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Abstract

A planning methodology for nonholonomic mobile platforms with
manipulators in the presence of obstacles is developed that employs
smooth and continuous functions such as polynomials. The method
yields admissible input trajectories that drive both the manipula-
tor and the platform to a desired configuration and is based on
mapping the nonholonomic constraint to a space where it can be
satisfied trivially. In addition, the method allows for direct control
over the platform orientation. Cartesian space obstacles are also
mapped into this space in which they can be avoided by increasing
the order of the polynomials employed in planning trajectories. The
additional parameters required are computed systematically, while
the computational burden increases linearly with the number of ob-
stacles and the system elements taken into account. Illustrative ex-
amples demonstrate the planning methodology in obstacle-free and
obstructed environments.

KEY WORDS—mobile manipulators, nonholonomic sys-
tems, obstacle avoidance, path planning, pfaffian constraints

1. Introduction

Mobile manipulator systems, consisting of a mobile platform
equipped with one or more manipulators, are of great impor-
tance to a host of applications, mainly due to their ability to
reach targets that are initially outside of the manipulator reach.
Applications for such systems abound in mining, construc-
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tion, forestry, planetary exploration and the military. A wide
category of such systems employs wheeled mobile robots,
which is the type of system under study in this paper.

Wheeled mobile robots have attracted a lot of interest re-
cently. Work in the area can be divided into work on wheeled
mobile platforms and work on mobile manipulator systems,
i.e., manipulators mounted on wheeled mobile platforms. Re-
search on wheeled mobile platforms typically concentrates
on motion planning, obstacle avoidance and platform naviga-
tion in cluttered environments. Research on the latter mostly
focuses on techniques for motion planning of the integrated
system in the absence of obstacles or deals with effects due to
the coupling between the manipulator and its mobile platform.

Motion planning for mobile platforms is concerned with
obtaining open loop controls, which steer a platform from an
initial state to a final one, without violating the nonholonomic
constraints. The idea of employing piecewise constant inputs
to generate motions in the directions of iterated Lie brackets
has been exploited by Lafferriere and Sussmann (1991), while
Gurvitz (1992) developed planning tools based on averaging
theory, where high amplitude high frequency control inputs
have been used to approximate a holonomic collision-free
path within a predetermined bound. Fliess et al. (1997) used
the notion of a flat nonlinear system in motion planning for a
car with n trailers. Murray and Sastry (1993) used sinusoids
at integrally related frequencies to steer systems in power
or chained form. In contrast to this approach, Monaco and
Normand-Cyrot (1992) used multirate digital control and a
family of piecewise constant inputs. A comprehensive survey
of developments in control of nonholonomic systems can be
found in Kolmanovsky and McClamroch (1995).
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The above methods do not take explicitly under consider-
ation obstacles in the workspace. Many algorithms have been
proposed for solving this problem for wheeled mobile plat-
forms. These can be roughly categorized into search-based
methods, geometric approaches and probabilistic approaches.
Barraquand and Latombe (1991) used an exhaustive search-
based method that explores the system’s configuration space
by propagating step motions corresponding to some controls.
In most of the geometric methods, the final path computed by
a planner is the concatenation of elementary paths computed
by a basic procedure. Jacobs and Canny (1989) define a set
of canonical trajectories, which satisfy the constraints, such
as straight-line segments followed by arc segments. Laumond
et al. (1994) use the same families of canonical trajectories
to transform a path, calculated by a geometric planner that
ignores the motion constraints, into a feasible one. To over-
come the problem of discontinuous curvature profiles of the
paths resulting from the above planners, Sheuer and Fraichard
(1997) used a set of paths called bi-elementary paths, which
are composed by arcs of clothoids. Fleury et al. (1995) used
combinations of clothoids and anticlothoids to replace a col-
lision free trajectory, consisting of straight directed line seg-
ments, by a smooth, time optimal one. An alternative approach
for solving the problem of obstacle avoidance utilizes proba-
bilistic learning methods. Svestka and Overmars (1994) pro-
posed a learning approach, where the motion planning process
is split into a learning phase, in which a probabilistic roadmap
is constructed in the configuration space, and a query phase,
in which this roadmap is used to find paths between differ-
ent pairs of configurations. The approach can be extended to
both normal car-like robots and car-like robots that move only
forward by using suitable local methods for computing paths
that are feasible for the robot. Other approaches include dy-
namic programming techniques, progressive constraints (Fer-
bach 1995), least square approximation of a path returned by a
holonomic planner based on artificial force fields (Bemporad,
De Luca, and Oriolo 1996), minimizing cusps number (Shkel
and Lumelsky 1997), and obstacle traversal (Shiller 2000).

The above methods cannot be applied in general classes of
nonholonomic systems, because the admissible paths are not
known a priori. To the best of our knowledge, the most general
result is due to Sekhavat and Laumond (1998). The authors
show how the algorithm developed in Laumond et al. (1994)
can be extended for a class of nonholonomic systems that
are or can be transformed into chained form. The basic idea
lies in replacing the optimal trajectories (linear segments and
circular arcs) with a family of canonical trajectories computed
by any local planner respecting some topological property.

A host of issues related to mobile manipulator systems has
been studied in the past. These include dynamic and static
stability (Papadopoulos and Rey 1996), force development
and application (Papadopoulos and Gonthier 1999), control
in the presence of compliance (Hootsmans and Dubowsky
1991), dynamic coupling issues (Wiens 1989), etc. However,

in these studies, the mobile manipulator platform is assumed
to be stationary.

Moving mobile manipulator systems present many unique
problems that are due to the coupling of holonomic manip-
ulators with nonholonomic bases. Seraji (1998) presents a
simple on-line approach for motion control of mobile manip-
ulators using augmented Jacobian matrices. The approach is
kinematic and requires additional constraints to be met for
the manipulator configuration. Perrier et al. (1998) represent
the nonholonomy of the vehicle as a constrained displacement
and try to make the global feasible displacement of the system
correspond to the desired one. Foulon et al. (1999) consider
the problem of task execution by coordinating the displace-
ments of a nonholonomic platform with a robotic arm using
an intuitive planner, where a transformation, similar to the
one proposed in Section 3, was presented. The same authors
introduce other variations of local planners, which are then
combined to constitute a generalized space planner (Foulon,
Fourquet, and Renaud 1998). Papadopoulos and Poulakakis
(2000b) presented a planning and control methodology for
mobile manipulator systems allowing them to follow desired
end-effector and platform trajectories simultaneously without
violating the nonholonomic constraints.

