
  

  

Abstract— This paper studies the attitude dynamics and the 

control of quadruped robots using tail-like appendages during 

the flight phases of high speed locomotion. Inspiration and data 

are first obtained from cheetah’s fast galloping techniques. A 

two-body template is then used to simply describe the dynamics 

of a large body whose attitude is controlled by a rotating 

appendage. The equations of motion for a tail and a reaction 

wheel are given, while by employing cyclic coordinates, all 

possible reductions are performed to finally lead to the design 

of model-based controllers. A main contribution lies on the 

thorough discussion on the holonomy of the system, which only 

depends on the system’s geometry and the initial angular 

momentum. A comparison between a reaction wheel and a tail 

is also carried out, while basic steps and formulas are proposed 

for selecting the key parameters concerning the design of such 

systems. Finally, simulation results are presented in order to 

validate the methods proposed herein. 

I. INTRODUCTION 

Quadruped robots are highly underactuated machines, 
while most of their tasks, such as high speed galloping, 
jumping over obstacles, or gait transitions, require precise 
control of their attitude. Although much research has been 
conducted concerning the control of legs of different 
morphologies, attitude control of the body is yet poorly 
investigated. So far, attitude control is mostly achieved 
indirectly through the motion of the legs, a technique that 
assigns more control tasks to the legs forcing them to trade-
offs that may lead to low performance. To better mitigate 
this challenge, dedicated appendages with large moment of 
inertia (MoI) can be used. 

Once again, ideas can be derived from biology; one 
quickly thinks of animal tails. The impressively rich 
repertoire of the mammalian tail’s functions has been well 
reviewed in [1]. As discussed in detail, it is a multifunctional 
appendage that is important in swimming, crawling, running, 
digging, climbing, gliding, and flying, while it is also used 
as a prop to rest, a weapon, a protective barrier, or even a 
mechanism for thermoregulation. Interestingly, it has been 
reported that the portion of the brain of the spider monkey 
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responsible for control of the tail is even larger than that for 
the control of the hind limb. 

Regarding balance, the tail may assume the functions of 
counter-balance, prop or rudder. Many of the quadruped 
mammals have long tails which aid in balance and 
maneuverability at high speeds. Kangaroo rats use their long 
tails for righting and turning in midair, while black rats are 
able to enter a building by balancing along a 2 mm wire. 
Studying hopping by kangaroos, we observe the two legs 
moving in phase tending to make the rest of the body pitch. 
However, as reported in [2], appropriate tail movements 
reduce this effect. To sum up, for most legged animals, tail 
movements are effective for adjustments to unexpected 
perturbations, when the legs are otherwise occupied. 

In [3] a general conclusion can be derived when studying 
dog’s locomotion. It is reported that without a mechanism 
for balance, any step involving a net fore-aft acceleration 
also involves a nose-up or nose-down pitching of the body. 
This mechanism can be a lizard’s tail, a cheetah’s torso or 
even a human’s arms. A cheetah though may not rely on its 
tail to be the fastest animal on earth, but a human strongly 
relies on his arms to run faster and more efficiently, [4]. In 
fact, humans can also run with the hands on their pockets, 
but by swinging them they better regulate their gait and 
stabilize their motion. 

Although numerous legged robots have been designed, 
only a minority of them includes appendages for angular 
momentum management, such as tails or reaction wheels. 
The first legged robots that used a tail were the Uniroo, [5], 
and the TITRUS-II, [6]. In [7] a bio-inspired robot was 
developed to investigate the effectiveness of a tail in 3D 
attitude control, while in [8] Tailbot and XRL used a tail for 
self-righting. TAYLRoACH was able to make rapid precise 
turns, [9], and FlipBot was able to perform a 360ο roll 
rotation in under a second using its lizard-inspired tail, [10]. 
A tail was used in a planar hopping robot to inject energy in 
the leg spring, [11], while a tail-like appendage was used to 
improve stability of a quadruped robot, [12]. Furthermore, 
the biped robot Zappa was able to walk with only one 
actuator moving its tail, [13], and the climbing robot ROCR 
used a tail to propel itself upward, [14].  

A number of studies have also dealt with attitude control 
under conservation of angular momentum, and methods that 
can lead a mechanism to a desired final configuration from 
an initial given one have been developed, [15-18]. However, 
in literature, only a couple of studies include comparisons of 
reaction wheels and tails, [19, 20]. Although tails are mostly 
used in legged locomotion, the topic remains open, since 
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there are also several robots using reaction wheels, [21-23], 
including one of the fastest legged robots ever built, [24]. 

