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Abstract

The simplicity of Transpose Jacobian (TJ) control is a significant characteristic of this algorithm for controlling robotic manipulators.
Nevertheless, a poor performance may result in tracking of fast trajectories, since it is not dynamics-based. Use of high gains can deteriorate
performance seriously in the presence of feedback measurement noise. Another drawback is that there is no prescribed method of selecting its
control gains. In this paper, based on feedback linearization approach a Modified TJ (MTJ) algorithm is presented which employs stored data
of the control command in the previous time step, as a learning tool to yield improved performance. The gains of this new algorithm can be
selected systematically, and do not need to be large, hence the noise rejection characteristics of the algorithm are improved. Based on Lyapunov’s
theorems, it is shown that both the standard and the MTJ algorithms are asymptotically stable. Analysis of the required computational effort
reveals the efficiency of the proposed MTJ law compared to the Model-based algorithms. Simulation results are presented which compare
tracking performance of the MTJ algorithm to that of the TJ and Model-Based algorithms in various tasks. Results of these simulations show
that performance of the new MTJ algorithm is comparable to that of Computed Torque algorithms, without requiring a priori knowledge of
plant dynamics, and with reduced computational burden. Therefore, the proposed algorithm is well suited to most industrial applications where
simple efficient algorithms are more appropriate than complicated theoretical ones with massive computational burden.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many approaches have been employed for the complex prob-
lem of controlling mechanical manipulators and robotic sys-
tems. A prime difficulty for all approaches is due to the strong
non-linearities and time dependencies in the dynamics of such
systems. Hence, a wide range of algorithms has been suggested
to challenge this task, including Adaptive Control algorithms as
proposed by Slotine and Li (1987), and Taira, Sagara, and Katoh
(2000), Time-Delay Control as suggested by Youcef-Toumi
and Ito (1987), Motion-rate Control as presented by Umetani
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and Yoshida (1989), Kelly and Moreno (2005), Artificial Neu-
ral Networks and Fuzzy Control as proposed by Meghdari,
Naderi, and Alam (2005), Dominguez-Lopez, Damper,
Crowder, and Harris (2004), Steil, Röthling, Haschke, and
Ritter (2004), Mbede et al. (2005), Hybrid Motion/Force Con-
trol as suggested by Raibert and Craig (1981), Chiu, Lian, and
Wu (2004), and Impedance Control as proposed by Hogan
(1985), and Moosavian, Rastegari, and Papadopoulos (2005).

Transposed Jacobian (TJ) control is one of the simplest al-
gorithms used to control motion of robotic manipulators. Ac-
cording to Craig (1989), the TJ algorithm has been arrived at
intuitively, and is similar to classic PD-action controllers. In the
case of using an approximate Jacobian, Miyazaki, Masutani,
and Arimoto (1988) have shown that the damping matrix and
the position gain matrix of this controller play an important role
in system stability. Apparently, the algorithm can be applied
to redundant manipulators as shown by Asari, Sato, Yoshimi,
and Tatsuno (1993), and as discussed by Chiaverini, Sciavicco,
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and Siciliano (1991) it does not fail when a singularity occurs.
Hootsmans and Dubowsky (1991) have developed an extended
Jacobian transpose control algorithm to improve the perfor-
mance of mobile manipulator systems. Subsequently, to ful-
fill simplicity requirements, Bevly, Dubowsky, and Mavroidis
(2000) have developed Simplified Cartesian Computed Torque
(SCCT) Control algorithm for highly geared climbing robots.

The performance of TJ-based algorithms has been experi-
mentally compared to those of different algorithms using unit
quaternions on a direct-drive spherical wrist by Garcia and
Kelly (2002). Papadopoulos and Moosavian (1995) have com-
pared the performance of this simple algorithm to those of
various model-based algorithms. Both experimental and simu-
lation results show the merits of the TJ algorithm in control-
ling of highly non-linear and complex systems with multiple
degrees-of freedom (DOF), motivating further work on this al-
gorithm. However, since the TJ is not dynamics-based, poor
performance may result in fast trajectory tracking. Use of high
gains can deteriorate performance seriously in the presence of
feedback measurement noise. Another drawback is that there is
no formal method of selecting its control gains, and a heuristic
selection of gains makes it difficult to apply.