The problem of navigating a mobile manipulator among
obstacles has been studied by Yamamoto and Yun (1995) by
simultaneously considering the obstacle avoidance problem
and the coordination problem. The developed controller al-
lows the system to retain optimal or sub-optimal configura-
tions while the manipulator avoids obstacles using potential
functions. In their approach, they assume that only the ma-
nipulator and not the platform may encounter the obstacle,
while Tanner and Kyriakopoulos (2000) studied the problem
of obstacle avoidance by the entire mobile manipulator sys-
tem. Their nonholonomic motion planner is based on a dis-
continuous feedback law under the influence of a potential
field.

In this paper, a planning and obstacle avoidance method-
ology is developed for nonholonomic platforms with manip-
ulators. The developed method uses smooth and continuous
functions such as polynomials and it is computationally inex-
pensive and easy to apply. The method constructs trajectory
inputs that drive both the manipulator and its platform to a final
configuration without violating the nonholonomic constraint.
The idea employed is to construct a transformation that maps
the nonholonomic constraint associated with a given platform
point from the Cartesian space to a space where it can be satis-
fied trivially. The proposed transformation is obtained through
a systematic methodology that can also be applied directly to
other more complex systems. Since the mapping is smooth
and planning in this new space is achieved using polynomial
trajectories, the resulting Cartesian paths and trajectories are
also smooth. Due to the specific map chosen, the method al-
lows for direct control over the platform orientation.
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The developed transformation also maps Cartesian space
obstacles to transformed ones produced by length and shape
preserving transformations. Obstacle avoidance is achieved
by increasing the order of the polynomials that are used in
planning trajectories. Enclosing general obstacles in simple
shapes such as ellipses or circles facilitates computation of
the additional parameters required, while computations are
of algebraic nature. Taking into account all of the vertices
and edges of a mobile system guarantees collision avoid-
ance for the entire system, while the computational burden
increases linearly with the number of obstacles and system
elements. Extensive use of the method showed that it is par-
ticularly suitable for applications in open environments where
the workspace of the robot is not highly cluttered by ob-
stacles, e.g., outdoor applications, or planetary exploration
operations. Due to its inherent algebraic nature, the scheme
proposed significantly reduces the number of computations
required to solve the problem with the tradeoff of a possible
miss of a solution in a highly cluttered environment. Illustra-
tive examples demonstrate the application of the methodology
in obstacle-free and obstructed spaces.

2. Mobile Manipulator System Kinematics

A prerequisite for the successful use of mobile manipulators
is the availability of a planning methodology that can generate
feasible paths for driving the end effector to the desired coor-
dinates without violating system nonholonomic constraints.
However, in many applications, it is required that the platform
position and orientation are also specified for a number of
reasons. Such reasons include the particular site geometry or
ground morphology, the avoidance of manipulator joint limits
or singularities, the mating of the system to a given port, and
the maximization of a system’s manipulability or force out-
put. Moreover, the calculated paths must be computationally
inexpensive to compute and should be able to steer the system
away from obstacles, which may exist in its workspace.

Because nonholonomy is associated with the mobile plat-
form, while the manipulator is holonomic, the system is stud-
ied as two connected subsystems, the holonomic manipulator
and its nonholonomic platform. This allows one to find an
admissible path for the mobile platform that can drive it from
an initial position and orientation to a final desired one. Next,
using known techniques for manipulators, joint trajectories
are calculated for the manipulator so that its end-effector is
driven to its destination. An advantage of this approach is that
it is very simple to extend the method to mobile systems with
multiple manipulators on board.

For simplicity reasons, we concentrate here on a mobile
system, which consists of a two degree-of-freedom (DoF) ma-
nipulator mounted on a differentially driven mobile platform
(see Figure 1). However the developed methodology can be
applied equally well to systems with N DoF manipulators, or

to car-like mobile platforms (Papadopoulos and Poulakakis
2000).

2.1. Holonomic Manipulator Subsystem

The Cartesian coordinates of the end effector E relative to the
world frame are given by (see Figure 1)

xE = xF + l1 cos(ϕ + ϑ1)+ l2 cos(ϕ + ϑ1 + ϑ2) (1)

yE = yF + l1 sin(ϕ + ϑ1)+ l2 sin(ϕ + ϑ1 + ϑ2), (2)

where (xF , yF ) is the position of the manipulator mounting
point F on the mobile platform, ϕ is the platform orientation,
ϑ1 and ϑ2 represent the joint angles and l1 and l2 denote the
link lengths of the manipulator arms. Note that, although the
motion of the manipulator is holonomic, point F of the plat-
form is still subject to a nonholonomic constraint, as it will
be discussed later.

Inversion of eqs (1) and (2) is easy and yields equations of
the form

ϑ1 = ϑ1(xE, yE, xF , yF , ϕ) (3)

ϑ2 = ϑ2(xE, yE, xF , yF ) (4)

that compute the joint angles ϑ1 and ϑ2 which correspond to
some end-effector position (xE, yE) when the platform posi-
tion (xF , yF ) and orientation ϕ are known.

The existence of a solution requires that

|l1 − l2| ≤ ‖EF‖ ≤ l1 + l2 ⇒ (l1 − l2)
2

≤ (xE − xF )
2 + (yE − yF )

2 ≤ (l1 + l2)
2.

(5)

If the above inequality is not satisfied at some point, then
the target is outside the manipulator reach, and the mobile
platform must move.

2.2. Nonholonomic Mobile Platform Subsystem

The mobile platform employs two independently driven
wheels (see Figure 1). Here it is assumed that the speed at
which the system moves is low and therefore the two driven
wheels do not slip sideways. Hence, the velocity of any point
G on the wheel axis is normal to this axis. This leads to fol-
lowing constraint equation:

ẋG sin ϕ − ẏG cosϕ = 0. (6)

Equation (6) is a nonholonomic constraint involving veloc-
ities and, as is well known, it cannot be integrated analytically
to result in a constraint between the configuration variables
of the platform, namely, xG, yG, and ϕ. Also, the configu-
ration space of this system is three-dimensional (completely
unrestricted) while the velocity space is two-dimensional. In
general, it can be shown that any point P on the platform that
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Fig. 1. Mobile manipulator system on a differentially-driven platform.

moves with it and is away from the wheel axis, is subjected
to the following constraint:

ẋP sin ϕ − ẏP cosϕ + ϕ̇lP = 0, (7)

where lP is the normal distance between the point and the
axis of the wheels. For the manipulator mounting point F , in
particular, eq (7) applies by replacing the index P with F .

Finally, if the platform motion to a destination is known
and described by the trajectory of some point, for example
point F , then it is relatively simple to relate platform control
variables, namely the angular velocities of the left and right
wheels, ϑ̇� and ϑ̇r , to point velocities, (ẋF , ẏF ), and platform
angular velocity, ϕ̇. This relationship is given by


ẋFẏF
ϕ̇


 =




r

2
cosϕ + lF r

b
sin ϕ r

2
cosϕ − lF r

b
sin ϕ

r

2
sin ϕ − lF r

b
cosϕ r

2
sin ϕ + lF r

b
cosϕ

− r

b

r

b




[
ϑ̇�

ϑ̇r

]
,

(8)

where all parameters are defined in Figure 1. As shown by
eq (8), the two control angular rates, ϑ̇� and ϑ̇r , are mapped
to three output velocities.

