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Abstract. The Multiple Impedance Control (MIC) is a
new algorithm which enforces a designated impedance on
both a manipulated object, and all cooperating manipula-
tors. In this paper, the MIC is applied to a space robotic
system in which robotic arms, mounted on a free-flying-
base, manipulate an object. The general formulation of the
MIC is extended to include the dynamic coupling between
the arms and the base. It is shown that under the MIC law,
all participating manipulators, the free-flyer base, and the
manipulated object exhibit the same designated impedance
behavior. This guarantees good tracking of system
manipulators and the object, in performing a manipulation
task. A system of two cooperating two-link manipulators
is simulated, in which a Remote Centre Compliance is
attached to the second end-effector. The object is grabbed
with a pivoted grasp condition, i.e. both the translational
and rotational motions of the object have to be controlled
by end-effector forces. As simulation results show, the re-
sponse of the MIC algorithm is smooth, even in the occur-
rence of an impact due to collision with an obstacle.

I. Introduction.

Free-flying space manipulator systems, in which robotic
manipulators are mounted on a free-flying spacecraft, are
envisioned for assembling, maintenance, repair, and
contingency operations in space. Early research work in
this area focused on the dynamics and motion control of a
single manipulator in free-floating mode [1]-[4], i.e. an
end-effector moves toward a target in the inertial or
spacecraft body-fixed frame with no significant force
interactions between the system and the environment.
Dynamics and motion control of multiple manipulators in
both free-floating and free-flying modes have been studied
by various researchers recently [5]-[7]. However,
coordination and control of the spacecraft and its multiple
manipulators during capture or manipulation of objects has

not attracted adequate attention. These tasks require
employing force or impedance control strategies, so that
interaction forces and system response during contact are
controlled.

As an extension of Hogan’s impedance control concept
[8], the Object Impedance Control (OIC) has been
developed for multiple robotic arms manipulating a
common object [9]. A combination of feedforward and
feedback control is employed to make the object behave
like a reference impedance. However, it has been realized
that applying the OIC to manipulation of a flexible object
may lead to instability [10]. Based on the analysis of a
representative system, it was suggested that in order to
solve the instability problem, one should either increase
the desired mass parameters or filter and lower the
frequency content of the estimated contact force.

In a recent study, a new algorithm named as Multiple
Impedance Control (MIC) was developed which enforces a
designated impedance of both manipulator end-points, and
of a manipulated object [11]. Physically speaking, this
means that all participating end-effectors and the
manipulated object are controlled to behave like a
designated impedance in reaction to any disturbing external
force on the object. This results in good tracking of the
various manipulators of the system and the object. The
MIC algorithm is able to perform both free motions and
contact tasks without switching between control modes. In
addition, object inertia effects are compensated for in the
impedance law, and the end-effector(s) tracking errors are
controlled.

In this paper, the new MIC algorithm is applied to
space robotic systems in which manipulators are mounted
on a free-flying base. The general formulation is adapted to
consider the dynamic coupling between the arms and the
base while the manipulated object may include an internal
source of angular momentum. Next, it is shown by error
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analysis that under the MIC law all participating
manipulators, the free-flyer base, and the manipulated
object exhibit the same designated impedance behavior.
Finally, a system of two cooperating two-link manipulators
is simulated, and the obtained results are discussed.

II. The MIC Law for Space Free-Flyers.

When applied to a terrestrial system, the MIC strategy
enforces the same impedance relationship at the manipulator
end-effector level, and at the manipulated object level. In
space, since the cooperating robotic arms are connected
through a free-flying base, the MIC algorithm is applied so
that all participating manipulators, the spacecraft, and the
manipulated object exhibit the same impedance behavior,
as implied by "multiple" in naming the MIC. This strategy
allows coordinated motion/force control of the space free-
flying robot for performing a manipulation task. In this
section, following a brief review on space free-flyers and
object dynamics, the MIC law for space applications is
presented.

