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Abstract: This paper studies the control of quadrupedal bounding in the presence of torso flexibility and non-trivial leg
inertia, and it proposes a method for speed transitioning based on the sequential composition of locally stable bounding
gaits corresponding to different running speeds. First, periodic bounding motions are generated simply by positioning
the legs during flight via suitable (virtual) holonomic constraints that are imposed on the evolution of the leg angles; at
this stage, no control effort is developed on legs that are incontact with ground, resulting in efficient, nearly passive,
bounding gaits. The resulting motions are stabilized by a hybrid control law which coordinates the movement of the
torso and the legs in continuous time, and updates the leg touchdown angles in an event-based fashion. Finally, through
sums-of-squares (SOS) programming, formally verified estimates of the domain of attraction of stable fixed points are
used to realize speed transitions by switching among different bounding gaits in a sequential fashion.
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1. INTRODUCTION

Recently, quadrupedal running in the presence of torso
flexibility has attracted considerable attention in the con-
text of reduced-order models [2,5,6,17,22]; such models
are often termed “templates” in the terminology of [7].
The majority of these efforts focus primarily on estab-
lishing conditions under which bounding gaits can be re-
alized passively, through the interaction of the torso os-
cillations with the leg motion [2,6,17]. In the spirit of the
Spring Loaded Inverted Pendulum (SLIP) [7], the afore-
mentioned models typically employ legs that are mass-
less prismatic springs, and – echoing the passively stable
SLIP – it was found that stable bounding motions can be
passively generated [2,22], as was the case in rigid-torso
bounding models [12].

However, these template-like models cannot be di-
rectly applied to develop control laws for more realistic
robot models with non-trivial leg mass – such as those in
[5, 10], for example. This is due to the fact that the non-
trivial dynamics associated with leg recirculation signif-
icantly affects the motion of the system [16]. Periodic
bounding motions in the presence non-massless legs have
been generated in [5] through a PID controller that po-
sitions the legs during flight. On the other hand, [10]
used a combination of swing-leg retraction with stance-
leg impedance control to stabilize bounding; albeit pow-
erful, this method relies on sufficiently actuated legs, and
the presence of compliant elements in the leg’s structure
may require non-trivial modifications.

In this paper, we take advantage of our previous re-
sults in [1–3] to propose a control law that combines en-
ergy efficient motions with stability. In more detail, to
generate bounding motions, the controller uses the hip
joint torques merely to recirculate the legs during flight;
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Fig. 1 The sagittal-plane quadrupedal models with torso
compliance and leg mass and inertia.

no control effort is developed at the hip of a leg that is
in contact with the ground. As a result, the overall mo-
tion is generated through the natural interaction between
the torso’s and the legs’ passive springs. To ensure stabil-
ity of the resulting motions, the controller influences the
torso’s flexion-extension oscillation using feedback from
the angle of the support leg, thereby effectively coordi-
nating the motion of the torso and the legs.

A second aspect investigated in this paper is the reg-
ulation of forward velocity. A variety of controllers has
been proposed to adjust running speed; these controllers
typically modify hip torques during stance or touchdown
angles during flight [9, 15, 20]. A different approach
has been proposed in [10], where galloping motion over
a wide range of running speeds has been generated by
“shaping” the vertical ground reaction forces through the
hip and knee joint torques of the leg in contact with the
ground. However, the requirement of sufficiently ac-
tuated legs may restrict this method to models without
springy legs.

By way of contrast, in this paper, speed control is
formulated as a gait transition problem. A switching



controller is employed to pass from a “source” bound-
ing gait to one with the desired running speed, provided
that the fixed point associated with the “source” gait is
in the domain of attraction of the fixed point associated
with the “target” gait. Estimates of the domain of attrac-
tion can be computed based on quadratic Lyapunov func-
tions through sums-of-squares programming as in [19]. It
should be mentioned that this method can be used to cre-
ate more complex gait behaviors by composing different
motion primitives in a sequential fashion; see [19] and
references therein and our recent work [4] for the imple-
mentation on gait transitions.