3. Path Planning

A mobile system is especially useful when the manipulator
task is outside the manipulator’s reach. Assuming that this

is the case, we focus our attention in finding a path for the
mobile platform, which connects its initial configuration as
described by

(
xin
F
, yin

F
, ϕin

)
to a final one

(
x
f in

F , y
f in

F , ϕf in
)
. It

is well known that this problem is not trivial, since one must
satisfy the nonholonomic constraint and achieve a change in
the three dimensional configuration space with two controls
only. Next, a planning methodology is developed that allows
for a systematic approach of nonholonomic constraints of the
form of eq (7).

To describe the motion of the platform, one must choose
a point. Among platform points, point G, the middle of the
wheel axis and F , the manipulator mounting point, can be
candidate due to their location on the platform. For reasons
that will be discussed later, point F is chosen here. The con-
straint given by eq (7) is scleronomic and can be written for
point F in the Pfaffian form

P(xF , yF , ϕ)dxF +Q(xF , yF , ϕ)dyF

+ R(xF , yF , ϕ)dϕ = 0, (9a)

with

P(xF , yF , ϕ) = sin ϕ,Q(xF , yF , ϕ)

= − cosϕ,R(xF , yF , ϕ) = lF . (9b)

Note that eq (9) contains three differentials. Such con-
straints also appear in other systems of engineering interest,
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such as space free-floating systems, or legged systems in free-
flight (Papadopoulos and Dubowsky 1991). Therefore, plan-
ning motions for systems that are subjected to such constraints
have interest beyond the area of wheeled platforms.

As will be shown by the end of this section, planning can
be facilitated if this form is transformed to one in which only
two differentials appear. This is indeed possible because it is
known (Pars 1965) that nonintegrable Pfaffian equations of
the form of eq (9a) can be written as

du+ vdw = 0, (10)

where u, v, w are properly selected functions of xF , yF , and
ϕ.

Equation (9a) can be transformed into eq (10), if the fol-
lowing equations hold:

P = ∂u

∂xF
+ v

∂w

∂xF
, Q = ∂u

∂yF
+ v

∂w

∂yF
,

R = ∂u

∂ϕ
+ v

∂w

∂ϕ
.

(11)

To find the unknown functions u, v, and w, we construct
the differential equations that they must satisfy. To this end,
we define the following auxiliary functions:

P ′ = ∂Q

∂ϕ
− ∂R

∂yF
, Q′ = ∂R

∂xF
− ∂P

∂ϕ
,

R′ = ∂P

∂yF
+ v

∂Q

∂xF
.

(12)

Substitution of eq (11) into eq (12) yields

P ′ = ∂v

∂ϕ

∂w

∂yF
− ∂v

∂yF

∂w

∂ϕ
, Q′ = ∂v

∂xF

∂w

∂ϕ
− ∂v

∂ϕ

∂w

∂xF
,

R′ = ∂v

∂yF

∂w

∂xF
− ∂v

∂xF

∂w

∂yF
.

(13)

MultiplyingP ′ by ∂w/∂xF ,Q′ by ∂w/∂yF , andR′ by ∂w/∂ϕ,
respectively, and adding the results yields the following dif-
ferential equation for w:

P ′ ∂w

∂xF
+Q′ ∂w

∂yF
+ R′ ∂w

∂ϕ
= 0. (14)

Similarly, multiplying P ′ by ∂v/∂xF , Q′ by ∂v/∂yF , and
R′ by ∂v/∂ϕ, respectively, and adding the results, yields the
following differential equation for v:

P ′ ∂v

∂xF
+Q′ ∂v

∂yF
+ R′ ∂v

∂ϕ
= 0. (15)

Therefore, both w and v satisfy the same first order partial
differential equation, i.e., any solution to eq (14) is also a
solution to eq (15).

Finally, multiplyingP ′ byP−∂u/∂xF ,Q′ byQ−∂u/∂yF ,
and R′ by R − ∂u/∂ϕ, adding the results, and using eqs (11)
and (14) yields

(
P − ∂u

∂xF

)
P ′ +

(
Q− ∂u

∂yF

)
Q′ +

(
R − ∂u

∂ϕ

)

R′ = v

(
P ′ ∂w

∂xF
+Q′ ∂w

∂yF
+ R′ ∂w

∂ϕ

)
= 0.

(16)

Therefore, u satisfies the following differential equation:

P ′ ∂u

∂xF
+Q′ ∂u

∂yF
+ R′ ∂u

∂ϕ

= PP ′ +QQ′ + RR′ 
= 0.

(17)

The right hand side in the above equation does not vanish,
because the condition of integrability is not satisfied. If the
system were holonomic, then uwould have satisfied the same
differential equation as v and w.

Next, the partial differential equation, eq (14), is solved
to yield w. The general solution is any function of the two
independent integrals of the subsidiary system (Ince 1956),

λ(xF , yF , ϕ) = xF cosϕ + yF sin ϕ = k1 (18a)

µ(xF , yF , ϕ) = ϕ = k2, (18b)

where k1 and k2 are arbitrary real numbers. Of those functions,
a useful choice is

w = µ(xF , yF , ϕ) = ϕ = k2, (19)

because this solution allows control over the platform orien-
tation, while simplifying the resulting planning and obstacle
avoidance equations. Other choices exhibit different proper-
ties that may be useful in meeting other requirements.

Equation (19) represents a solution to the linear partial
differential equation given by eq (14). Note that in this case
no particular solution can be selected because no boundary
conditions have been imposed. Hence, eq (19) holds for all
k2 ∈ R.

Equation (9a), in view of eqs (11) and (19), yields

PdxF +QdyF + Rdϕ = ∂u

∂xF
dxF

+ ∂u

∂yF
dyF + ∂u

∂ϕ
dϕ = du = 0,

(20)

i.e., for any particular value k2 of w eq (9a) is a perfect dif-
ferential. Next, a solution for u is obtained by integration of
eq (20) under the constraint imposed by eq (19). Note that
eq (20) would be meaningless if eq (19) did not hold. Indeed,
eq (19) forms an algebraic constraint among the variables,
which holds for every k2, and is used to find u by expressing
ϕ and dϕ with respect to the other variables and k2. Here, we
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simply have ϕ = k2 and dϕ = 0. Substitution of these into
eq (20) results in a perfect differential

dh(xF , yF , k2) = sin k2dxF − cos k2dyF = 0. (21)

Integration of eq (21) yields

h(xF , yF , k2) = xF sin k2 − yF cos k2 = const. (22)