(a) System Dynamics Modelling. The vector of
generalized coordinates for a space free-flyer with multiple
manipulators, shown in Figure 1, can be chosen as

        q R= ( , , )C
T T T T

0 0dd qq (1)

where RC0
 describes the inertial position of the spacecraft

center of mass (CM),         dd0  is a set of Euler angles that
describes the orientation of the spacecraft, and         qq =

          
qq qq qq( ) ( ) ( ), , ,1 2T T n T T

L( )  is a Ḱ 1 column vector which
contains all joint angle vectors. The         qq

( )m  is an Nm ´1
column vector which contains the joint angles of the m-th
manipulator, and K N=

=
å m

m

n

1
. Assuming that the system

consists of rigid elements and applying the general
Lagrangian formulation, the equations of motion can be
obtained as [12]-[13]
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Fig. 1: A space free-flyer with n manipulators.

        H q C Q( , ) ˙̇ ( , ˙ , , ˙ ) ( , )dd qq dd dd qq qq dd qq0 0 0 0+ = (2)

where H  is an Ń N  positive definite mass matrix of the
system (N = K + 6  is the total system degree of freedom),
C  is an Ń 1 vector which contains all the nonlinear
velocity terms (in a microgravity environment), and Q is
the Ń 1 vector of generalized forces.

The vector of output (controlled) variables is defined
as

          
˜ [ , , , , , , ]( ) ( ) ( ) ( )x R x x= C

T T
E

T
E

T
E
n T

E
n T T

0 0
1 1dd dd ddL (3)

where xE
m( )  describes the m-th end-effector inertial

position, and         ddE
m( )  is a set of Euler angles which describes

the m-th end-effector orientation. It is assumed that all
manipulators have six DOF, i.e. K = 6n  (n is the number
of participating manipulators), and that they all participate
in manipulating the object. The vector of output speeds ˜̇x
is obtained from the time derivative of the generalized
coordinates (̇q ), using a square Jacobian JC

˜̇ ˙x J q= C (4)

The equations of motion can now be written in the
task space, i.e. in terms of the output coordinates x̃ , as

˜ ( ) ˜̇̇ ˜ ( , ˙ ) ˜H q x C q q Q+ = (5a)
where

H̃ J H J= - -
C

T
C

1 ˜ ˜ ˙ ˙C J C H J q= --
C

T
C Q̃ J Q= -

C
T (5b)

To develop the MIC law, the vector of generalized
forces in the task space, Q̃ , is written as

˜ ˜ ˜ ˜ ˜ ˜Q Q Q Q Q Q= + = + +app react m f react (6)

where Q̃react  is the reaction force on the end-effectors, and
Q̃app is the applied controlling force consisting of the force
which corresponds to the motion of the system, Q̃m , and
of the required force to be applied on the manipulated
object by the end-effectors, Q̃ f . These terms will be
detailed after describing object dynamics.

(b) Object Dynamics. The equations of motion
for the object can be written based on rigid-body dynamics.
For a flexible object an appropriate dynamics model can be
simply substituted for the following model. Also, the
object may include an internal angular momentum source,
see Figure 2. Thus, the object dynamics can be expressed
as

Mx F F F GF˙̇ + = + +w c o e (7)

where M  is the mass matrix,         x x= ( , )G
T

obj
T Tdd  describes the

position of the object center of mass xG  and the object
orientation described by Euler angles         ddobj , Fw  is a vector
of nonlinear velocity terms, Fc  describes the contact
forces/moments, Fo  describes external forces/torques (other
than contact and end-effector ones), Fe  is a 6n´1 vector
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which contains all end-effector forces/torques applied on
the object (Fe

i( )  is a 6́ 1 vector corresponding to the i-th
end-effector), and the matrix G is referred to as the grasp
matrix, [11]. Next, using the system dynamics model and
the object dynamics equations, the MIC law for space
applications is developed.