2. MODEL AND GAIT ASSUMPTIONS

The sagittal-plane quadrupedal model is depicted in
Fig. 1. The torso consists of two identical rigid bod-
ies – one represents the posterior and the other the ante-
rior part – connected through a torsional spring to provide
compliance. Both the anterior and the posterior legs have
the same structure; an upper segment with mass and in-
ertia and and a lower segment represented by a massless
spring. The interaction between the toe and the ground
is modeled as an unactuated, frictionless pin joint. The
physical parameters of the model is shown in Table 1.
This model differs from the passive one of [2] in the non-
zero leg mass and inertia shown in bold in Table 1.

The bounding gait considered in this work is depicted
in Fig. 2. Depending on the state of the legs and the con-
figuration of the torso, the bounding cycle can be divided
into four phases: stance-posterior (sp), stance-anterior
(sa), flight-gathered (fg) and flight-extended (fe). These
phases are separated by touchdown and liftoff events.
Note that in the gathered flight, the torso assumes a con-
cave configuration, while in the extended flight it assumes
a convex configuration.

3. HYBRID DYNAMICS

With reference to Fig. 1, in the stance phasesi ∈
{sp, sa}, the configuration spaceQi can be parameter-
ized by the length of the leg in contact with the ground –
that is,lp ∈ R for the posterior andla ∈ R for the ante-
rior stance phase – the leg angles(ϕp, ϕa) ∈ S

2 relative
to the torso, and the pitch angles of the two segments of

Table 1 Mechanical Parameters of the Model

Parameter Value Units
Half Torso Mass(m) 10.432 kg
Half Torso Inertia(J) 0.36 kgm2

Hip-to-COM Spacing(L) 0.138 m
Nominal Leg Length(l0) 0.36 m
Leg Spring Constant(kleg) 7329 N/m
Torso Spring Constant(ktorso) 203 Nm/rad
Leg Mass(mleg) 1 kg
Leg Inertia(Ileg) 0.001 kgm2

Hip-to-Leg COM Spacing(LLeg) 0.09 m

Posterior Lift-off
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(sa)

P
o

s
te

ri
o

r 
T

o
u

c
h

d
o

w
n A

n
te

rio
r T

o
u

c
h

d
o

w
n

(sp) (fe)

(fg)

Fig. 2 Bounding phases and events.

the torso – namely,(θp, θa) ∈ S
2, i.e.,

qi :=

{

(lp, ϕp, ϕa, θp, θa)
′ ∈ Qi for i = sp,

(la, ϕp, ϕa, θp, θa)
′ ∈ Qi for i = sa.

(1)

In the flight phases, the configuration spaceQi, i ∈
{fg, fe}, can be parameterized by the Cartesian coordi-
nates(xp, yp) ∈ R

2 of the COM of the posterior part of
the torso, the pitch angles(θp, θa) ∈ S

2 of the posterior
and anterior parts of the torso, together with the leg an-
gles(ϕp, ϕa) ∈ S

2; i.e,

qi := (xp, yp, ϕp, ϕa, θp, θa)
′ ∈ Qi for i ∈ {fg, fe} .

(2)
The equations that govern the motion of the model in

all phases can be derived using the method of Lagrange
and are written in state-space form as

ẋi = fi(xi) + gi(xi)ui (3)

= fi(xi) + gai (xi)u
a
i + gpi (xi)u

p
i + gti(xi)u

t
i

wherexi := (q′i, q̇′i)
′ is the state vector for each phase

i ∈ {sp, sa, fg, fe} evolving inTQi := {(q′i, q̇′i)
′| qi ∈

Qi, q̇i ∈ R
dim(Qi)}. The inputui := (up

i , u
a
i , u

t
i)

′ in-
cludes the torques applied at the posterior hip joint, the
anterior hip joint and the torso joint, respectively.

The continuous-time phases are separated by discrete
events. The flight phases terminate when the vertical dis-
tance between the toe of either the posterior or the ante-
rior leg and the ground becomes zero. Due to the non-
negligible mass of the upper leg, an impact occurs at
touchdown which is modeled as in [1, 3]. On the other
hand, transitions from stance to flight occur when the ver-
tical ground reaction force reduces to zero.