Equations (21) and (22) hold for every k2 ∈ R. Replacing k2

byµ(xF , yF , ϕ) = ϕ, the functionu(xF , yF , ϕ), i.e., a solution
to eq (17) results:

u(xF , yF , ϕ) = xF sin ϕ − yF cosϕ. (23)

Hence, expressions for u and w have been found. The ex-
pression for v is found using any of eqs (11). Choosing the
last one yields

v(xF , yF , ϕ) = lF − xF cosϕ − yF sin ϕ. (24)

Summarizing, the nonholonomic constraint described by
eq (9) can be written in the form given by eq (10) if

u(xF , yF , ϕ) = xF sin ϕ − yF cosϕ (25a)

v(xF , yF , ϕ) = lF − xF cosϕ − yF sin ϕ (25b)

w(xF , yF , ϕ) = ϕ. (25c)

Equations (25) constitute a transformation (xF , yF , ϕ) →
(u, v,w), which is defined at every point of the configuration
space of the system. As will be seen in Section 4, this prop-
erty is a prerequisite when it comes to obstacle avoidance,
since it allows for mapping of obstacles in the Cartesian x-y
space into the u-v-w space without singularities. Moreover,
the orientation ϕ of the platform is conserved through the
transformation as a chain coordinate, and is explicitly avail-
able for planning, i.e., one can directly set a desired trajectory
for ϕ, and therefore avoid undesirable cusps. A similar coor-
dinate transformation was proposed in Foulon, Fourquet, and
Renaud (1999), where it was derived from direct reasoning
based on the kinematics of point G. However, as mentioned
above, finding a transformation for point F greatly facilitates
the computation of paths for obstacle avoidance.

This transformation is very helpful for planning purposes.
Indeed, if we choose functions f and g as follows:

w = f (t) (26)

u = g(w) (27)

v = − du

dw
= −g′(w), (28)

then eq (10) is satisfied identically. Therefore, the planning
problem reduces to choosing functions f and g such that they
satisfy the initial and final configuration variables. Such func-
tions can be polynomials, splines, or any other continuous and

smooth time function. In particular, f can be any function of
time whose value at initial and final time is equal to the initial
and final platform orientation. Shaping f during the motion
allows complete control over the orientation and therefore,
motions with undesired orientation changes are avoided.

Function g is constructed using similar functions and
eqs (25a) and (25b) for computing the initial and final values
for u and v, respectively. Finally, v, which requires a simple
differentiation, is computed using eq (28). Once u, v, and w

have been found, the platform coordinates are computed by
inverting eqs (25). Elimination of time among these yields
the desired platform path and orientation that, if followed,
the platform will be driven to the desired final location and
orientation, without violating the constraint. The manipulator
joint motion is then computed using eqs (3) and (4). Since the
method requires algebraic manipulation of polynomials and
a single differentiation, it is computationally inexpensive and
yields results rapidly.

Example 1. To illustrate the methodology described above,
we employ the mobile manipulator system shown in Figure 1.
The main task for the system is to have the end-effector reach
a desired target point with coordinates (xE, yE), while the
platform pointF must reach a desired position and orientation,
(xF , yF , θθθ). Assuming that the platform can be steered to its
destination, the holonomic inverse relations, eqs (3) and (4),
can be used to compute the manipulator final joint values.

In order to compute platform trajectories, functions f and
g in eqs (26)-(28) are selected to be fifth and third order time
polynomials, respectively,

f (t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t + a0

g(w) = b3w
3 + b2w

2 + b1w + b0.

The coefficients of polynomial f are computed using the ini-
tial and final orientation, angular velocity and angular accel-
eration of the platform (Ince 1956). The coefficients of poly-
nomial g satisfy the initial and final conditions of the Carte-
sian motion, as computed using eqs (25a) and (27), while its
derivatives at the boundaries are computed using eqs (25b)
and (28).

For the simulation, the total move time is chosen equal to
6 s and the initial configuration is

(
xin
E
, yin

E
, xin

F
, yin

F
, ϕin

) =
(0.35 m, 0.3 m, 0 m, 0.5 m, –90o). Using eqs (3) and
(4), the initial posture of the manipulator is found to be(
ϑin

1 , ϑ
in
2

) = (39.7o, 46.5o). The final desired configuration
is

(
x
f in

E , y
f in

E , x
f in

F , y
f in

F , ϕf in
) = (1.1 m, 2.35 m, 1 m, 2 m,

–90o) and the corresponding final manipulator joint angles
are

(
ϑ

f in

1 , ϑ
f in

2

) = (–46.6o, 70.27o). Note that choosing a dif-
ferent total time will make the system move faster or slower,
but will have no effect on the Cartesian path of the mobile
platform.

Figure 2 depicts snapshots of the motion of the mobile
manipulator, while Figure 3 depicts the corresponding tra-
jectories for platform and manipulator joint velocities. It can
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Fig. 2. Motion animation of the mobile manipulator system.

be observed that both the system path and trajectories are
smooth, and drive the system from its initial configuration to
the desired one in the specified time.

If we examine the method used closer, we observe that the
orientation of the platform changes according to its trajectory,
while the system moves so that it reaches its destination at
the given time. This method will always work as described
with the exception of equal initial and final vehicle orientation
with simultaneous zero initial and final angular velocities and
accelerations. In this case, the vehicle is required to stay on
a straight line and therefore it cannot reach all points in the
Cartesian space. A straightforward solution to this problem is
to use a via point, or even better, to add a multiple of a full turn,
(360o), either at the initial or at the final vehicle orientation.

4. Obstacle Mapping

A planning methodology is more useful if it allows the con-
struction of paths that can avoid proximal obstacles. In this
section, we study how general Cartesian obstacles are mapped
through the transformation given by eqs (25), and then con-
centrate on obstacles that can be enclosed in ellipses or circles.
In the next section, we focus on constructing paths that avoid
them. It is assumed that the location of obstacles in the prox-
imal system workspace is known and fixed.

Equations (25) map obstacles in the Cartesian x-y space
into the u-v-w space. Mapping from a two dimensional to a
three dimensional space adds one dimension which, in this
case, corresponds to the orientation of the platform. To study
the properties of the developed transformation, eqs (25) are
written in matrix form



u

v

w

1


 =




sin ϕ − cosϕ 0 0
− cosϕ − sin ϕ 0 lF

0 0 1 0
0 0 0 1






xF
yF
ϕ

1


 , (29)

where the determinant of the above matrix is always nonzero.
Therefore, this transformation constitutes a global diffeomor-
phism in the configuration space. Further decomposition of
eq (29) using the product of two matrices yields



u

v

w

1


 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1







cos(π/2 − ϕ) − sin(π/2 − ϕ) 0 0
sin(π/2 − ϕ) cos(π/2 − ϕ) 0 −lF

0 0 1 0
0 0 0 1






xF
yF
ϕ

1




u = T1T2x

(30)

where matrix T1 corresponds to a reflection and matrix T2 to
a rotation by π/2 − ϕ and a translation by −lF .

