notion of symmetric stance phase
has been used by Raibert (1986) to maintain or change the
forward speed of his robots.

It must be emphasized that in all the results presented in
this section the touchdown angles were parameters, which
were kept constant. In Section 5.2, the search scheme will
be modified using (9), so that the apex height and forward
speed—instead of the touchdown angles—are constant pa-
rameters for the search. This modification allows for a more
systematic way of calculating fixed points of the return map
at specific forward speeds and apex heights.

7. This statement was proved for the SLIP assuming that the gravitational
force is very small compared to the spring force (Schwind 1998).

5.2. Continuums of Symmetric Fixed Points

For Scout II’s bounding running, a specific horizontal speed
and a sufficient apex height that prevents toe stubbing are
useful functional requirements. Therefore, the search scheme
described above is modified in this section, so that the forward
speed and apex height become its input parameters, specified
according to running requirements and kept constant during
the search. The touchdown angles are now considered to be
“states” of the searching procedure, i.e., variables to be deter-
mined from it. By doing so, the search space states and the
vector of the parameters (“inputs” to the search scheme) are
respectively

x∗ = [
θ θ̇ γ td

b
γ td

f

]T
, u∗ = [

y ẋ
]T

, (10)

and the return map whose fixed points are to be calculated
becomes

x∗
n+1 = P∗ (

x∗
n
, u∗

n

)
. (11)

It is important to mention that the numerical integration of
the equations of motion starting from the apex height event,
results in the calculation of the liftoff angles

(
γ lo

b

)
n
,
(
γ lo

f

)
n

and not of the touchdown angles of the legs at the next apex
height event. This is a consequence of the assumption of mass-
less legs. Thus, to calculate the gradients needed to imple-
ment the Newton-Raphson scheme, the liftoff angles must be
“mapped” to touchdown angles based on the symmetry de-
scribed by (9), i.e.,
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Fig. 10. Touchdown angles versus pitch rates at fixed points for 1 m/s forward speed and 0.35 m apex height. The shadow
region corresponds to bounding with double stance phase.

(
γ td

b

)
n+1

= (−γ lo

f

)
n

and
(
γ td

f

)
n+1

= (−γ lo

b

)
n
. (12)

Then, by using the Newton-Raphson algorithm, we update the
initial guess until convergence is achieved.

The above search scheme does not explicitly ensure that
the following conditions are satisfied,

yn+1 = yn, ẋn+1 = ẋn, (13)

which are a direct consequence of the definition of a fixed
point. Instead, in the new search scheme, we required that
(12) holds. However, examination of the search results shows
that, provided that (12) holds, (13) also holds. Note that this
behavior is analogous to that of the SLIP, where the symmetric
stance phase is a condition for a fixed point (Schwind 1998).

Figure 10 displays the back and front leg touchdown angles
at fixed points calculated for 1 m/s forward speed, 0.35 m apex
height and varying pitch rate. It can be seen from Figure 10,
that there exists a continuum of fixed points, which lie on two
inner branches, accompanied by two outer branches. Fixed
points lying in the shadow area correspond to the bounding
gait with a double stance phase, while fixed points outside
this area correspond to the bounding without a double stance
phase (cf. Figure 3). It is interesting to note that for both the

inner and outer branches, and for some given forward speed
and apex height, the system shows preference towards the
bounding with double stance for low pitch rates. As the pitch
rate, and thus the energy content of the system, increases, the
duration of the double stance phase continuously decreases,
until a point where it becomes zero. This point signifies the
transition from the bounding with a double stance phase to the
bounding without; no overlapping between the two variations
of the bounding gait is present. It is important to mention
that the same tendency has also been observed experimentally
with Scout II. For lower system energies the robot converges
to a bounding motion with a double stance phase. This fact
indicates a qualitative agreement between experiments and
the results of Figure 10.