4. LEG RECIRCULATION:
GENERATING PERIODIC MOTIONS

The objective of this section is to generate periodic
bounding motions with the model of Fig. 1. Because of
the non-trivial leg mass and inertia, periodic bounding
motions cannot be generated passively as in [2]. How-
ever, we can still take advantage of the passive dynamics



associated with the torso and leg springs in exciting pe-
riodic motions. In more detail, in generating bounding
motions, the torso joint will be unactuated throughout the
phases, i.e.,ut

i = 0 for i ∈ {sp, sa, fe, fg}, while the hip
joint is actuatedonly when the corresponding leg is in
flight so that the controller merely swings the leg forward
to the desired touchdown angle.

The design of the controller begins by associating a
output function of the form

yi = qc,i − hd1
i (si(qi), αi, βi) , (4)

to the dynamics (3) wherei ∈ {sa, fg, sp, fe}. In (4),
qc,i is the controlled variable andhd1

i represents its de-
sired evolution that is parameterized via a set of parame-
tersαi, βi as detailed below. The controlled variables are
defined by

qc,i :=







γp = ϕp + θp for i = sa,
γa = ϕa + θa for i = sp,
(γp, γa)

′ for i ∈ {fe, fg}.
(5)

In (4), si ∈ [0, 1] is a monotonically increasing quantity
defined as

si :=
xmax
p,i − xp

xmax
p,i

(6)

wherexmax
p,i is the travelled distance of the COM of the

posterior torso in each phase. Note thatyi is only a func-
tion of qi, and thus can be interpreted as a holonomic
constraint to the system.

4.1. Designing the constraints
4.1.1. Posterior Stance

As was mentioned above, during the posterior stance
phase, the hip joint of the leg in contact with the ground
is unactuatedup

sp = 0, and the only input that acts on the
system is applied at the hip of the anterior leg with the ob-
jective of placing the anterior leg at a desired touchdown
angle. Hence, the dynamics (3) becomes

ẋsp = fsp(xsp) + gasp(xsp)u
a
sp . (7)

The desired evolutionhd1
sp of the absolute anterior leg

angle is parameterized via a 3rd-order Beziér polyno-
mial with coefficientsαsp := {αsp,k}k=0,1 andβsp :=
{βsp,k}k=0,1; i.e.,

hd1
sp (ssp(qsp), αsp, βsp) =

1
∑

k=0

bsp,k(ssp(qsp))αsp,k

+bsp,2(ssp(qsp))βsp,0 + bsp,3(ssp(qsp))βsp,1 , (8)

where the termsbsp,k are given by

bsp,k(ssp) :=
3!

k!(3 − k)!
sksp(1− ssp)

3−k .

Using properties of Beziér polynomials [21],

hd1
sp (1) = βsp,1,

∂hd1
sp

∂ssp

∣

∣

∣

∣

∣

ssp=1

= 3(βsp,1− βsp,0) , (9)

which implies that selectingβsp,0 = βsp,1 results in nom-
inal bounding gaits where the anterior leg touches down
at an angle equal toβsp,1 and with zero angular velocity.

4.1.2. Extended Flight
During the extended flight, the posterior leg swings

forward while the anterior leg maintains a constant an-
gle βsp,1 in anticipation to touchdown. The correspond-
ing hip torquesup

sa andua
sa are both available for control,

and the output is defined as

hd1
fe (sfe(qfe), αfe) =

[

∑3
k=0 bfe,k(sfe(qfe))αfe,k

βsp,1

]

. (10)

whereαfe includes the Beziér polynomial coefficients
andbfe is determined similarly to (9).

4.1.3. Anterior Stance
During the anterior stance phase, the leg in contact

with the ground is unactuatedua
sa = 0, so that

ẋsa = fsa(xsa) + gpsa(xsa)u
p
sa (11)

The desired evolution of the posterior leg angle is

hd1
sa (ssa(qsa), αsa, βsa) =

1
∑

k=0

bsa,k(ssa(qsa))αsa,k

+bsa,2(ssa(qsa))βsa,0 + bsa,3(ssa(qsa))βsa,1 . (12)

Again, we setβsa,0 = βsa,1 so that the posterior leg ar-
rives at the angleβsa,1 with zero angular velocity at the
end of the anterior stance.