(c) The Control Law. A desired impedance law
for the object motion can be chosen as

M e k e k e F 0des d p c
˙̇ ˙+ + + = (8)

where e x x= -( )des  describes the object tracking error, k p

and kd  are control gain matrices, and M des is the object
desired mass matrix. Then, by direct comparison of Eq. (8)
and Eq. (7), it can be seen that the desired impedance
behavior can be obtained if

GF MM M x k e k e F

F F F
e des des des d p c

c o

req
= + + +( ) +

- +( )
-1 ˙̇ ˙

w

(9)

provided that the matrix Sobj  which relates the object
angular velocity,         ww obj , to the Euler rates,         ḋdobj , as [14]

        ww ddobj obj obj= S ˙ (10)

is not singular. Clearly, this depends on the Euler angles
definition. Therefore, applying the required end-effector
forces/torques on the object, Fereq

, results in the targeted
impedance relationship as described in Eq. (8). Eq. (9) can
be solved to obtain a minimum norm solution, resulting in

F G MM M x k e k e F

F F F

e des des des d p c

c o

req
= + + +( ) +

- +( )
-#{ ˙̇ ˙ ˆ

ˆ }

1

w

(11)

where G#  is the pseudoinverse of the grasp matrix, a full-
rank matrix (provided that Sobj  is not singular) defined as

G W G GW G# = ( )- - -1 1 1T T (12)

weighted by a task weighting matrix W , so that linear and
angular motions or their components are weighted
appropriately. Note that ̂Fc  is the estimated value of the
contact force Fc  which can be computed as [11]

ˆ ˆ̇̇F Mx F F GFc o e= + - -w (13)
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Fig. 2: An object with an internal angular
momentum source, manipulated by a
multiple arm free-flying robot.
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D D
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where Dt  is the time step used in the estimation procedure.
In a noisy environment higher order finite difference
estimates may be needed. Note that due to practical reasons
(i.e. time requirement for measurements and corresponding
calculations), Dt  can not be infinitesimally close to zero.
At sufficiently high sampling rates, this does not introduce
a significant error, even during contact.

If, based on the grasp condition, it is required to apply
additional internal forces and moments on the object, Fint,
then, Eq. (12) can be modified to

F G MM M x k e k e F

F F F 1 G G F

e des des des d p c

c o

req
= + + +( ) +

- +( ) + -( )
-#

#
int

{ ˙̇ ˙ ˆ

ˆ }

1

w

(15)

where 1 is a 6n´6n identity matrix. It can be easily shown
that since the added term is in the null space of the grasp
matrix G , F int does not affect the object motion.
However, in space operations it is expected that a targeted
object will be grabbed with a special tool or grippers. In
such cases, it is expected that internal forces and moments
will be minimal and hence, Fint can be chosen equal to
zero.

Based on the above, the controlled force Q̃ f  in Eq. (6)
required to be applied on the manipulated object by the
end-effectors is

Q̃
0

Ff
ereq

=
ì
í
î

ü
ý
þ

´6 1
(16)

and, the reaction force on the end-effectors is

Q̃
0

Freact
e

=
-

ì
í
î

ü
ý
þ

´6 1 (17a)

where
F G Mx F F Fe c o= + - +[ ]# ˙̇ ( )w (17b)

Next, to complete the computation of the controlling
force Q̃  as described in Eq. (6), an expression for Q̃m

must be obtained. To impose the same impedance law on
the spacecraft motion, manipulators, and the object, the
impedance law for the space free-flyer is written as

˜ ˜̇̇ ˜ ˜̇ ˜ ˜M e k e k e U F 0des d p f cc
+ + + = ´N 1 (18)

where ˜ ˜ ˜e x x= -des  is the tracking error in the system
controlled variables as opposed to e which describes the
object tracking error, 

  
U 1 1f

T

c
= [ ]´ ´6 6 6 6L  is an N 6´

matrix, and M̃des , k̃d , and k̃ p  are N N´  block-diagonal
matrices defined based on Mdes, k p , and kd , respectively.
The desired trajectory for the system controlled variables,
x̃des , can be defined based on the desired trajectory for the
object motion, xdes , and the grasp condition. Then, similar
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to the derivation for ̃Q f  and assuming that the system
mass and geometric parameters are known, Q̃m  can be
obtained as

˜ ˜ ˜ ˜ ˜̇̇ ˜ ˜̇ ˜ ˜ ˆ ˜Q H M M x k e k e U F Cm des des des d p f cc
= + + +[ ] +-1 (19)

where M̃des
-1  is the block-inverse of ̃Mdes .