In this work, we present an analysis on the attitude 
dynamics and the pitch control of quadruped robots using 
dedicated tail-like appendages. First, useful data are obtained 
from cheetah’s fast galloping techniques. Second, a simple 
planar template of two coupled bodies is introduced in order 
to perform the analysis on the simplest dynamics possible, 
and to go into a thorough discussion about the system’s 
holonomy, which is one of the main contributions of this 
paper. Then, after all possible reductions are performed on 
the dynamics, model-based controllers are designed, and key 
steps and formulas are proposed concerning the design of 
robots that use reaction wheels and tails. Simulations are 
carried out regarding robot maneuvers using a reaction 
wheel and a tail, and useful conclusions are derived by 
comparing the two appendages. 

II. OBSERVATIONS FROM NATURE  

One can make several useful observations trying to unveil 
the secrets behind the incredible performance of the fastest 
animal on earth, the cheetah. Snapshots from the video in 
[25] are presented in Fig. 1, to help the analysis. Obviously, 
attitude control of the body is an important aspect of the 
rotary gallop gait that the cheetah uses to reach its full speed. 
This is an asymmetrical gait, where the feet fall in a circular 
sequence around the body, and includes two flight phases: a 
gathered one, where the torso is flexed and the hind legs pass 
in front of the fore legs, and an extended one, where the 
torso is extended and all legs are stretched away from the 
body, see Fig. 1. It is yet a fact that the cheetah does not rely 
mainly on its tail to completely control its pitch angle, but 
rather it uses it for fine adjustments of its attitude. However, 
trying to extract indicative values for later use, it is useful to 
study the attitude of the cheetah’s body during a stride. 

 

 
Figure 1.  Snapshots from the video in [25], showing a cheetah galloping. 

To this end, putting aside the complex motion of the torso 
and focusing on the line connecting the fore and the hind 
hip, we make a first estimation of how the cheetah manages 
its body angular momentum in order to best position its legs 
in every touchdown. We notice a cyclic change of positive 
and negative angular momentum; during the extended flight 
phase, after hind legs push the ground, the body gets positive 
initial angular momentum, while in the gathered flight phase, 
after fore legs push the ground the body gets negative initial 
angular momentum. The body pitching along with the 

duration of the two phases are calculated and listed in Table 
I. These observations provide indicative values for the 
analysis presented herein. 

TABLE I.  CHEETAH’S LOCOMOTION DATA 

Time (s) Body Pitch Angle (Degrees) Phase 

0.48 4.9 Extended Flight Phase 

0.5 2.5 Δt = 0.08 s 

0.52 -0.1 Δθ = -14ο = -0.244 rad 

0.54 -5.4 ω = Δθ/Δt = -3.05 rad/s 

0.56 -9.1 

0.63 -9 Gathered Flight Phase 

0.66 -4.5 Δt = 0.06 s 

0.69 -2.7 Δθ = 6.3ο = 0.110 rad 

- - ω = Δθ/Δt = 1.83 rad/s 

III. ROBOT DYNAMICS AND ANGULAR MOMENTUM 

A. Model and Dynamics 
To study the effects of a moving appendage on a body in 

ballistic flight, we introduce a simple planar template of two 
coupled bodies, see Fig. 2. We make this severe assumption 
(rigid spine and massless legs) on purpose, in order to 
perform the analysis on the simplest dynamics possible, and 
to go into a discussion about holonomy that would not be 
possible with more complex models. Hereafter, by body we 
mean the body along with all other links of a quadruped, 
except for the tail, which here plays the role of a general 
angular momentum control device; a reaction wheel is also 
covered by this analysis. 

First, we parameterize the system’s configuration space by 
the absolute pitch angle of the body   θ ∈S1 , the relative 
hinge angle of the tail   q ∈S1 , and the position vector 

  p ∈R2  of the system center of mass (CoM) in the inertial 
reference frame, yielding the space   Q = S1 × S1 × R2 . Let 

  (m0 , I0 )  and   (m1, I1)  denote the pairs of mass and MoI of the 
body and the tail about their CoM. Let also  r  be the distance 
from the body’s CoM to the joint, and  l  be the distance 
from the tail’s CoM to the joint, see Fig. 2. Finally, let τ  be 
the control torque that the body exerts on the tail. 