Furthermore, the existence of the outer branches in Fig-
ure 10 shows that there is a range of pitch rates where two
different fixed points exist for the same forward speed, apex
height and pitch rate. This is quite surprising, since the same
total energy and the same distribution of that energy among
the three modes of the motion—forward, vertical and pitch—
results in two different motions depending on the touchdown
angles. As can be seen from Figure 11, the fixed points that lie
on the inner branch correspond to a bounding motion similar
to the one observed in experiments with Scout II: the front leg
is brought in front of the torso. However, the fixed points that
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Fig. 11. Snapshots of bounding with double stance motions for the inner and outer branches of Figure 10.

lie on the outer branch correspond to a motion where the front
leg is brought towards the torso’s COM. The pattern of Fig-
ure 11(b) resembles the dynamic walking gait implemented
on Scout II, see de Lasa and Buehler (2001), which is only
present at lower speeds.

In reading Figure 10, it is useful to note that the region close
to the vertical axis corresponds to pronking-like motions. In-
deed, recall that at the apex height the pitch angle is always
zero (θ = 0; see Figure 7 in Section 5.1). As we approach
the vertical axis of Figure 10 (θ̇ = 0), the touchdown angles
of the front and back legs tend to become equal. A gait with
θ = 0, θ̇ = 0 and equal touchdown angles for the front and
back legs corresponds to the pronking gait, where the front
and back legs strike and leave the ground in unison. Therefore,
points near the vertical axis correspond to pronking-like mo-
tions. This observation will lead to some useful conclusions
regarding the stability of the bounding and the pronking gaits,
which will be discussed in the next section.

Figure 12 presents fixed points for forward speeds varying
from 1 to 4 m/s and for a 0.35 m constant apex height. It can be
seen that at higher speeds, the inner branches shift to higher
values of the touchdown angles, i.e., larger touchdown an-
gles are required to maintain higher steady state speeds, a fact
which is in agreement with Raibert’s (1986) findings. In Fig-
ure 12 the fixed points marked with “stars” correspond to the
transition points from bounding with double stance to bound-
ing without. As can be seen, at higher speeds the transition
comes at lower pitch rates demonstrating the experimentally
observed fact that at higher energies, the area corresponding
to the bounding with double stance (shadow area in Figure 10)
shrinks.

Of note is the fact that the fixed points shown in Figure 12
for different forward speeds at the apex correspond to differ-
ent energy ranges, which do not overlap. This is particularly
important for designing controllers since it shows that differ-
ent speeds require different energies. Therefore, convergence

to higher steady state forward speeds cannot occur with the
same total energy; see Poulakakis (2002) for more details. As
a final remark, note that at higher forward speeds, fixed points
lying on the outer branches can still be found. However, larger
(in magnitude) touchdown angles are required to keep the sys-
tem running, i.e., the back and front legs must be very close
to each other towards the COM (cf. Figure 11(b)), resulting
in physically unrealistic motions. For this reason, Figure 12
presents only the inner branches that correspond to physically
common gaits.

6. Local Stability of Passive Bounding

The existence of passively generated bounding running cy-
cles is by itself a very important result, since it shows that
an activity as complex as bounding running can simply be
a natural motion of the system. However, in real situations
the robot is continuously perturbed, therefore, if a fixed point
were unstable, then the periodic motion would not be sustain-
able without control effort. In this section we characterize the
stability of the fixed points found in Section 5.

To investigate stability, we assume that the apex height
states are perturbed from their nominal values (x̄, ū), by some
small amount (
x, 
u). The discrete model that relates the
deviations from steady state is


xn+1 = A
xn + B
un, (14)

where 
x = x − x̄, 
u = u − ū and

A = ∂P (x, u)
/
∂x

∣∣
x = x̄
u = ū

, B = ∂P (x, u)
/
∂u

∣∣
x = x̄
u = ū

.

For small perturbations, the apex height states at the next
stride can be calculated by the linear difference eqs (14). If all
the eigenvalues of the system matrix A have magnitude less
than one, then the periodic solution is stable.
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Fig. 12. Fixed points for a 0.35 m apex height and speeds from 1 to 4 m/s. Stars denote transition from bounding with to
bounding without double stance phase.