In this paper, a new Modified Transpose Jacobian (MTJ) al-
gorithm is developed which employs stored data of the control
command in the previous time step, as a learning tool to yield
an improved performance. The gains of this new algorithm can
be selected more systematically, and do not need to be large,
hence the noise rejection characteristics of the algorithm are
improved. Stability analysis, based on Lyapunov’s theorems,
shows that both the standard TJ and the MTJ algorithms are
asymptotically stable. Simulation results show that tracking per-
formance of this new algorithm is comparable to that of Model-
Based (MB) algorithms, without requiring a priori knowledge
of plant dynamics, and with reduced computational burden.

2. General motion control laws

Availability of a system dynamics is always helpful in the
design of a control system. Using the expressions for the kinetic
and potential energy, and applying Lagrange’s equations for a
robotic system, the dynamics model can be obtained and has
the form

H(q)q̈ + C(q, q̇) = Q(q), (1)

where all gravity and non-linear velocity terms are contained
in vector C, and H is a positive definite matrix, function of
the generalized coordinates q. Gravity terms that cause static
positioning errors in control, can be compensated separately.
Therefore, it is usually assumed that the vector C contains only
non-linear velocity terms.

The output speeds, ˙̂q, associated with the output variables to
be controlled, q̂, are obtained from the generalized speeds q̇
using a Jacobian matrix, JC , as

˙̂q = JC(q) q̇. (2)

Assuming that this Jacobian matrix is square and non-singular,
Eq. (1) can be written in terms of the output variables as follows:

Ĥ(q) ¨̂q + Ĉ(q, q̇) = Q̂(q), (3a)

where Ĥ, Ĉ, and Q̂ can be obtained as

Ĥ = J−T
C HJ−1

C ,

Ĉ = J−T
C C − ĤJ̇C q̇,

Q̂ = J−T
C Q. (3b)

To control such a system, classic PID joint controllers that
ignore the dynamic coupling are widely employed in indus-
trial geared robots. These feedback controllers can effectively
control the system due to the high gear ratios at the joints,
Arimoto and Miyazaki (1983). However, in direct drive manip-
ulators and space systems the need for inclusion of the system
dynamics cannot be eliminated. The Computed Torque Method
employs such a model to compensate for the non-linearities,
and result in a linearized error behavior.1 The application of
Model-Referenced Adaptive Control to robotic manipulators is
based on an adaptation algorithm which changes the controller
gains so that the real output follows the referenced model within
an accuracy bound, Slotine and Li (1987).

Based on the system dynamics introduced by Eq. (3), an MB
(Computed Torque) control law can be developed as

Q = JT
C{Ĥ[Kpe + Kd ė + ¨̂qdes] + Ĉ}. (4)

This law linearizes and decouples the system equations to a set
of second order differential equations, resulting in the following
error dynamics:

ë + Kd ė + Kpe = 0, (5)

where Kp and Kd are positive definite gain matrices, and e is
the tracking error defined as

e = q̂des − q̂. (6)

Under the assumption of known system dynamics structure, and
known geometric and mass properties, the control law given
by Eq. (4) guarantees asymptotic convergence of the tracking
error to zero. However, if these assumptions are violated, the
error may never converge; driving terms appear in the right-
hand side of Eq. (5). In addition, this control law requires a
significant computational effort2 (see Table 1) which may not
be available in most cases.

1 According to Craig (1989), the idea was first proposed in Paul (1972),
and named as the Computed Torque Method in Markiewicz (1973).