4.1.4. Gathered Flight
Similarly to the extended flight phase, in the gathered

flight phase, the posterior leg maintains a constant angle
while the anterior leg evolves according to the output

hd1
fg (sfg(qfg), αfg) =

[

βsa,1
∑3

k=0 bfg,k(sfg(qfg))αfg,k

]

.

(13)

4.2. Imposing the constraints
To impose the constraints (4) on the dynamics (3) we

differentiate (4) twice with respect to time to obtain

d2yi
dt2

= L2
fi
yi(xi, αi, βi) + Lgi,aLfiyi(qi, αi, βi)ui,a

+Lgi,pLfiyi(qi, αi, βi)ui,p , (14)

where L2
fi
yi, Lgi,aLfiyi and Lgi,pLfiyi are the Lie

derivatives of the output functionyi defined by (4) along
the vector fieldsfi, gi,a andgi,p that participate in (3);
see [21] for detailed definitions. In each phase, the inputs
available – i.e.,(ui,p, ui,a) in the gathered and extended
flight phases,ui,p in the anterior stance andui,a in the

posterior stance – are selected to ensured2yi

dt2
= 0.

4.3. Poincaŕe Map
The dynamics of bounding can be described by con-

catenating the continuous-time phases according to the
sequence of Fig. 2. To study the existence of periodic
motions, the method of Poincaré is used with the Poincaré
section taken right after the anterior leg liftoff, i.e.,

S := {xfg ∈ TQfg | yp − y∗p = 0} , (15)



wherey∗p = l0 cos(θa + ϕa) + 2L cos θa − L cos θp.
By projecting out the monotonically increasing horizon-
tal coordinatexp from the state vectorxfg and substitut-
ing yp through the condition defining (15), the (reduced)
Poincaré map can be defined as

z[k + 1] = P1(z[k], α[k], β[k]) , (16)

wherez represents the remaining states inxfg, i.e.,

z := [θp, θa, ϕp, ϕa, ẋp, ẏp, θ̇p, θ̇a, ϕ̇p, ϕ̇a] (17)

andα = {αi, x
max
p,i , xmin

p,i } for i ∈ {sp, sa, fe, fg}, β =
{βsa, βsp} including all the parameters participating in
the leg recirculation controller. Then, the problem of
computing periodic bounding gaits becomes equivalent
to finding a state vectorz so that

z − P1(z, α, β) = 0 (18)

for suitable parameter valuesα andβ and is solved nu-
merically using MATLAB’sfmincon.

Fig. 3 shows the evolution of forward velocityxp,
torso oscillationθa − θp, absolute leg angles(γp, γa)
and the hip torque input(up, ua) of a representative fixed
point. Note that in Fig. 3(b) there is one torso flexion-
extension oscillation in one stride, as in the passively gen-
erated bounding motions of [2]. Also, the maximum and
minimum torso angle occur in the extended and gathered
flight phases, corresponding to the convex and concave
configurations, respectively.
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Fig. 3 Evolution of forward velocity (a), torso oscilla-
tion (b), absolute leg angles (c) and hip joint torque
(d) of a fixed point. In (c) and (d), the red and blue
lines correspond to the anterior and posterior legs, re-
spectively. The vertical lines separate one cycle into
four phases: from left to right,fg, sp, fe andsa. The
discontinuities are due to the impact at touchdown.

4.4. Local Stability
To analyze the local stability properties of bounding,

we linearize (16) at a fixed point̄z assumingα andβ are
constants:

∆z[k + 1] = A1∆z[k], (19)

where∆z = z − z̄ andA1 = ∂P1

∂z

∣

∣

z=z̄
. When the eigen-

values ofA1 are all within the unit disc, the correspond-
ing fixed point is locally exponentially stable. The gen-
erated fixed points are not stable, thus a controller is nec-
essary to sustain periodic bound orbits in the presence of
perturbations.