 

 

 

Figure 2.  A cheetah during flight phase, and the two-body template.  

A reduction to the system’s CoM frame is now possible, 
since the uniform gravitational field allows the separation of 
the CoM motion from the relative motion dynamics; the 
system’s CoM behaves as a single particle under the action 
of external gravitational forces. The reduced configuration 
manifold is now   Q ' = S1 × S1 , parameterized by the 
generalized coordinates θ and q, and the Lagrangian is equal 
to the kinetic energy since gravitational forces are no more 
considered.  
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We note that the masses appear only in the form of an 
important quantity   μ=(m1m2 )/(m1+m2 )  that we can call the 
system’s effective mass. The equations of motion (EoM) can 
now be derived using the Lagrange formulation, to yield: 

 

   

(I0+ I1+μ(l2+r 2+2rl cosq))θ+(Ι1+μ(l2+rl cosq))q−

               −μrl sinqq2−2μrl sinqqθ =0
(I1+μl2+μrl cosq)θ+ (I1+μl2 )q+μrl sinqθ 2 =τ

  (2) 

B. Angular Momentum 
An attempt is made to express the EoM in the simplest 

form possible, using the conservation of angular momentum. 
In general, if a conservation law exists, the Lagrangian 
provides the integral of motion as an equation of motion. We 
first note that the generalized coordinate θ does not appear in 
the Lagrangian, and that makes it a cyclic or ignorable 
coordinate. Coordinate q, which does appear in the 
Lagrangian, is called palpable or positional. As a result the 
generalized momentum associated to the cyclic coordinate is 
conserved    (∂L / ∂θ = const) yielding: 

    (I0+I1+μ(l2+r 2+2rl cosq))θ+(I1+μ(l2+rl cosq))q=h0  (3) 

which is in fact the conservation of the system’s angular 
momentum equation about the system’s CoM. Equation (3) 
is an integral of motion and the constant of motion   h0  is the 
system’s initial angular momentum. Since an integral of 
motion exists, one of the EoM equations can be substituted 
with the first order conservation equation resulting in a set of 
a second-order and a first-order differential equation. 

C. Integrability of the Constraint – Analytical Results 
A question now arises about whether one can integrate the 

angular momentum equation to derive a useful analytical 
expression between the body angle θ and the hinge angle q. 
In general, a constraint that can only be expressed by the 
differential of the configuration space coordinates and time 
is a nonholonomic constraint; else if the differential 
constraint can be integrated, it is in fact a holonomic 
constraint in disguise. A distinction should also be made 
between dynamic nonholonomic constraints, i.e. constraints 
that are not externally imposed on the system, but rather are 
consequences of the EoM and practically equations of 
conservation laws, and kinematic nonholonomic constraints, 
i.e., constraints imposed by the kinematics, such as rolling, 
[27]. Obviously, the conservation of angular momentum is a 
dynamic constraint and can take the form of an acatastatic 
Pfaffian constraint, (cosq = cq): 

   (I0+I1+μ(l2+r 2+2rl cq))dθ+(I1+μ(l2+rl cq))dq=h0dt  (4) 

or   P(q)dθ+Q(q)dq+Rdt=0  (5) 

The necessary and sufficient condition for (5) to have an 
integrating factor and therefore to be integrable is, [26]: 

 
  
I = P(∂Q

∂t
− ∂R
∂q

)+Q(∂R
∂θ

− ∂P
∂t

)+ R(∂P
∂q

− ∂Q
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) = 0  (6) 

which yields: 

   h0rl sinq = 0  (7) 

Clearly, the constraint is integrable in most of the cases; it 
cannot be integrated analytically only when   r,l,h0 ≠ 0 , i.e. 
when the joint position does not coincide with either the 
body’s or the appendage’s CoM, and the system also starts 
the flight phase with nonzero angular momentum. The 
analytical derivations for all the integrable cases are useful, 
and therefore they are given below. 