It is known that transformations such as rotations, transla-
tions and reflections, preserve both the length and the shape
of an object. These properties are crucial for mapping obsta-
cles from the Cartesian x-y space to the transformed space.
However, since the map is a function of the orientation ϕ, a
single object in the Cartesian space is mapped to a family of
such objects that correspond to the range of ϕ that is con-
sidered. For example, a linear segment in the Cartesian x-y
space is transformed to a family of linear segments in the u-
v-w space having the same length as the original segment and
orientation, which depends on the current orientation ϕ of the
platform. This is an important observation because many ob-
stacles are either polygonal, or can be enclosed in polygons,
i.e., closed sequences of linear segments.

To construct a simple and fast trajectory planner that can
avoid obstacles, it is assumed that obstacles can be enclosed in
an ellipse or a circle depending on the obstacle’s shape. This
approach simplifies the definition of the distance between an
obstacle and the mobile system, due to the symmetry prop-
erties of these basic shapes. For example, Figure 4 depicts
an elliptic and a circular obstacle in the Cartesian x-y space.
These are transformed to the obstacles depicted in Figure 5.

It can be seen that, for all w = ϕ, the obstacles in the u-
v-w space are still an ellipse and a circle, while the centers
of both families of obstacles lie on helicoids. Appendix A
gives examples of analytical expressions for the transformed
obstacles.
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Fig. 3. Rate trajectories for the mobile manipulator system inputs.
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Fig. 4. Obstacles in the Cartesian x-y space. Fig. 5. The obstacles in Figure 4 transformed in the u-v-w
space.
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5. Obstacle Avoidance Principle

The planning method developed above did not take into ac-
count obstacles, which may exist in the workspace. It is ob-
vious that, to avoid an obstacle, additional freedom must be
introduced in the planning scheme.

A simple way to achieve this is to introduce additional
coefficients in the polynomial u(w) whose number may de-
pend on the number of the obstacles and their positions in the
workspace. These additional coefficients should not affect the
satisfaction of the initial and final conditions but should allow
one to shape the path in the u-v-w space so as to avoid colli-
sions with the obstacles. In this way, the problem of avoiding
Cartesian obstacles can be reduced to the problem of finding
appropriate values for the additional coefficients. Due to the
nature of the involved equations this is a much simpler prob-
lem, and results in a simple analytical solution without the
use of intensive numerical searches.

As an example of the use of the method, the case of a single
platform point and a single obstacle is studied first. The case
of collision avoidance for the full mobile manipulator system
in the presence of multiple obstacles is treated in the next
section.

5.1. Single Obstacle

A single obstacle is assumed and a single additional coeffi-
cient b4 is added to the polynomial u(w). Since the nonholo-
nomic constraint must be satisfied everywhere, the following
equations for u and v must hold:

u(w) = b4w
4 +

3∑
i=0

biw
i (31)

v(w) = −4b4w
3 −

3∑
i=1

ibiw
i−1. (32)

Introducing the initial and final conditions for u and w

which correspond to the initial and final positions for point F
of the platform, the following linear system is obtained with
respect to the unknown coefficients bi , i = 0, . . . , 3:

3∑
i=0

biw
i

in
= u(win)− b4w

4
in

(33)

3∑
i=0

biw
i

f in
= u(wf in)− b4w

4
f in

(34)

3∑
i=1

ibiw
i−1
in

= −v(win)− 4b4w
3
in

(35)

3∑
i=1

ibiw
i−1
f in

= −v(wf in)− 4b4w
3
f in
. (36)

Solving the above system, the bi , i = 0, . . . , 3, are found
as linear functions of b4. Therefore, eqs (31) and (32) along
with the solution of eqs (33)-(36) yield the polynomials u

and v, which satisfy the constraint and the initial and final
conditions as functions of the additional coefficient b4. By
changing the value of b4, different paths satisfying the desired
boundary conditions are obtained. The problem reduces to
finding a range of values of b4 which lead to paths that avoid
the obstacle. This is done next, assuming that the obstacle is
contained in either a circle or an ellipse.

For an obstacle enclosed in a circle, centered at (x0, y0)

with radius R, the distance between the center of the obstacle
and some point P of the platform must be greater than the
radius R. Making use of the fact that a circular obstacle is
mapped in the u-v-w space onto a circle of the same radius,
then for eachw = ϕ and for collision avoidance, the following
inequality must hold:

(u(w)− u0(w))
2 + (v(w)− v0(w))

2 > R2

∀w ∈ [win, wf in],
(37)

whereu(w) and v(w) are the transformed coordinates of point
P on the mobile system and u0(w) and v0(w) are the trans-
formed coordinates of the center of the obstacle for the cor-
responding orientation w = ϕ. Similarly, for an ellipse cen-
tered at (x0, y0), rotated at an angle ψ and with principal axes
lengths Ra and Rb, the criterion for obstacle avoidance is that
for each w = ϕ the following inequality must hold true:

R2
b

[
(u(w)− u0) cosψ ′ − (v(w)− v0) sinψ ′]2

+R2
a

[
(u(w)− u0) sinψ ′ + (v(w)− v0) cosψ ′]2

−R2
a
R2

b
> 0.

(38)

Substituting eqs (31) and (32) into eq (37) for the case of a
circular obstacle and eqs (31) and (32) into eq (38) for the case
of an elliptic obstacle and after some algebraic manipulations,
the following inequality is obtained:

αb2
4 + βb4 + γ > 0. (39)

The coefficients α, β, and γ are different for circles and el-
lipses. However, in both cases they are known functions of
w and of uin, vin, win, uf in, vf in, wf in. Equation (39) is a very
practical representation of the criterion for obstacle avoid-
ance. If this inequality holds for all w = ϕ, then the planned
path will never collide with the obstacle.

Notice that because eq (39) is a distance criterion and be-
cause all bi , i = 0, . . . , 3, are linear functions of b4, the
resulting inequality will always be a second order polynomial
in b4. In addition, as shown in Appendix B, the coefficient α
is always a non-negative number, and therefore satisfaction of
eqs (37)-(38) requires that b4 lies outside of the roots ba4(w),
bb4(w) of the second order polynomials in eq (39). This fact
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greatly simplifies the problem of finding the appropriate val-
ues of b4 for which eqs (37)-(38) are satisfied and is a direct
result of the chosen transformation, given by eqs (25). In-
deed, these values are found by simple algebraic operations
and therefore, this methodology is very fast to compute.