5. LEG-TORSO COORDINATION:
STABILIZING PERIODIC MOTIONS

In our previous work [2], a hybrid controller has been
proposed to stabilize nearly passive bounding motions in
a model with massless legs. The controller of [2] intro-
duces an active componentut of the torso joint torque
that acts in parallel with the torsional spring connecting
the posterior and anterior parts of the torso. Then,ut is
used as a control input to influence the coordination be-
tween the torso’s flexion-extension oscillations and the
motion of the legs [2]. In this paper, a similar control ap-
proach is adopted in the higher-dimensional setting of the
model of Fig. 1 to stabilize the bounding motions gener-
ated with the leg recirculation controller of Section 4.

In more detail, in each phase of the bounding cycle, the
system (3) in closed loop with the corresponding action
of the leg recirculation controller takes the form

ẋi = f cl
i (xi) + gti(xi)u

t
i, (20)

whereut represents the input torque acting in parallel
with the torso spring; recall thatut was not used in the
controller of Section 4 that generates bounding motions.
Here,ut

i is employed in the stance phases to impose holo-
nomic constraints on (20) that coordinate the motion of
the torso and legs according to a nominal bounding orbit,
as was generated in Section 4. Finally, a discrete-time
controller is engaged to ensure local exponential stability
of the resulting motions.

5.1. Continuous-time Control
For the stance phasesi ∈ {sp, sa} we associate to the

closed-loop dynamics (20) the output function

yi = (θa − θp)− hd2
i (ςi(qi), ηi) (21)

wherehd2
i is the desired output of the relative pitch angle

θa − θp. Through designinghd2
i , the information about

the leg-torso coordination pattern that characterizes the
selected generated gait is passed to the feedback con-
troller. In more detail,hd2

i is designed through a suitable
parameterization of the relative pitch angle(θa − θp) at
the desired gait generated in Section 4, i.e.,

hd2
i (ςi(qi)) =

3
∑

k=0

ci,k(ςi(qi))ηi,k , (22)

whereηi,k are the Beziér coefficients,ci,k are given by

ci,k(ςi) :=
3!

k!(3− k)!
ςki (1− ςi)

3−k , (23)

andςi, i ∈ {sp, sa}, are the strictly monotonic quantities

ςsa :=
γmax
a − γa

γmax
a − γmin

a

and ςsp :=
γmax
p − γp

γmax
p − γmin

p

,



in whichγmax
a andγmin

a are the maximum and minimum
values ofγa and similarlyγmax

p andγmin
p are the corre-

sponding values forγp. In words, the evolution of the rel-
ative pitch angle during the stance phases is determined
by the absolute leg angle of the unactuated leg in contact
with the ground.

Finally, as in [21], the constraints (22) are imposed on
the system (20) in an asymptotic fashion, i.e.,

ut
i = (Lgt

i
Lfcl

i
yi)

−1[ν(yi, ẏi, ǫ)− L2
fcl
i

yi(xi)] (24)

whereν = − 1
ǫ2
KPyi −

1
ǫ
KVẏi. KP,KV are positive

gains andǫ > 0.

5.2. Discrete-time Control
By the construction of our feedback law, the parame-

ter arrayβ includes the absolute leg angles at touchdown,
which (partially) determine when the corresponding gath-
ered and extended flight phases are terminated. A variety
of control procedures is available for updating these an-
gles in an event-based fashion to enhance stability; see
[15] or [18] for examples. In this work, a discrete Linear
Quadratic Regulator (LQR) is employed that positions
the legs during flight based on feedback of the states at the
Poincaré section, similarly to [13]. In more detail, denot-
ing η = {ηsa, ηsp, γ

max
p , γmax

a , γmin
p , γmin

a }, the Poincaré
return map in closed loop with the continuous-time con-
troller of Section 5.1 becomes

z[k + 1] = P1(z[k], α[k], β[k], η[k]) .