1. Zero Initial Angular Momentum 
In this case, the conservation equation is integrable for every 
geometry. Integrating (4) with   h0 =0  yields: 

 
  
θ =θ0 −

1
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C
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tan
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2
)  (8) 

where 

  

A= I1+μl2− I0−μr 2 ,  B= I0+ I1+μ(l−r)2

C= (I0+ I1+μl2+μr 2 )2−  (2μrl)2
 

This is a rather involved expression that gets much simpler 
when   r=0  (the appendage is hinged at the body’s CoM), or 

  l=0  (the appendage rotates about its CoM). 
2. Nonzero Initial Angular Momentum 

In this case, integrability depends on the system’s geometry.  
a. If a tail is hinged at the body’s CoM, then integrating (4) 
with   r=0  yields: 

   (I0+ I1+μl2 )(θ−θ0 )+(I1+μl2 )(q−q0 )=h0(t−t0 )  (9) 

b. If a reaction wheel is hinged at distance r from the body’s 
CoM, then integrating (4) with   l=0  yields: 

   (I0+ I1+μr 2 )(θ−θ0 )+ I1(q−q0 )=h0(t−t0 )  (10) 

c. Finally, if a reaction wheel is hinged at the body’s CoM 
(also known as “Elroy’s Beanie”, [27]), then integrating (4) 
with   (r= l=0)  yields the simplest expression: 

   (I0+ I1)(θ−θ0 )+ I1(q−q0 )=h0(t−t0 )  (11) 

To sum up, if the appendage is a reaction wheel, the 
constraint is integrable – and therefore holonomic – with or 
without initial angular momentum. If the appendage is a tail, 
the constraint is integrable for any geometry when the initial 
angular momentum is zero. However, when the initial 
angular momentum is nonzero, the constraint is integrable 
only if the tail is hinged at body’s CoM. 

D. Discussion on the System’s Holonomy 
The restrictions on the motion of the system in the two 

cases – holonomic (or integrable) and nonholonomic (or 
nonintegrable) – are of different nature. In the holonomic 
case the constraint is geometric, i.e. the configuration of the 
system is actually constrained to be on a submanifold of the 
configuration manifold. In the nonholonomic case the 
constraint does not restrict θ and q, yet it restricts the 
direction of the path through a configuration (θ, q); at every 
configuration a constraint on velocities must be satisfied. 



  

In conclusion, when conservation of angular momentum 
imposes a holonomic constraint on the system, the 
dimension of the accessible configurations’ space is reduced; 
a body pitch angle θ corresponds to a single tail angle q. 
When the constraint due to the conservation of angular 
momentum is nonholonomic, the whole configuration 
manifold is accessible and any pair (θ, q) can be achieved. 
However, this constraint restricts the velocities at every 
point on the configuration manifold, and thus the state of the 
system depends on the path taken. 

E. Discussion on Time Invariance 

When initial angular momentum is zero, the constraint, 
which is holonomic for every geometry, is always 
schleronomic, i.e. time invariant – see (8). In those cases 
when initial angular momentum is nonzero and the system is 
also holonomic, the constraint depends on time, and thus it is 
a rheonomic constraint – see (9). This is in fact a time 
varying geometric constraint that binds the configuration 
coordinates. A practical explanation is that due to initial 
angular momentum the system experiences a steady drift in 
addition to the motions caused by the internal shape changes. 
If we fix the shape variable q, this drift will manifest itself as 
a steady angular rotation of the body with speed proportional 
to the initial angular momentum. 

IV. MOMENTUM DEVICE DESIGN 

Based on the analytical expressions derived above, we 
propose basic steps and formulas for the design of tail-like 
systems for legged robots. We consider here the length/ the 
radius and the mass of the tail or the wheel as the key design 
parameters. To this end, we first assume that the appendages 
are pinned at the body’s CoM, since the EoM can be written 
decoupled in this case. Although hinge position is in general 
at a distance r from body’s CoM, this assumption simplifies 
the expressions without bringing important deviations for 
alternative geometries.  

A. Reaction Wheel Design 

1. Given the desired time t and the desired body angle Δθ, 
we derive an expression for the torque τ needed to achieve 
the maneuver, employing a simple bang-bang controller. 
This is the case where constant maximum torque accelerates 
the appendage for   t /2 , and the opposite torque is applied to 
decelerate it. Integrating twice the decoupled EoM for θ, and 
considering   θ0 =0 , yields: 

 
   
I0θ =−τ  ⇒  τ =−

4I0Δθ
t2   (12) 

2. Given the calculated torque τ and the desired time t we 
derive an expression between the motor’s angular velocity 

  q  and the wheel’s MoI I1 (we assume the reaction wheel 
carries all of its mass in its circumference i.e.   I1=m1ρ

2 ). 
Integrating once the decoupled EoM for q, yields: 

 

   

I0I1

I0+ I1

q=τ  ⇒  q=τ t
2

( 1
I1

+ 1
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)  (13) 

Varying I1, and that is varying  m1ρ
2  (let ρ be the radius of 

the reaction wheel), we can find a suitable value for the 
maximum velocity of the wheel which is a key parameter for 
the selection of the motor. Note that for larger I1, the angular 
velocity drops, while the radius ρ has a maximum value 
depending on the size of the robot’s body. 