Example 2. To illustrate the avoidance methodology, point F
is chosen to represent the motion of the platform. The path
in Figure 2 is assumed to encounter a circular obstacle with
center at (x0, y0) = (1.2 m, 0.9 m) and radius R = 0.25 m. To
satisfy the inequality given by eq (39), the roots of the second
order polynomial are plotted and shown in Figure 6. For w
greater than approximately 32o the polynomial has two real
roots ba4(w), b

b
4(w), at 32o it has two equal roots, and below

this value, it has no roots. Inside the locus in Figure 6, the
distance criterion is not satisfied, i.e., there is a collision with
the obstacle. If one chooses b4 = 0, then the path that will
result will collide with the obstacle and the angle at which it
will collide will be approximately 42o.

As shown in Figure 6, to make sure that the resulting path
will not collide with the obstacle, one must choose a b4 in the
range (–0.08, –∞) which defines the admissible region for b4.
A specific value in this region can be selected according to
some criterion such as the minimum difference from the un-
obstructed path, or the minimum path length. Figure 7 depicts
the modified system path that corresponds to b4 = –0.15.

The resulting path avoids the obstacle although it remains
close to the initial one. Figure 7 clearly shows that, to avoid
the obstacle, the mobile system moves initially backwards,
while in the case of Figure 2, the platform moves forward. The
corresponding input trajectories are still smooth and given in
Figure 8.

5.2. Extension to Multiple Obstacles

The above method can be easily extended to the case in which
multiple obstacles exist and are enclosed in circular or ellip-
tic shapes. In this case, several inequalities of the form of
eq (39) must be satisfied, each representing a distance from
an obstacle.

In the case of N obstacles, the following inequalities for
b4 must hold:

αi4b
2
4 + βi4b4 + γi4 > 0, i = 1, . . . , N. (40)

Since αi4 > 0 for w ∈ (win, wf in), the same methodology
used for a single obstacle can be used here. Therefore, an
additional obstacle requires no more than an additional call
to a routine of algebraic nature that uses the same equations
with different obstacle coordinates and shape. The range of
admissible b4 will be possibly smaller than for one obstacle.

If one coefficient cannot lead to the calculation of an ob-
stacle free path then three alternative techniques can be em-
ployed. The simplest two include the use of intermediate
points and the addition of 360o to the initial or final orien-
tation so as to give more freedom to the planning scheme.
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Fig. 6. Admissible range for b4 in the presence of a single
obstacle.
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Fig. 7. Modified path that avoids the obstacle.

If these techniques cannot produce a path, then an additional
coefficient b5 can be used. However, in that case the computa-
tion of the admissible regions of the additional coefficients is
more complicated. The above techniques are currently under
investigation.

6. Generalization of the Method

As stated earlier, the method developed in the previous section
ensures that the front point of the platform will not collide with
some obstacle but does not take into account other platform
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Fig. 8. Input rate trajectories the path shown in Figure 7.

points and the manipulator. A simple technique to account
for these is to use a safety length, lcr , so as to make sure
that, when the selected control point does not collide, then the
whole mobile system will not collide either. This technique
will work fine when the obstacles are not cluttered compared
to the dimensions of the system.

Although such a technique is very easy to implement, it
is quite conservative. Therefore, in this section the developed
method is extended to allow elimination of collisions between
obstacles and the mobile system itself. This requires that plat-
form and manipulator vertices and edges are taken into ac-
count. The basic idea is to map these elements to the u-v-w
using the transformation described by eqs (25) and appropri-
ate collision avoidance criteria.

As an example of mapping a vertex, point R on the plat-
form is examined (see Figure 1). The (x-y-ϕ) → (u-v-w)
transformation yields

wR = wF = w (41a)

uR(w) = uF (w)+ b

2
(41b)

vR(w) = vF (w)+ l (41c)

where l is the length of the platform. Equations (41) connect
point R with point F and can be used for any other point on

the platform. Note that these equations are particularly simple
and they only require addition of the relative displacements
of point R with respect to point F , namely b/2 and l. Substi-
tuting eqs (41) into the obstacle avoidance criterion, eq (37)
or eq (38), results again in a second order polynomial in b4,
which may restrict the range of admissible values for b4.

The calculation of admissible values for b4 for platform
edges and manipulator links is considered next. Here, the re-
quirement for no collision is that no such element becomes
tangent to an obstacle. Since the manipulator desired joint
trajectories are known a priori, all manipulator link point po-
sitions are written as functions of the known joint variables
and of platform positions and orientations to be determined.
Therefore, platform edges and manipulator links are treated
similarly. As an example of an edge map, platform edge RQ
is considered (see Figure 1). Edge points are transformed ac-
cording to

u(w) = uF (w)+ d, d ∈ [−b/2, b/2] (42)

v(w) = vF (w)+ l, (43)

where d is a variable that denotes the lateral distance of each
point of the segment RQ from the midpoint of the platform.
Assuming a circular obstacle, the distance criterion that must
be satisfied to avoid collisions is
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(uF (w)+ d − u0(w))
2

+ (vF (w)+ l − v0(w))
2
> R2

(44)

where w ∈ [win, wf in] and d ∈ [−b/2, b/2]. After some
algebraic manipulations, the above inequality reduces to

h(d) = αd2 + βd + γ > 0,

d ∈ [−b/2, b/2]
(45)

where coefficients α, β, and γ are known functions of b4, w
and of the boundary conditions uin, vin, win, uf in, vf in, wf in.
Equation (45) represents the distance between the center of a
circle and any point on the infinite line, on which the line seg-
ment RQ lies. It is thus obvious that coefficient α is expected
to be positive (as shown in Appendix B) for both circular and
elliptic obstacles. Indeed, function h(d) attains its minimum
value at a point located at a lateral distance d = −β/2α on
the line along RQ. This minimum value corresponds to the
normal distance between the line and the center of the circle.
Positive α denotes the fact that there is always a part of the in-
finite line that is located outside the circle. Therefore, the goal
is to have the specific line segment RQ (d ∈ [−b/2, b/2]) lie
outside the obstacle. In other words, eq (45) must not have
any real roots for all d ∈ [−b/2, b/2], i.e.,

β2 − 4aγ < 0, for d ∈ [−b/2, b/2]. (46)

The left side of Inequality (46) is in fact a second order
polynomial in b4 whose coefficients are known functions of
w and of the boundary conditions. Selecting a value for b4

that satisfies this inequality for every w ensures a collision-
free path.

More specifically, as shown in Appendix B, the coefficient
of the second order monomial in eq (46) is always negative.
Therefore, by switching the inequality sign and the signs of
the coefficients, the procedure for finding the range of b4 that
satisfies eq (46) becomes similar to the one described in Sec-
tion 5.