In what follows, the parametersα andη are kept constant
and equal to their nominal values, while the touchdown
anglesβ[k] will be updated in a step-by-step fashion. To
emphasize the fact thatβ[k] includes inputs availabe for
control in discrete time, we define

z[k + 1] = P2(z[k], β[k]) . (25)

Linearizing (25) at a fixed point̄z results in

∆z[k + 1] = A2∆z[k] +B2∆β[k] (26)

where∆z = z − z̄, ∆β = β − β̄, A2 = ∂P2

∂z
|z=z̄,β=β̄

andB2 = ∂P2

∂β
|z=z̄,β=β̄ . Define the cost function

J(∆z) =

∞
∑

i=k

(∆z′Q∆z +∆β′R∆β), (27)

whereQ = Q′ ≥ 0, R = R′ > 0. It can be shown that
the optimal cost-to-goJ∗ is given by

J∗(∆z) = ∆z′S∆z, S′ = S > 0 (28)

whereS is the solution of the associated discrete-time
Riccati equation. The optimal feedback policy updates
the swing-leg retraction angles according to

∆β[k] = −K∆z[k] . (29)

whereK is derived fromS as

K = (B′

2SB2 +R)−1(B′

2SA2) ,

andK andS are given by MATLAB’sdlqr. With the
controller (29), the closed-loop return map becomes

z[k + 1] = P2(z[k], β̄ −K∆z[k]) := P3(z[k]) , (30)

and all the eigenvalues of the Jacobian∂P3

∂z
are located

within the unit disc. To illustrate the orbit’s local stability,
the state prior to liftoff of the bounding motion in Fig. 3 is
perturbed away from the fixed point by an initial error of
+0.1m/s in ẋp and−3deg in θa. The system converges
back to the nominal motion as shown in Fig. 4. Note that
the toe/ground interaction constraints are respected and
the maximum torso torque is less than40Nm.
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Fig. 4 The evolution of the forward velocity and the an-
terior pitch angle when the system is perturbed with
+0.1m/s in ẋp and−3deg in θa.

6. SPEED TRANSITIONS

As was mentioned in the introduction, in this work,
speed transitions will be realized by switching between
limit cycles according to the schematic of Fig. 5. In
Fig. 5, the limit cyclesφ0 and φ1 represent periodic
bounding motions at different running speeds, the sur-
facesS0 andS1 denote suitable Poincaré sections andz̄0
and z̄1 are the corresponding fixed points. The domain
of attraction of each of the fixed points̄z0 and z̄1 on S0
andS1 is denoted1 byD0 andD1, respectively. By exam-
ining the relationship between the domains of attraction
and the fixed points, the feasibility of generating a transi-
tion can be determined. For example, as shown in Fig. 5,
if z̄0 ∈ D1, then employing a switching controllerΓ0→1,

Γ0→1 : {(α0, β0, η0,K0)→ (α1, β1, η1,K1)} , (31)

which effectively changes the controller parameters from
those corresponding to the orbitφ0 to those ofφ1, the
motion of the system will be attracted by the target or-

bit φ1. Symbolically, if z̄0 ∈ D1, then z̄0
Γ0→1−−−→ z̄1.

Furthermore, ifz̄1 ∈ D0, then two-way transitions can
be realized enabling both acceleration and deceleration;

such transitions will be denoted asz̄0
Γ0→1←−−→
Γ1→0

z̄1.

Generally, determining the domain of attraction is a
difficult task, even for low dimensional systems. How-
ever, for the system (30), the state space of which is
ten dimensional, we will provide suitableestimates of
the domain of attraction of a bounding fixed point, using
quadratic Lyapunov functions [8], and sums of squares
verification [11,19], as detailed in the following section.
1Note thatD0 andD1 do not represent the domains of attraction of the
entire periodic orbitsφ0 andφ1.
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z̄1
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φ1
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Fig. 5 A conceptual illustration of the transition between
two different limit cycles, i.e.,φ0 andφ1. S0 andS1
are the Poincaré sections ofφ0 andφ1, andz̄0 andz̄1
are the corresponding fixed points.D0 andD1 are the
domain of attractions at the Poincaré sections forφ0

andφ1, respectively.