B. Tail Design 

1. Similarly to the wheel case, given the desired t and Δθ 
we estimate the torque τ needed for the maneuver using (12). 
2. The tail case introduces an important restriction in the 

design process, i.e. q needs to be bounded since full rotation 
about the hinge is mechanically forbidden. Hence, starting 
from the bounds of the tail angle q, we aim to find values for 
the mass and the length of the tail that permit a desired 
maneuver Δθ. In the holonomic and schleronomic cases, 
conservation of angular momentum shows how the 
mechanical properties of the body and the tail connect a Δθ 
rotation to a specific Δq one. Thus, regardless of the time 
needed, which in fact depends on the torque exerted, a 
desired connection of Δq and Δθ requires an equation of the 
system’s mechanical properties to be satisfied, leading to an 
expression for the tail’s mass calculation. For   I1=0 , and 

  h0 =0 , (4) yields: 

 

  
(I0+μl2 )Δθ+μl2Δq=0 ⇒  m1=

−Δθ I0m0

(Δθ+Δq)l2m0+Δθ I0

 (14) 

A constraint for l being smaller than robot’s height must be 
also considered. We also note that if   r≠0  (which better 
reflects reality), this mass could be even smaller by a factor 
that would depend on r, due to the torque produced by the 
force exerted on the hinge. 
3. Similarly to the wheel case, we derive an expression for 

the motor’s maximum angular velocity by integrating once 
the decoupled EoM for q: 

 

   

I0μl2

I0+μl2 (q−q0 )=τ t  ⇒  q=
I0+μl2

2I0μl2 τ t   (15) 

V. CONTROL 

As discussed above, a quadruped robot needs to 
successfully control its attitude in order to run, jump, react to 
disturbances or perform other sophisticated tasks. Here, we 
assume that a simple controller that drives the body pitch 
angle θ to a desired value in time is sufficient for these tasks. 
Moreover, the tail angle q needs to be directly or indirectly 
controlled when designing a controller. Being difficult to 
control both θ and q with a single control input τ, we develop 
model-based controllers to control θ when we need to 
control the body attitude, and q when we need to position the 
tail to a desired angle. 

A. Control of the Tail Angle q 

Here, we focus on the system’s dynamics to perform an 
extra reduction of the configuration space to the shape space 

  (S1) , parameterized by the hinge angle q. To this end, we 
form the Routhian,   R=L−h0q , which can be treated just like 



  

a Lagrangian with N-1 degrees of freedom. Langrange’s 
equation for the palpable coordinate q yields the reduced 
dynamics in the form of a single equation: 

    D(q)q+C(q,q)q+G(q,h0
2 )=τ  (16) 

Using (18) the following feedback linearization control 
scheme can be applied in order to control the tail angle q: 

 
   
τ =D(q)(qd +kveq+kpeq )+C(q,q)q+G(q,h0

2 )  (17) 

Trajectory planning is implemented with a 5th degree 
polynomial, while kv, kp depend on the maneuver’s duration. 

B. Control of the Unactuated Body Angle θ 
In order to control θ one should eliminate   q  from the 

second EoM (2), yielding a single equation of the form: 

    D*(q)θ+C*(q,q,θ )=τ  (18) 

A model-based controller is again applied to control θ, while 
trajectory planning is implemented similarly to (19). 

 
   
τ =D*(q)(θd +kveθ +kpeθ )+C*(q,q,θ )  (19) 

C. Stability of the Internal Dynamics 

By the time the body pitch angle θ reaches the desired 
value, the system’s stability depends on the stability of the 
internal dynamics, i.e. the stability of q. For zero initial 
angular momentum, when the body reaches the desired 
attitude, the tail also stops moving. However, for nonzero 
initial angular momentum, when the body stops, the tail has 
to keep rotating so that the system’s angular momentum is 
kept constant. When the body angular velocity  θ  becomes 
zero, the conservation equation becomes: 

    (I1+μl2+μrl cosq)q=h0  (20) 

It is obvious that for larger  I1+μl2 ,   q is smaller, and thus 
there is more time before the tail angle q reaches its limits. 
By integrating (22) one gets an implicit equation for q, 
which better describes the nature of the system’s instability 
in terms of the tail drift: 