III. Error Analysis.

Substituting Eqs. (19), (17a), and (16) into Eq. (6), and
the result into Eq. (5a) yields

˜ ˜ ˜ ˜̇̇ ˜ ˜̇ ˜ ˜ ˜̇̇

˙̇ ˙ ˙̇#

H M M x k e k e U F x

0

G M M M x k e k e F x 0

des des des d p f c

des des des d p c

c

-

´
-

+ + +( ) -( ) +

+ + +( ) -( )
ì
í
ï

îï

ü
ý
ï

þï
=

1

6 1
1

(20)

where it is assumed that the exact value of the contact force
is available, and that the mass and geometric properties for
the manipulated object, and the space free-flying
manipulator system are known. Since Eq. (20) must hold
for any M and any ̃H , it is concluded that

˜ ˜ ˜ ˜̇̇ ˜ ˜̇ ˜ ˜ ˜̇̇

˙̇ ˙ ˙̇#

H M M x k e k e U F x 0

G M M M x k e k e F x 0

des des des d p f c

des des des d p c

c

-

-

+ + +( ) -( ) =

+ + +( ) -( ) =

1

1
(21)

Since G#  is of full-rank, and M and H̃  are positive
definite inertia matrices, Eq. (21) results in

˜ ˜̇̇ ˜ ˜̇ ˜ ˜

˙̇ ˙

M e k e k e U F 0

M e k e k e F 0

des d p f c

des d p c

c
+ + + =

+ + + =
(22)

Considering the definitions for ̃Mdes , k̃d , k̃ p , and
U fc

, Eq. (22) means that all participating manipulators,
the free-flyer-base, and the manipulated object exhibit the
same impedance behavior. This guarantees an accordant
motion of the various subsystems during object
manipulation tasks.

IV. Simulation Results.

Task Definition. Figure 3 shows a robotic system in
planar motion, performing a cooperative manipulation task,
i.e. moving an object with two manipulators according to
predefined trajectories. It is assumed that the position and
attitude of the system base is controlled and does not
move. One of the two end-effectors is equipped with a
Remote Centre Compliance (RCC). The task is to move an
object based on a given trajectory which for illustration
purposes passes through an obstacle. The object has to
come to a smooth stop at the obstacle. Initially, the object
has been grabbed with a pivoted grasp condition, i.e. no
torque can be exerted on the object by the two end-
effectors. Therefore, both the translational and rotational
motions of the object are controlled by end-effector forces.

Simulation Results and Discussions. For the
system depicted in Figure 3, the geometric parameters,
mass properties, and the maximum available actuator
torques are displayed in Table 1. The origin of the inertial
frame is considered to be located at joint 1 of the first
manipulator, and joint 1 of the second manipulator is at
(1.2 m, 0.0)T . The object and controller parameters are

m kg I kg m mobj G e e= = =- = -( )3 0 0 5 0 3 0 02 0 1 0 2. , . , . , .( ) ( )r r

M k kdes p ddiag diag diag= = =( , ) , ( , ), ( , )10 10 100 100 300 300

The initial conditions are

( , , ˙ , ˙ , , , ˙ , ˙ , ˙ )

( . , . , , , . , . , , , , ) ( , / )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )q q q q q q q q

rad rad s

T

T
1
1

2
1

1
1

2
1

1
2

2
2

1
2

2
2

2 7 2 7 0 0 1 0 2 5 0 0 0 0

q q, =
-

It is assumed that the RCC unit is initially free of tension
or compression, where its stiffness and damping properties
are chosen as ke diag kg= ´( , ) / sec2 2 104 2 ,  and
be diag= ( ,5 5 102) / sec´ kg , see [15].

The desired trajectory for the object center of mass,
expressed in the inertial frame, is

x e m y mG des
t

G des des= - = =-1 0 5 0, . , q q

Table 1: The system Parameters.