2 To apply a Model-Based (Computed Torque) control law, Ĥ and Ĉ
have to be computed. Considering Eqs. (3b), it can be seen that computation
of Ĥ and Ĉ requires inversion of the Jacobian matrix and calculation of its
time derivative which depending on the system degrees-of-freedom may be
quite cumbersome. The number of matrix multiplications in obtaining these
expressions, is also considerable. The required computational operations can
be seen in Table 1, though the assumptions made in preparation of this table
exclude the operations for inverting the Jacobian matrix and calculating its
time derivative.
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Table 1
Comparison of the required computational operations

Algorithm Multiplication Additions

TJ 3N2 3N2 − 2N

MTJ 3N2 + 2 3N2 − N + 1
MB 2N3 + 7N2 2N3 + 5N2 − 4N

As discussed in Craig (1989), if high enough gains are used,
the control law of Eq. (4) can be approximated by the simpler
TJ controller as

Q = JT
C{Kpe + Kd ė} (7)

which does not require a priori knowledge of the system dy-
namics. Besides simplicity, an advantage of this algorithm is
that if a physical singularity is encountered, the controller given
by Eq. (7) may result in errors but will not fail computation-
ally. The action of this controller can be understood by imagin-
ing generalized springs and dampers, along the variables under
control, connected between the corresponding body and the
desired trajectories; the stiffer the gains are, the better the track-
ing should be. However, due to the presence of noise and un-
modeled dynamics, the use of high gains is limited in practice.
Note that computation of Q̂ based on Eqs. (7) and (3b), does
not result in the error dynamics given by Eq. (6), anymore.

It should be mentioned that the TJ algorithm can be applied
to redundant manipulators as shown by Asari et al. (1993). The
same property applies to MTJ algorithm as will be detailed
below. In fact, the assumption of a square Jacobian matrix, after
Eq. (2), was for developing the MB algorithm of Eq. (4). Hence,
the advantages of using the TJ controller motivate further work
on this algorithm, aiming at improving its performance and
limiting its drawbacks.

3. MTJ control law

The TJ control law defined by Eq. (7) is now modified to
achieve both precision and simplicity:

Q = JT
C{Kd ė + Kpe + h(t)}, (8)

where Kp and Kd are positive definite gain matrices, e is the
tracking error defined in Eq. (6), and h(t) is to be determined for
feedback linearization. Substituting Eq. (8) into Eq. (3), yields

Kd ė + Kpe = Ĥ ¨̂q + Ĉ − h(t). (9)

Considering Eq. (3), this is equivalent to

Kd ė + Kpe = Q̂ − h(t). (10)

It is motivating to note that if the right-hand side (RHS) of Eq.
(10) becomes equal to zero, then the tracking error converges to
zero, and the algorithm works like a MB algorithm, albeit with
a simpler implementation. Note that inclusion of the second
derivative of the error, ë, in Eq. (8) results in

Q = JT
C{ë + Kd ė + Kpe + h(t)} (11)

and then

ë + Kd ė + Kpe = Q̂ − h(t), (12)

which results in n error dynamics similar to that of the MB algo-
rithms, if the RHS of Eq. (12) becomes equal to zero. However,
inclusion of this signal requires acceleration measurements or
an estimator, and may be difficult to obtain in practice.

To make the RHS of Eq. (10) or (12) be close to zero, a
good approximation can be obtained by taking h(t) equal to
Q̂ at a previous small time step, Q̂|t−�t . Inclusion of this term
may result in high joint torque requirements, when relatively
high e or ė exist due to disturbances. To avoid this potential
problem, the standard TJ algorithm can be applied momentarily.
Therefore, a regulating factor can be employed as

h(t) = kQ̂|t−�t , (13)

where k is defined as

k =
{

0 when |e|�� or |ė|� �̇,
1 when |e| < � & |ė| < �̇,

(14)

where � and �̇ are positive real numbers that correspond to
sensitivity thresholds. To simplify the on–off switch for factor
k, the following continuous expression can be used3 :