6.1. Estimation of Domain of Attraction
For ease of implementation, the fixed point is trans-

lated to the origin. Since∆z[k] = z[k]− z̄, (30) implies

∆z[k + 1] = P3(z̄ +∆z[k])− z̄ , (32)

which represents a map from∆z[k] to∆z[k + 1]; i.e.,

∆z[k + 1] = P4(∆z[k]) . (33)

The fixed point corresponding to (33) is∆z[k] = 0 and
its domain of attraction can be used to determine the do-
main of attraction of (30) in a straightforward manner.

A functionV (∆z) is a valid Lyapunov function for the
system (33) ifV (∆z) is positive definite andV (∆z)[k+
1]− V (∆z)[k] < 0 in a bounded domainD; we consider
domains of the form

D(ρ) := {∆z | 0 ≤ V (∆z) ≤ ρ} , (34)

whereρ is a positive scalar. Note that the linear opti-
mal cost-to-go function (28) is already a Lyapunov func-
tion candidate sinceS is a positive definite matrix. Thus,
definingV (∆z) := J∗(∆z), the problem of estimating
the domain of attraction takes the form

maxρ
s.t ∀∆z ∈ D(ρ), J∗

+(∆z[k]) < 0
(35)

whereJ∗
+(∆z[k]) = J∗(∆z[k + 1])− J∗(∆z[k]).

One way to check that the Lyapunov function is de-
creasing within the domainD is to formulate a sums-of-
squares (SOS) feasibility problem [11] as shown in [19].
A multivariate polynomialh(x) := h(q1, ..., qn) is a sum
of squares if there exist polynomialsf1(x), ..., fm(x)
such that

h(x) =

m
∑

i=1

f2
i (x), (36)

Condition (36) is equivalent to the existence of a positive
semidefinite matrixH such that

h(x) = Z ′(x)HZ(x), (37)

whereZ(x) is a suitably chosen vector of monomials.
For a given polynomial, sums-of-squares programming

will check the non-negativity of the polynomialh by
searching for a positive semidefinite matrixH [11] .

With the SOS technique, the problem in (35) can be
formulated as:

maxρ
s.t h(∆z) is SOS

−J∗
+(∆z[k])− h(∆z[k])(ρ− J∗(∆z[k])) is SOS,

(38)
whereh(∆z) is a positive definite polynomial of∆z.
Note that the SOS algorithm requiresJ∗

+(∆z[k]) to be
a polynomial [14]. However, in our case,

J∗

+(∆z[k]) = ∆z′[k + 1]S∆z[k + 1]−∆z′[k]S∆z[k]

= P4(z[k])
′SP4(z[k])−∆z′[k]S∆z[k] ,

(39)
in whichP4(z[k]) is not available in closed form; it is ob-
tained through numerical integration. Hence, to proceed
with the method, we approximate the return map (33) by
expandingP4 in Taylor series keeping terms up to second
order; i.e.,

P4(∆z[k]) ≈ T1∆z[k] + ∆z′[k]T2∆z[k] , (40)

whereT1 = ∂P4

∂∆zi
|∆z=0 andT2 = 1

2
∂2

P4

∂∆zi∂∆zj
|∆z=0 for

i, j ∈ {1, 2, ..., 10}. Substituting (40) into (39) yields

J∗

+(∆z[k]) = (T1∆z[k] + ∆z′[k]T2∆z[k])
′
S (T1∆z[k]

+ ∆z′[k]T2∆z[k])−∆z′[k]S∆z[k] .
(41)

Given the polynomial expression (41), the SOS feasibility
program in (38) can be solved by any available SOS tool-
box, such as SOSTOOLS [14], and the maximum value
ρmax can be determined by a binary search for the value
of ρ above which the SOS feasibility problem fails.

Givenρmax, the largest magnitude of tolerable single
perturbation can be calculated for all the states as

∆zmax(i) =

√

ρmax

S(i, i)
(42)

for i = 1, 2, ...10, which provides an indication of
the capability of the system in dealing with pertur-
bations. For the fixed point in Fig. 4,∆zmax =
(0.03, 0.03, 0.30, 0.04, 0.15, 0.13, 0.31, 0.37, 0.91, 0.90).
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Fig. 6 Ratio of the largest single perturbation that can
be tolerated as is predicted by the SOS method over
the corresponding value obtained by numerical simu-
lation. The red and blue bars correspond to the posi-
tive and negative perturbations, respectively.