Mani-
pulator

i-th
body

i ri
(m)

(m)
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(m)
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(m)

(kg)

Ii
(m)

(kgm2)

ti
(m)

(N-m)

1 1 0,0.50 0,-0.50 10.0 1.50 100.0

1 2 0,0.50 0,-0.50 6.0 0.80 100.0

2 1 0,0.50 0,-0.50 10.0 1.50 100.0

2 2 0,0.50 0,-0.50 8.0 0.80 100.0
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Fig. 3: Two robotic arms mounted on a
spacecraft, performing a cooperative
manipulation task on a plane.

where   q0  describes the object initial orientation. The
obstacle is at x mw = 1 2. , so it is expected that the object
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will come in contact at its right side, i.e. at x rG e+ ( )2 . It is
assumed that no torque is developed at the contact surface
(i.e. a point contact occurs), therefore nc  is equal to the
moment of fc . Also, there is no other external force
applied on the object, i.e. f 0 n 0o o= =, . The contact force
is estimated based on Eqs. (13, 14b), where the real
stiffness of the obstacle is k e N mw = 1 5 / . The time step,
Dt , in the estimation procedure (Eq. (14)) is 10 msec.
Given the above information, the obtained simulation
results are presented in Figure 4.

As shown in Figures 4a,b the y-component of the error
in the object position, starting from some initial value,
converges to zero smoothly. This is due to the fact that
contact occurs along the x-direction, and so the contact
force does not affect the object’s motion in the y-direction.
The x-component of the error, decreases at some rate until
contact occurs at t » 1 0.  sec. This rate changes after
contact, because the error dynamics depend on the
dynamics of the environment, according to the impedance
law. Then, this error smoothly converges to the distance
between the final desired x-position and the obstacle x-
position.

The object orientation error, starting from zero, grows
to some amount and then converges to zero, Figure 4a. The
initial growth is due to the fact that the first end-effector
(i.e. without the RCC unit) responds faster than the second
one which is equipped with the RCC. Therefore, the
difference between the two end-effector forces produces
some moments which results in an undesirable rotation of
the object. However, after a short transient period the
difference vanishes and so does the object orientation error.

Actuator saturation limits are reached at start-up
(because of large initial errors and error-rates), and at the
time of contact, Figures 4c,d. Joint torques for the first
manipulator converge to a steady state soon after contact
(about half of a second), while it takes longer for those of
the second manipulator. Again, this is due to the existence
of the RCC.

The contact with the obstacle occurs along the x-
direction when the right end of the object goes beyond xw.
Therefore, fcy

 remains equal to zero before and after
contact, while fcx

 appears whenever the object is in contact
with the obstacle, Figure 4e. As the impact energy is
dissipated, fcx

 converges to a constant value. According to
the imposed impedance law, Eq. (8), for diagonal gain
matrices this constant force has to be equal to
- = - =k ep x 100 0 1( . )  -10 N , which is verified from the
response results. Figure 4f shows the difference between
the real value of the contact force, and the estimated one
used by the controller. As can be seen, the difference is

almost zero except during a very short period following
impact. Even then, the difference is quite small (about 10%
of the real value). After this period, the acceleration profiles
become smoother and the difference between the real and
estimated values of the contact force becomes zero. Note
that before the contact, the slight difference between the
two is due to the approximation of object acceleration,
based on calculation of Eq. (14).
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Fig. 4: Simulation results, (a) Object tracking

errors, (b) Velocity errors, (c) Manipu-
lator 1 joint torques, (d) Manipulator 2
joint torques, (e) Contact force, Fc

(real value), (f) Difference between the
real and estimated values of contact
force.

A comparative analysis between existing control
strategies reveals that use of a standard impedance law does
not provide compensation for the object's inertia forces and
yields unacceptable results when the object is massive, or
when it experiences large accelerations [11]. Also, the OIC
which implements the impedance law at the object level, is
basically formulated for a system with rigid elements, and
does not yield a good tracking in the presence of system
flexibility. The more flexible the object is, the worse the
performance of the OIC will be. On the other hand, as
shown by simulation, performance of the MIC algorithm
applied to a cooperative manipulation task is excellent,
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even in the presence of flexibility, and during impact with
an obstacle.

V. Conclusions.

In this paper, the new Multiple Impedance Control (MIC)
was developed and applied to a space robotic system. The
MIC enforces a designated impedance on cooperating
manipulators and on the manipulated object, which results
in a harmonious motion of various subsystems. Similar to
the standard impedance control, one of the benefits of this
algorithm is the ability to perform both free motions and
contact tasks without switching the control modes. In
addition, an object's inertia effects are compensated for, in
the impedance law, and at the same time the end-effector(s)
tracking errors are controlled. To consider the dynamic
coupling between the arms and the base in space, the
general MIC formulation was expanded. By error analysis
it was shown that, under the MIC law, all participating
manipulators, the free-flyer base, and the manipulated
object exhibit the same designated impedance behavior;
resulting in an adjusted tracking of various manipulators of
the system together with the object. It was shown by
simulation that even in the presence of flexibility and
impact forces, the MIC yields a smooth and stable
performance.