The roots of the polynomial, calculated for all w, yield
the range of b4 for which the infinite line, on which the plat-
form edge lies, becomes tangent to the obstacle. To restrict
the criterion to the points on the line segment RQ only, i.e.,
for d ∈ [−b/2, b/2], the algorithm first calculates the roots
b4 of the polynomial in eq (46) for some w and then substi-
tutes them in the minimum distance expression, d = −β/2a.
This checks which point of the infinite line is tangent to the
circle. For example, if this d(b4) is computed to be between
[−b/2, b/2], then the tangency point indeed lies on the plat-
form edge (line segment RQ) and therefore the calculated root
b4 results in a tangency of RQ with the obstacle. Else, the tan-
gency point is beyond the boundaries of the edge RQ and thus
the calculated root b4 is discarded. In this way, only the range

of b4 which results in a tangency between RQ and the obsta-
cle is taken into account. Selecting a value for b4 outside this
range ensures a collision-free path.

To completely avoid mobile system collisions with all ob-
stacles, the tasks described above are completed for all plat-
form edges and manipulator links, and for every obstacle in the
proximal workspace. For the manipulator, as mentioned ear-
lier, first its joint trajectories are computed and subsequently
are incorporated in the polynomial coefficients, as constant
values for each w. In all cases, the equations involved are al-
ways of analytic second-order polynomial nature, while the
number of operations increases linearly with the number of
elements and obstacles involved in the avoidance checks.

Example 3. The mobile system and the initial and final con-
figurations of Example 2 are used in conjunction with three
obstacles, shown in Figure 9. Plotting the roots of the sec-
ond order polynomials in eq (39) for point F only results in
Figure 10.

Next, the entire mobile manipulator system is taken into
account. Manipulator joint trajectories are planned using 5th
order polynomials, whose coefficients are such that they sat-
isfy the initial and final conditions of motion, i.e., angular
position, velocity and acceleration requirements. Applying
the generalized method, a new range of admissible values for
the coefficient b4 is found and is depicted in Figure 11. More
specifically, for each obstacle, the roots of second order poly-
nomials for all platform vertices and manipulator joints, as
well as platform edges and manipulator links, are calculated
and plotted. Admissible values for b4 are those that lie outside
the roots of all the polynomials. As previously, all computa-
tions are straightforward and of algebraic nature.

Comparing Figure 11 with Figure 10, it is evident that
the acceptable region for b4 has been restricted substantially.
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Fig. 9. Distribution of multiple obstacles in the workspace.
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By selecting b4 = –0.075, the path shown in Figure 12 is
obtained and, as expected, the entire system avoids all obsta-
cles. The corresponding system input trajectories are shown
in Figure 13.

As shown in Figure 12, the resulting path is smooth with a
continuous curvature profile. Figure 13 shows that input tra-
jectories are also smooth, and require no excessive velocities,
while the mobile system starts and stops smoothly.
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Fig. 12. Modified path that avoids the three obstacles
completely.

7. Discussion and Remarks

After having presented the planning and obstacle avoidance
method, some important issues regarding its use are ad-
dressed. The first one is related to the selection of the particular
transformation, eqs (25), used for the planning and obstacle
avoidance method developed in this paper. Other transforma-
tions, derived by direct reasoning based on the kinematics of
pointG, could have been used as well. One of the simplest and
classical transformations is discussed below. It is shown that
its use introduces additional complexity especially when ob-
stacle avoidance is considered. Therefore, although one could
in principle derive an alternative transformation very easily,
this does not necessarily result in an easy to implement ob-
stacle avoidance technique.

Choosing point G results in a constraint involving two dif-
ferentials, see eq (6), and if ϕ 
= (2k + 1)π/2, division by
cosϕ yields a constraint of the form of eq (10). Then, the
following transformation can be readily obtained:

u = yG, v = − tan ϕ,w = xG,

ϕ 
= (2k + 1)π/2
(47)

and the methodology developed earlier, can result in planning
and obstacle avoidance. However, use of eq (47) results in
drawbacks that limit its effectiveness.

First, using this transformation does not yield bounded
polynomial coefficients for g(w) if the starting or ending ori-
entation is ϕ = (2k+ 1)π/2, or if the x coordinate of G does
not change (Craig 1989). To avoid these problems, the coordi-
nate system must be changed, so that the transformation given
by eq (47) holds. In addition, this method fails to change the
orientation of the platform if the initial and final location of
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Fig. 13. Input rate trajectories for the path shown in Figure 12.

G are the same. To do this, especially in the case of a car-like
system, an intermediate (via) point for G must be introduced.

Although these shortcomings can be addressed with some
additional burden, more serious problems appear when it
comes to obstacle avoidance. To avoid an obstacle, distances
from system vertices and edges must be calculated. However,
all these distances except the ones for point G include the
angle ϕ:

uP = yP = yG + f1(ϕ),

wP = xP = xG + f2(ϕ).
(48)

Since ϕ is not conserved through the transformation, distance
inequalities become very complex and nonlinear functions of
b4, with multiple solution branches. Solving for the valid range
of b4 requires use of numerical root solvers, which drastically
increase the computational burden and may fail to yield a
complete range.

In contrast to these shortcomings, the transformation given
by eqs (25) gives complete control over the platform orienta-
tion ϕ, it is valid everywhere and the polynomials f (t) and
g(w) can be defined always, except when the initial and final
orientation are the same. As noted earlier, this is handled very
easily by adding a multiple of a full turn to either the initial
or final orientation. Also, since ϕ is conserved as a chained
coordinate, and since both u and v are linear functions of

b4, then all distance criteria are second order polynomials of
b4 with coefficients that are available analytically. Therefore,
computing the valid range of coefficients b4 is much simpler
and faster than in the case where eqs (47) are used.

Another important aspect of the use of the developed
method is its behavior and its limitations with respect to the
number, shape and location of the obstacles. In all cases, the
existence of a valid range of b4 depends on the shape of the
curves in the b4-w plane. A single obstacle results in a single
curve which either consists of bounded and closed branches,
like the one that corresponds to obstacle 3 in Figure 10, or
of two branches that tend to infinity, like the ones that corre-
spond to obstacles 1 and 2 in the same figure. The first type
of curve poses no problem to planning because both branches
are contained between two values of b4 and therefore they al-
ways leave an infinite range of valid coefficients b4. The other
type of curve requires a closer examination.

Inspection of the expression for α (see eq (B1)) shows that
α = 0 only when w = win or w = wfin. Therefore, infinite
roots may appear only at the initial or the final platform orien-
tation. Computing analytically γ for w = win or w = wfin, it
is easy to see that γ is negative only in the trivial cases where
the initial or final (desired) position for the system’s point
under consideration is inside an obstacle. In those cases, the
roots of the polynomial in eq (39) are infinite and of different
signs, hence no valid range for b4 exists, as expected. In all
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other cases, infinite roots, if they appear, are all of the same
sign. This being the case, then even if infinite roots appear
either at w = win or at w = wfin, a valid range for b4 exists.
If they appear at both w = win and w = wfin and are all of
the same sign, again a valid range occurs. Therefore, the only
case in which no valid range may appear is when the infinite
roots at w = win and w = wfin are of different signs and the
invalid regions overlap.