   (I1+μl2 )q+μrl sinq−(I1+μl2 )q0−μrl sinq0=h0(t−t0 )  (21) 

VI. SIMULATION RESULTS 

A. Reaction Wheel – Tail Comparison 

First, simulations were carried out using Matlab for a tail 
and a reaction wheel for body parameters   m0 =40kg , and 

  I0 =2kgm2  (realistic values for a cheetah or a robot). Both 
appendages were hinged at distance   r=0.4m  from the 
body’s CoM, while constraints were considered for the 
length of the tail and the radius of the reaction wheel. We 
assumed that the tail’s workspace was limited at the back of 
the robot, while the reaction wheel occupied the whole disk 
defined by its radius, occupying also a part of the body’s 
space. Therefore, the tail’s length could not be larger than 
the robot’s height, while the wheel should have a small 
radius in order to occupy the least body space possible.  

We simulated two cases: one with a reaction wheel of 
maximum possible radius   ρ=0.25m , and one with a tail of 

maximum possible length   l=0.5m  (two times greater). We 
assumed that a reasonable change of the body pitch angle – 
considering no initial angular momentum – would be 

  Δθ =10 , and a reasonable time interval would be almost 
equal to the cheetah’s swing time   t=0.2s , (see Table I). A 
suitable tail’s mass   m1=0.5kg  was calculated using (14). In 
order to make a proper comparison, the two appendages 
should have equal MoI, and thus we considered the wheel’s 
mass to be four times greater than the tail’s mass, i.e. 

  m1=2kg , since wheel’s MoI is given by   I1=mρ 2 . 
Simulation results are presented in Fig. 3. 

 
Figure 3.  Simulation results for a Δθ=10ο maneuver with appendages of 

equal MoI. Red line: reaction wheel data, Black line: tail data. 

Studying the simulation results presented in Fig. 3, we 
reach the following important conclusions:  
a. The results reveal a symmetry for the wheel case, but 

not for the tail case; this is because the tail’s CoM moves 
with respect to its hinge, while the wheel’s CoM does not.  
b. Less torque is required for the tail case; this is because 

a force appears at the joint (only in the tail case) creating an 
extra torque that helps the motor rotate the body. 
c. The motor needs to run at a much higher speed in the 

wheel case; that is for the same result, more power is 
requested from the motor. 

B. Comparison for Different Hinge Positions 

Finally, we carried out simulations using the same 
parameters, varying the hinge position of the appendages. 
Figure 4 shows results for a reaction wheel and a tail, first 
hinged at the body’s CoM, and then at a distance   r=0.4m . 
Based on Fig.4, we reach the following conclusions: 
a. For the tail case, much greater torque and motor speed 

are needed if the tail is hinged at the body’s CoM. This is 
because, the force appearing at the hinge creates no extra 
torque, if the tail is hinged at the body’s CoM; this torque 
could help the motor rotate the body using less torque. 



  

 
Figure 4.  Simulation results for a Δθ=10ο maneuver for different hinge 
positions. First row: tail data, Second row: reaction wheel data, Red line: 

hinge at body’s CoM, Black line: hinge at the edge. 

b. For the wheel case, slightly greater torque and speed are 
needed if the reaction wheel is hinged at the edge; this is 
mainly due to the slight displacement of the system CoM 
with respect to the body’s CoM, caused by the displacement 
of the wheel’s hinge.  

VII. CONCLUSION 

In this work, we studied the attitude dynamics and the 
control of quadruped robots using tail-like appendages 
during the flight phases of a stride. Inspiration and data were 
first obtained from cheetah’s fast galloping techniques. 
Second, a two-body template was introduced to describe the 
dynamics of a large body controlling its attitude with a 
rotating appendage. Several matters concerning the 
holonomy of the planar two body system and its implications 
on dynamics and attitude control were discussed in detail. 
By employing cyclic coordinates, all possible reductions 
were performed on the dynamics to finally lead to the design 
of model-based controllers, while basic steps and formulas 
were proposed for selecting the key parameters concerning 
the design of such systems. Finally, simulation results were 
presented regarding robot maneuvers using a reaction wheel 
and a tail, and useful conclusions were derived. As it was 
shown, when using a reaction wheel at a distance from the 
main body’s CoM, greater torque and higher speed are 
requested from the motor, compared to these requested when 
a tail of the same MoI is used for the same maneuver. 
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