k = exp

(
−

( |e|
emax

+ |ė|
ėmax

))
, (15a)

where emax and ėmax represent another representation of the
sensitivity thresholds. Note that relatively low values for sensi-
tivity thresholds, would make the algorithm work like the stan-
dard TJ control law. Therefore, based on the expected preci-
sion, one could start by selecting relatively equivalent values for
the sensitivity thresholds. Then, if the resulting errors are high,
those values should be increased. It should be mentioned that
choosing low values for sensitivity thresholds makes k equal
to zero, which results in a TJ control law, as it is deliberately
taken at initial time in the first time step. In practice, Kp and
Kd can be chosen as diagonal matrices, and so factor k in Eq.
(13) can be replaced by a diagonal matrix K. Then its elements
can be defined as

kii = exp

(
−

( |ei |
emaxi

+ |ėi |
ėmaxi

))
. (15b)

Including the error derivative in Eq. (15), introduces a sense
of anticipation, without compromising the smoothness of re-
sponse. Similarly, one can include another term based on the
second rate of error, if available. However, this makes the algo-
rithm more sensitive, and therefore sharp variations of actuator
forces/torques may result.

Application of the MTJ algorithm

Q = JT
C{Kd ė + Kpe + kQ̂|t−�t }, (16)

3 Similar expression has been successfully employed to regulate slid-
ing mode controllers in Moosavian and Homaeinejad (2004) for chattering
elimination.
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with proper selection of the sensitivity thresholds (so that the
modifying term is reasonably activated) and small time steps,
results in the following error equation:

kdi
ėi + kpi

ei�0, (17)

where diagonal gain matrices, Kp and Kd , have been used.
Therefore, using Eq. (17), the control gains can be selected in
a more systematic manner, as their ratio determines error time
constant, and their magnitude determines the magnitude of the
control command which should be adjusted based on actuator
capabilities.

Considering Eq. (16), it can be deduced that for an N DOF
system, calculation of the MTJ law requires 3N2 +N +2 mul-
tiplications, and 3N2 − N + 1 additions. Comparing to the de-
picted results in Table 1, these are almost the same as those for
the TJ law, and still significantly less compared to those needed
for implementing the MB laws. Note that it is assumed that the
inverse of the Jacobian matrix and its time derivative, which
are required for implementing MB algorithms, are available
symbolically, and hence these computations are not counted in
Table 1. However, this comparison in terms of required com-
putational effort reveals the efficiency of the TJ and the MTJ
algorithms.

The above analysis reveals the simplicity (concerning a pri-
ori knowledge requirement of system dynamics) and efficiency
(in terms of the required computational effort) of both the stan-
dard TJ and the new MTJ law compared to the MB algorithms.
In addition, the MTJ yields approximately linearized error
dynamics, and therefore an improved performance over the
standard TJ algorithm. Stability analysis of the developed MTJ
algorithm, based on Lyapunov’s theorems, shows that both the
standard and the MTJ algorithms are globally asymptotically
stable (see Moosavian & Papadopoulos, 1997).

It should be noted that the MTJ law is a position control algo-
rithm which yields an improved performance over the standard
algorithm. However, to manipulate an object, application of
force/impedance control laws will be required that are usually
MB algorithms. For instance, the Multiple Impedance Control
(MIC) is an MB algorithm that requires knowledge of the sys-
tem dynamics, Moosavian et al. (2005). On the other hand, even
if the system dynamics is perfectly known, its computation may
require considerable process time at each step for implementing
the control law. Based on the MTJ control approach proposed
above, the MIC law has been recently modified to be imple-
mented without using system dynamics as Non-Model-Based
Multiple Impedance Control (NMIC), Moosavian and Ashtiani
(2006). Therefore, this NMIC law is a more realistic algorithm
for on-line computations in cooperating robotic systems.

Next, the performance of the new MTJ is evaluated by sim-
ulation, and compared to the standard TJ, and MB algorithms.