Fig. 6 shows the ratio of these values to the values ob-
tained from simulation for the representative fixed point.
In the simulation method, a disturbance is regarded as
tolerable if the error in the sates is less that5% after15
strides. It can be seen from Fig. 6 that the ratio is very
diverse among different states. For instance, in the pos-
itive direction ofϕa, the SOS method can only capture
less than20% of the nominal value that can be accom-
modated. On the other hand, in the negative direction
of ẏp, more than90% can be described by∆zmax, im-
plying thatρmax is constrained by the capability of the
system in dealing with negative disturbance inẏp. This
observation is consistent with our previous studies in [2],
implying that perturbations that tend to decrease hopping
height may result in toe stubbing and failure to run due to
the lack of active control over leg length.

6.2. A Construction for Speed Transition

In this section, we illustrate the procedure in the con-
text of transitioning between fixed points at different run-
ning speeds. As shown in Fig. 7, the fixed pointz̄0 is
computed and its domain of attractionD0 is estimated.
Because the estimate of the domain of attraction lies in a
high dimensional state space, Fig. 7 only shows its pro-
jection on the(ẋp, ẏp) plane. The fixed points̄z1 andz̄2
are both located withinD0, and have been computed by
adding an inequality constraint when searching for them
that characterizes their “distance” from̄z0; namely,

(z̄i − z̄0)
′S0(z̄i − z̄0) ≤ ρmax

0 (43)

for i ∈ {1, 2}. The forward running speed of̄z1 and
z̄2 is 5.9m/s and5.5m/s, respectively. After estimating
the domains of attractionD1 of z̄1 andD2 of z̄2, tran-
sitions between the fixed points can be easily realized.

First, sincēz1, z̄2 ∈ D0, then the transitions̄z1
Γ1→0−−−→ z̄0

and z̄2
Γ2→0−−−→ z̄0 are both feasible; these transitions are

represented by the blue solid lines in Fig. 7. Reversely,

z̄0
Γ0→1−−−→ z̄1 can be realized, as the green solid line in

Fig. 7 shows, whilēz0
Γ0→2−−−→ z̄2 is not possible since

z̄0 6∈ D1. To realize the transition from̄z0 to z̄2, an inter-
mediate fixed point can be computed that is closer toz̄0
so that its domain of attraction includesz̄0.

By concatenating the basic transitions described
above, multi-hop transitions can be realized between
fixed points that are further apart. For example, a transi-
tion from z̄2 to z̄1 can be achieved usinḡz0 as a “bridge”

(that is,z̄2
Γ2→0−−−→ z̄0

Γ0→1−−−→ z̄1) corresponding to an in-
crease in the running speed from5.5m/s to 5.9m/s. It
should be mentioned that the duration of a transition can
be decreased by tracking the “distance” to the “target”
fixed point. For example, in switching from̄z2 to z̄1, if
the states enter the domain of attraction ofz̄1 before con-
verging toz̄0, then the switching controller will adopt the
controller information ofz̄1 in advance, and the evolu-
tion of the states will follow the dotted red line without
spending time to first converge tōz0. As shown in Fig. 8,
this shortcut decreases the transition time by28% from
7.2s to 5.2s. Finally, we remark that, similar to the ex-
pansion of LQR-trees [19], the above procedure can be
conducted iteratively such that more fixed points can be
connected via their domain of attraction to cover a much
larger range of running speeds.
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5.4 5.5 5.6 5.7 5.8 5.9 6 6.1

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

ẋp
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7. CONCLUSION
This paper proposes a hybrid control law for stabiliz-

ing periodic bounding gaits in a sagittal-plane model that
features a flexible torso and non-trivial leg mass and iner-
tia. Periodic motions are generated in a nearly passive
fashion, merely by recirculating the legs during flight.
Local stability is achieved by coordinating the torso os-
cillation with the leg movement and updating the touch-
down angles in a step-by-step fashion. The resulting
stable bounding motions are then used to transition be-
tween speeds by switching between the corresponding
fixed points based on estimates of their domains of at-
traction verified through sums-of-squares programming.
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