VI. Acknowledgments.

The support of this work by the Natural Sciences and
Engineering Council of Canada (NSERC) is
acknowledged. We would also like to acknowledge support
of the first author from the Iran Ministry of Higher
Education.

References

[1] Vafa, Z. and Dubowsky, S., “On The Dynamics of
Manipulators in Space Using The Virtual
Manipulator Approach,” Proc. of IEEE Int. Conf. on
Robotics and Automation, April 1987, pp. 579-585.

[2] Umetani, Y. and Yoshida, K., “Resolved Motion
Rate Control of Space Manipulators with
Generalized Jacobian Matrix,” IEEE Transactions on
Robotics and Automation, Vol. 5, No. 3, June
1989, pp. 303-314.

[3] Alexander, H. and Cannon, R., “An Extended
Operational-Space Control Algorithm for Satellite
Manipulators,” The Journal of the Astronautical
Sciences, Vol. 38, No. 4, October-December 1990,
pp. 473-486.

[4] Papadopoulos, E. and Dubowsky, S., “On The
Nature of Control Algorithms for Free-Floating

Space Manipulators,” IEEE Transactions on
Robotics and Automation, Vol. 7, No. 6, December
1991a, pp. 750-758.

[5] Yoshida, K., Kurazume, R., and Umetani, Y.,
“Dual Arm Coordination in Space Free-Flying
Robot,” Proc. of IEEE Int. Conf. on Robotics and
Automation, April 1991, pp. 2516-2521.

[6] Dubowsky, S. and Papadopoulos, E., “The
Dynamics and Control of Space Robotic Systems,”
IEEE Transactions on Robotics and Automation,
Vol. 9, No. 5, October 1993, pp. 531-543.

[7] Papadopoulos, E. and Moosavian, S. Ali A., "A
Comparison of Motion Control Algorithms for
Space Free-flyers," Proc. of the 5th Int. Conf. on
Adaptive Structures, Sendai, Japan, December 5-7,
1994c.

[8] Hogan, N., “Impedance Control: An Approach to
Manipulation -A Three Part Paper,” ASME Journal
of Dynamic Systems, Measurement, and Control,
Vol. 107, March 1985, pp. 1-24.

[9] Schneider, S. A. and Cannon, R. H., “Object
Impedance Control for Cooperative Manipulation:
Theory and Experimental Results,” IEEE
Transactions on Robotics and Automation, Vol. 8,
No. 3, June 1992, pp. 383-394.

[10] Meer, D. W. and Rock, S. M., “Coupled-System
Stability of Flexible-Object Impedance Control,” in
Proc. of the IEEE Int. Conf. on Robotics and
Automation, Nagoya, Japan, May 1995, pp. 1839-
1845.

[11] Moosavian, S. Ali A., "Dynamics and Control of
Free-Flying Manipulators Capturing Space Objects,"
Ph.D. thesis, McGill University, Montreal, Canada,
June 1996.

[12] Papadopoulos, E. and Moosavian, S. Ali A.,
“Dynamics & Control of Multi-arm Space Robots
During Chase & Capture Operations,” Proc. Int.
Conf. on Intelligent Robots and Systems (IROS
‘94), Munich, Germany, Sept. 12-16, 1994a.

[13] Papadopoulos, E. and Moosavian, S. Ali A.,
“Dynamics & Control of Space Free-Flyers with
Multiple Arms,” Journal of Advanced Robotics,
Vol. 9, No. 6, 1995, pp. 603-624.

[14] Meirovitch, L., Methods of Analytical Dynamics,
McGraw-Hill, 1970.

[15] De Fazio, T. L., Seltzer, D. S., and Whitney, D. E.,
“The Instrumented Remote Centre Compliance,”
Journal of The Industrial Robot, Vol. 11, No. 4,
December 1984, pp. 238-242.