4. Obtained results

To focus on algorithmic aspects, a simple two link planar
manipulator is considered under various conditions. Perform-
ing low-speed vs. high-speed tracking task, selection of higher

gain for the TJ, and noise rejection characteristics of the pro-
posed MTJ algorithm is investigated in these simulations, and
compared to those of alternative algorithms.

The system is a 2-link planar manipulator on a horizontal
plane, see Fig. 1(a). The task is tracking a trajectory defined by

xdes =
√

l2
1 + l2

2 cos(�t + �/4) + 0.1 sin(5�t),

ydes =
√

l2
1 + l2

2 sin(�t + �/4) + 0.1 sin(5�t). (18)

This trajectory corresponds to a perturbed circular path, see
Fig. 1(b). The motion speed along the path can be selected by
setting the cyclical frequency �.

The mass properties of the system are m1 = 4.0 kg, I1 =
0.333 kg m2, m2 = 3.0 kg, and I2 = 0.30 kg m2, and the link
lengths are l1 = 1 m and l2 = 1 m. The initial conditions for
joint angles and derivatives are

(q1(0), q2(0), q̇1(0), q̇2(0))

= (0.03, �/2, 1.5, −1.0) (rad, rad/s)

which correspond to some initial position and velocity errors.
The sensitivity thresholds for the MTJ algorithm, emax and

ėmax in Eq. (15a) are taken equal to 1 m and 10 m/s, respectively.
These large values for emax and ėmax, yield k ≈ 1.0 throughout
the whole duration of the simulation after the first time step
(which is zero, according to the definition). The time step �ti
is held constant, and equal to 10.0 ms. It should be mentioned
that based on the explanations below Eq. (14), selecting the
time step should ensure the stability. On the other hand, it must
be feasible based on the system measuring and calculation time
constants. Therefore, choosing 10 ms for the considered system
will satisfy both restrictions. To establish a fair comparison, the
gains for the algorithms under comparison are selected such
that the peaks of the required joint torques are approximately
equal. The Gear method for solving differential equations is
used in all simulations.

4.1. Low-speed vs. high-speed tracking task

The performance of the TJ and MTJ algorithms, in
terms of the end-point error in a low-speed tracking task
(�=0.05 rad/s), is compared in Fig. 2. For the MTJ algorithm
Kp = diag(30, 30), Kd = diag(60, 60), while for the TJ algo-
rithm the gains are twice these values. It can be seen that both
algorithms result in a fairly similar response. However, errors
for the TJ algorithm may increase initially to higher values,
before they converge to zero, see for example, e(y) in Fig. 2(a).

Fig. 3 shows the end-point tracking error in a high-speed
tracking (� = 2.0 rad/s). As shown in this figure, the MTJ
algorithm results in smaller tracking errors, and therefore is
preferred. This poor performance of the TJ algorithm is due
to the fact that it is not dynamics-based. However, one would
expect that by selecting very high gains, its performance can
be improved.

To investigate this possibility, the previous gain values for
the MTJ are used, while for the TJ fairly high gains are selected,
see Table 2. Besides, the task speed is reduced to �=1.0 rad/s.
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Fig. 1. (a) A two-link planar manipulator and (b) desired tracking path.

Fig. 2. Tracking errors for low-speed task: (a) TJ and (b) MTJ algorithm.

Fig. 3. Tracking errors for high-speed task: (a) TJ and (b) MTJ algorithm.