Although it is difficult to analytically find when this may
occur, extensive simulations and reasoning showed that this
may happen when the system is very close to an obstacle
and the initial motion, given the required evolution of the
orientation ϕ = w is such that drives the system towards the
obstacle, whatever the value of the b4 is. By similar reasoning,
the same can occur when one considers the destination point
and the inverse motion to the initial location. Such cases were
indeed identified. However, in all cases, the mere addition of
a full turn, either at the initial orientation or at the final one,
did produce a valid range for b4. The relatively large margin
in ϕ = w allows for driving of the system to its destination
without difficulty. Therefore, we may conclude that in the case
of a single obstacle, the developed methodology always has
a solution.

The observations derived from a single object can be ex-
trapolated to the case of many obstacles. Each obstacle con-
tributes an additional curve that may restrict the range of valid
coefficients. As mentioned earlier, if no valid b4 can be com-
puted, then one may use via points or additional platform
turns. These techniques increase the range of possible vehicle
maneuvers and therefore tend to yield viable paths.

It should be noted here that it is not possible to exclude
the possibility that the method will not find a path in a highly
cluttered environment with confined passages, even if such a
path exists. However, it has the advantage of quickly yield-
ing a path for many environments with low obstacle density.
Indeed, a very important property of the proposed method
is that the number of operations increases linearly with the
number of elements and obstacles involved in the avoidance
checks. Treating an additional obstacle requires knowledge of
its geometry and location only. Other than that, all equations
remain the same and are analytically known and of algebraic
nature; an additional obstacle requires an additional call to
a fast algebraic routine. This is clearly an advantage of the
method against heavy cell-decomposition approaches where
the computational burden is high, and can be used in cases
where a fast planning solution under low computational bur-
den is a requirement.

8. Conclusions

In this paper, a novel planning methodology has been devel-
oped for nonholonomic mobile platforms with manipulators
in the presence of obstacles that uses smooth and continuous

functions such as polynomials. The method yields admissi-
ble input trajectories that drive both the manipulator and the
platform to a final configuration and is based on mapping the
nonholonomic constraint to a space where it can be satisfied
trivially. Because it requires algebraic manipulations and a
single differentiation, implementation of the method is com-
putationally inexpensive, while it allows direct control over
the platform orientation. The resulting paths and trajectories
are smooth due to the nature of the map and to the use of
smooth polynomials.

It was shown that the developed transformation also maps
Cartesian space obstacles to families of transformed ones. Ob-
stacle avoidance for a system element requires that the path in
the transformed space does not collide with the obstacle’s im-
age. This was achieved by increasing the order of the polyno-
mials that were used in planning. Enclosing general obstacles
in simple shapes such as ellipses or circles facilitates com-
putation of the additional parameters required. The method
allows for checking avoidance for all vertices and edges of
the mobile system and hence collisions of the system with
obstacles can be avoided. Due to its inherent algebraic nature,
the scheme proposed here significantly reduces the number of
computations required to solve the problem with the tradeoff
of a possible miss of a solution in a highly-cluttered environ-
ment. Illustrative examples demonstrated the implementation
of the methodology in obstacle-free and obstructed spaces.

Appendix A

In this Appendix, it is shown that the equations of the trans-
formed obstacles are analytic and known functions of obstacle
parameters and the orientation ϕ. This facilitates greatly all
calculations that are of algebraic nature.

Consider an ellipse with center at (x0, y0) and length of
principal axes Ra and Rb, rotated by an angle ψ with respect
to the x axis. Its parametric equations are

xb(ξ) = x0 + Ra cos ξ cosψ − Rb sin ξ sinψ (A1)

yb(ξ) = y0 + Ra cos ξ sinψ + Rb sin ξ cosψ, (A2)

where ξ ∈ [0, 2π ]. Substituting eqs (A1) and (A2) into
eqs (25) yields

ub(ξ) = u0 + Ra cos ξ sin(ϕ − ψ)

− Rb sin ξ cos(ϕ − ψ) (A3)

vb(ξ) = v0 − Ra cos ξ cos(ϕ − ψ)

− Rb sin ξ sin(ϕ − ψ). (A4)

Equations (A3) and (A4) describe an ellipse with respect
to axes (u′, v′) = (u,−v)with center at (u0, v0) = (x0 sin ϕ−
y0 cosϕ, lG − x0 cosϕ− y0 sin ϕ), length of principal axes Ra

and Rb, which is rotated by ψ + (π/2 − ϕ). If we let ϕ take
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values from [ϕin, ϕf in] then a family of ellipses is obtained.
Each of the ellipses is at a different plane ϕ = const. and has
a different orientation while their centers are points on a three
dimensional helicoid given by

η(ϕ) = (u(ϕ), v(ϕ),w(ϕ))

= (x0 sin ϕ − y0 cosϕ, lG − x0 cosϕ − y0 sin ϕ, ϕ).
(A5)

The case of a circular obstacle can be derived from an el-
liptic obstacle, using Ra = Rb = R. In this case, ψ becomes
irrelevant. The same properties hold and hence a circular ob-
stacle is transformed to a helicoidal tube described by

σ(ϕ, ξ) = (x0 sin ϕ − y0 cosϕ + R cos ξ, lG

− x0 cosϕ − y0 sin ϕ + R sin ξ, ϕ), (A6)

where ϕ ∈ [ϕin, ϕf in] and ξ ∈ [0, 2π ], while the centers of the
circles form a three dimensional helicoid, given by eq (A5).

Appendix B

If α and α′ denote the coefficients of the second order polyno-
mials representing the distance from an obstacle for a circular
and an elliptic obstacle respectively, see eq (39), then

α = (
w − wfin

)4
(w − win)

4 + 4
(
w − wfin

)2

(w − win)
2
(−2w + wfin + win

)2
(B1)

α′ = (
w − wfin

)2
(w − win)

2

× [
R2

b

((
4w − 2

(
wfin − win

))
cos(ψ − w)

+ (
w − wfin

)
(w − win) sin(ψ − w)

)2

+ R2
a

((
w − wfin

)
(w − win) cos(ψ − w)

+ 2
(−2w + wfin + win

)
sin(ψ − w)

)2
]
. (B2)

As can be easily seen, bothα andα′ are non-negative numbers.
As far as eq (46) is concerned, the coefficients are

α = 1 (B3)

α′ = R2
a

cos2(ψ − w)+ R2
b

sin2
(ψ − w). (B4)

Finally, the coefficient of the second order monomial in
eq (46) is

α = −4c2
v
. (B5)

The same coefficient for an elliptic obstacle is

α′ = −4c2
v
R2

a
R2

b
, (B6)

where cv is a function of the boundary conditions. It can be
easily seen that both α and α′ are negative numbers.
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