Figure 13 shows the loci of the eigenvalues of matrix A for
the bounding with and without double stance phase and for
both the inner and outer branches of the fixed points presented
in Figure 10, as the pitch rate varies. In reading Figure 13 note
that the encircled numbers show the initial locations of the
eigenvalues, which, as the pitch rate increases, move along
the directions of the arrows, on the root locus, and converge
to the points marked by “x”. As was expected, in all cases,
one of the eigenvalues is located at one, representing the fact
that the system is conservative8 (for the sake of clarity the
point at which eigenvalue 1 converges is not marked by “x”
since it remains always at one). Figure 13(a) corresponds to
the inner branch of the bounding with double stance phase
(cf. Figure 10). Two of the eigenvalues, namely 2 and 3, start
on the real axis, and as θ̇ increases they move towards each
other, they meet on the real axis, and finally they move towards
the rim of the unit circle. The fourth eigenvalue, marked by
4, starts at a high value and moves towards the unit circle,
but it never gets into it, for those specific values of forward
speed and apex height. The situation is similar for the outer
branch of the bounding with double stance phase, as shown
in Figure 13(c). Figures 13(b) and (d) illustrate the loci of the
eigenvalues for the inner and outer branches of the bounding
without a double stance phase.Again eigenvalue 1 is located at
one. Eigenvalues 2 and 3 start at the points where they stopped
during the bounding with double stance phase as shown in
Figures 13(a) and (c). In Figure 13(b) they move close to
the rim of the unit circle, but always stay outside of it. In
Figure 13(d) they move in arcs further away from the unit

8. The conservative nature of the system could have been used to further
reduce the dimension of the Poincaré return map in (5). However, we have
decided to keep this extra dimension for reasons of verification.

circle until they meet each other on the real axis, after which
they move in opposite directions. Eigenvalue 4 starts from
the location at which it stopped in the bounding with double
stance phase, and in Figure 13(b) it moves on the real axis
away from the unit circle, while in Figure 13(d) it moves
towards the unit circle.

In all the above cases there is always at least one eigen-
value outside of the unit circle at every value of the pitch rate.
Therefore, there is no region of parameters where the system
is passively stable for forward speed ẋ = 1 m / s and apex
height y = 0.35 m. Note that similar, but not identical, root
loci to those presented in Figure 13 are observed at differ-
ent forward speeds and apex heights, the difference being the
values the eigenvalues attain as the pitch rate increases.

To show how the forward speed affects the stability of the
motion, we present Figure 14, which shows the magnitude of
the larger eigenvalue at different forward speeds for the in-
ner branches of the bounding with and without double stance
phase. In this figure, the stars denote transition from bounding
with a double stance phase to bounding without one. For suf-
ficiently high forward speeds and for a region of pitch rates,
the larger eigenvalue enters the unit circle, while the other two
eigenvalues remain well behaved. This fact shows that, for
these parameter values, the system is self-stabilized. Further-
more, it is apparent from Figure 14 that the self-stabilization
regime is present in both variations of the bounding gait, i.e.,
with and without double stance phase. It is worth mentioning
here that, as depicted in Figure 14, the largest eigenvalue ob-
tains its maximum value when the pitch rate θ̇ is small. Recall
that the region where θ̇ takes small values corresponds to a
pronking-like motion, where both the front and back legs hit
and leave the ground in unison. Thus, we can conclude that
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Fig. 13. Root locus showing the paths of the four eigenvalues as the pitch rate increases for the inner (up) and the outer
(down) branches of fixed points. The numbers show the starting points of the eigenvalues, “x” denotes the points where the
eigenvalues converge, and the arrows show the direction of their motion.

Fig. 14. Largest eigenvalue norm at various pitch rates and for forward speeds 1 to 4 m/s. The stars denote transition from
bounding with to bounding without double stance.
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Fig. 15. Root loci for the inner branches of the bounding with (up) and without (down) double stance and for forward speed
4 m/s. The apex height is 0.35 m.

pronking-like motions (low-pitch rates) are “more unstable”
than bounding (high pitch rates). This fact was also observed
in experiments with Scout II.

The details of the root locus are shown in Figure 15. The
shape of the root locus is similar to the root loci presented in
Figure 13(a) and (b), except for the fact that, for some values
of the pitch rate, eigenvalues 2, 3 and 4 are all inside the unit
circle. Note that the changes in the slope of the norm of the
larger eigenvalue in Figure 14 are attributed to the fact that, as
the eigenvalues move along the branches of the root locus, the
eigenvalue that has the larger norm changes; see Figure 15.