Table 2
Selected gains for alternative algorithms, Example 1

Algorithm Kp Kd

TJ diag(150, 150) diag(300, 300)
MTJ diag(30, 30) diag(60, 60)
MB, case 1 diag(8, 8) diag(4, 4)
MB, case 2 diag(30, 30) diag(60, 60)

Here, in addition to the TJ and MTJ algorithms, two cases of
model-based (MB) algorithms are also considered. In the first
case, it is assumed that the mass properties are completely
known, while in the second one, the mass properties of the
dynamics model in the controller are perturbed by 10% with
respect to the true values. For the perfect MB, the chosen gains
are fairly low which correspond to a settling time of 2.0 s, and
a damping ratio of 0.7. For the second MB case, these low
gains result in relatively large tracking errors, therefore they
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Fig. 4. Joint torques and tracking errors: (a) TJ with high gains, (b) MTJ, (c) MB, case 1, and (d) MB, case 2.

are selected equal to the ones for the MTJ. As Fig. 4 shows,
due to properly adjusted gains, the peaks of joint torques for all
four algorithms are about the same, which as mentioned before
establishes a fair comparison. Nevertheless, it can be seen that,

even with relatively very high gains for the TJ, the resulting
tracking errors of the MTJ are still about five times smaller
than the ones of the standard TJ, and even better than the ones
of the perturbed MB (case 2) algorithm. In other words, the
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Fig. 5. Joint torques in the presence of noisy feedback: (a) TJ, high gains, (b) MTJ, (c) MB, case 1, and (d) MB, case 2.

advantage of MB laws is lost if the parameters are not known
exactly.

It should be mentioned that the total energy consumption
of each algorithm for performing this task, given by the time
integral of

∑2
i=1|�i q̇i |, is about the same, i. e. in correspondence

to Fig. 4, (a) 153, (b) 156, (c) 153, and (d) 154 J.

4.2. Noise rejection characteristics

In practice, noise will corrupt available feedback. Therefore,
one should examine the noise rejection capabilities of would be
implemented algorithms, especially of those that rely on high
gains. The previous simulation is repeated now, assuming that
measurements of joint angles and their rates are corrupted by
white noise whose amplitude is 2% of the output’s magnitude.
Although the performance in terms of the average tracking er-
rors is almost the same as before, the variation in the required
torques is larger. As shown in Fig. 5, the required torques for
the MTJ algorithm are almost as smooth as for a perfect MB
control, while the noise rejection characteristics for the TJ al-
gorithm are poorer, due to the high gains employed. It should
be noted that for the MB algorithms, noisy feedback affects
the elements of controller dynamics, which in the presence of
uncertainties (the second MB case) results in a poor noise re-
jection characteristics, see Fig. 5(d).

It can be concluded that for better tracking, higher gains
are required for the TJ algorithm, and these lead to poor noise
rejection characteristics. Also, high frequency inputs can excite

flexible system modes, and consequently decrease the accuracy,
and the useful life of a system. Hence, it is confirmed that
using high gains is not a viable option. On the other hand, the
new MTJ algorithm, by being an approximation of a feedback
linearization algorithm, does not require high gains, or a high
computational power, while its performance is comparable to
that of the MB algorithms.

5. Conclusions

This paper presented the new MTJ control which yields a
better performance (in terms of tracking errors, with the same
requirements of actuator forces/torques) compared to the stan-
dard Transposed Jacobian (TJ) algorithm. The MTJ controller
approximates a feedback linearization solution, using stored
data of the control command in the previous time step as a
learning tool, with no need to a priori knowledge of the plant
dynamics. Therefore, unlike an MB algorithm, it is not affected
by inaccuracies in mass properties. Stability analysis, based on
Lyapunov theorems, shows that both the standard and the MTJ
algorithms are globally asymptotically stable. A two link ma-
nipulator was simulated to investigate different aspects of the
performance of the new proposed algorithm. It was shown that
the performance of the MTJ controller is comparable to that of
a perfect MB algorithm, with the advantage that less compu-
tational power is needed. The substantially reduced computa-
tional requirements compared to the MB, and the good tracking
and noise rejection performance characteristics in comparison
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with the TJ, suggest that the MTJ algorithm is a promising al-
ternative. Therefore, the new MTJ algorithm can be considered
as a good candidate in the control of industrial robots, where
simple efficient algorithms are more appropriate than compli-
cated theoretical ones.
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