Interestingly, despite the apparent simplicity of the
quadrupedal model presented above, compared with the com-
plexity of more accurate models of Scout II such as those de-
scribed in Poulakakis, Smith, and Buehler (2005a), we have
been able to reproduce, qualitatively, many different behav-
iors, which have also been observed experimentally in the
robot. These behaviors include both variations of bounding
described in Figure 3, and also pronking-like and dynamic
walking motions. Furthermore, a good qualitative agreement
between the bounding results presented in this paper and the
experimental data of Poulakakis, Smith, and Buehler (2005a)
has been observed. For instance, the pitch angle as shown in
Figure 7 bears remarkable resemblance to the corresponding
one measured in experiments (see Figure 12 in Poulakakis,
Smith, and Buehler 2005a). Moreover, self-stabilization oc-
curs in a range of pitch rates, which is in agreement with the
pitch rates measured in experiments with Scout II. However,
experimental Scout II runs are stable at approximately 1/3
the speeds predicted here. This is most probably due to the
stance-brake phase present in the controller in experiments;

see Figure 2. The stance-brake phase results in decelerating
the robot, and breaks the touchdown-liftoff symmetry pre-
sented in Figure 9. As is described in detail in Poulakakis,
Smith, and Buehler (2005a), it also results in errors between
simulation results and experimental data, even in more accu-
rate models of Scout II. However, including the stance-brake
phase in the controller is necessary for ensuring toe clear-
ance, especially during the early protraction phase, due to the
absence of active control of the leg length during flight.

Furthermore, effects not present in passive models, such
as actuator dynamics, damping in the leg prismatic joints, in-
termittent stick/slip of the foot–ground contact, and energy
losses at touchdown due to impact, may contribute to dis-
crepancies between the conservative model studied here and
the robot, such as the difference in the forward speed. More
specifically, regarding the role of the actuators during stance,
it is noted that large peaks in the torques appear at the early
phases of the stance-retraction phase. However, as is explained
in detail in Poulakakis, Smith, and Buehler (2005a; Figures 14
and 15 therein), motor saturation comes almost immediately
after touchdown, resulting in very small torques throughout
the stance-retraction phase, until the stance-brake phase is
reached. The exact role of the actuator dynamics in the result-
ing motion is currently under investigation.

The main conclusion from the analysis above is that there
exists a regime where the system can be passively stable. This
is an important result since it shows that the system can tol-
erate small perturbations away from the nominal conditions
without any control action taken. This fact could provide a
possible explanation of why Scout II can bound without the
need of complex state feedback, using very simple control
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laws that only excite its natural dynamics, and is in agree-
ment with recent research from biomechanics, which shows
that, when animals run at high speeds, passive dynamic self-
stabilization from a feedforward, tuned mechanical system
can reject rapid perturbations and simplify control (Full and
Koditschek 1999; Kubow and Full 1999).Analogous behavior
has been discovered by McGeer (1989) in his passive bipedal
running work, and recently in the SLIP template (Seyfarth
et al. 2002; Ghigliazza et al. 2003).

7. Conclusion

In this paper, we studied the dynamics of the bounding running
gait of a simple passive and conservative model of our Scout
II robot. Based on the analysis of numerically derived return
maps, we found that the two variations of the bounding gait,
which have been experimentally observed on Scout II, can be
passively generated with appropriate initial conditions. Most
strikingly, in each bounding variation, there exists a regime
where the model stabilizes itself without the need of any con-
trol action! This is the first time that more elaborate gaits, such
as Scout II’s bounding, are found to be inherently stable, and
is in agreement with recent results from biomechanics, con-
tributing to the increasing evidence that simple controllers,
such as those reported in Poulakakis, Smith, and Buehler
(2005a) that operate mostly in the feedforward regime, are ad-
equate in stabilizing a complex dynamic task like quadrupedal
bounding. Most importantly, self-stabilization can facilitate
the design of more robust, yet minimalistic, controllers for
dynamically stable legged locomotion, by deriving control
laws that expand the domain of attraction of the self-stable
behavior. A simplified model, such as the one presented in
this paper, that captures the essentials of the motion, can form
the basis of a controlled model in a way similar to that pre-
sented in Ahmadi and Buehler (1997, 1999), resulting in high
performance combined with great energy efficiency. Propos-
ing such a controller for quadrupeds, and implementing it
experimentally on Scout II is our goal. The model presented
in this paper provides the first step towards this goal.
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