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Abstract. Free–floating space manipulator systems,

have spacecraft actuators turned off and exhibit

nonholonomic behavior due to angular momentum

conservation. A path planning methodology in joint

space for planar free–floating space manipulator

systems is developed that allows spacecraft attitude

control using manipulator motions. The method is

based on mapping the angular momentum to a space

where it can be satisfied trivially. Smooth and

continuous functions such as polynomials are

employed and the system is driven to a desired

configuration. Two cases are studied. In the first, the

manipulator is mounted on an arbitrary point of the

spacecraft and the corresponding transformation is

found. Then, a second transformation is found for the

particular case where the manipulator is mounted on

the center of mass of the spacecraft. It is shown that

the derived transformation allows for smooth

configuration changes in finite time. Limitations in

reaching arbitrary final systems configurations are

discussed. The application of the methodology is

illustrated using an example.

I. INTRODUCTION

Space exploration is a relatively new field in science and

engineering. Robotic manipulators are already playing

important roles in space missions because of their ability

to act in environments which are inaccessible or too risky

for humans. In the case of robotic systems in orbit,

robotic manipulators are mounted on a thruster –

equipped spacecraft, called free–flying space manipulator

systems. If the spacecraft thrusters are not operating, as

for example during capture operations, then these

systems are called free–floating space manipulator

systems. In free – flying systems, thruster jets can

compensate for manipulator induced disturbances, but

their extensive use limits the system’s useful life span. In

free–floating systems, dynamic coupling between the

manipulator and the spacecraft exists, and manipulator

motions induce disturbances to the system’s spacecraft.

In these cases, the spacecraft is permitted to translate and

rotate in response to its manipulation motions. This mode

of operation can be feasible when no external forces and

torques act on the system and when the total momentum

of the system is zero.

A free-floating space robot exhibits a nonholonomic

behavior. The nonholonomy in its mechanical structure is

due the nonintegrability of the angular momentum, [1].

This property complicates the planning and control of

such systems, which have been studied by a number of

researchers. Vafa and Dubowsky have developed a

technique called Virtual Manipulator (V.M.) method [2].

The kinematic and momentum equations of free-floating

space manipulator systems were developed using this

technique, which was subsequently used for path

planning of such systems. Inspired by astronaut motions,

they proposed a planning technique which employed

small cyclical motions in the manipulator's joint space to

modify its spacecraft's attitude.

Papadopoulos and Dubowsky studied the Dynamic

Singularities of free-floating space manipulator systems,

which are not found in earth bound manipulators and

depend on the dynamic properties of the system, [1,3]. At

a dynamic singularity the manipulator is unable to move

its end-effector in some inertial direction. These

singularities must be considered in the design, planning,

and control of free-floating systems because of their

important effects system performance.

Nakamura and Mukherjee explored Lyapunov

techniques to achieve simultaneous control of

spacecraft’s attitude and its manipulator joints, [4]. To

limit the effects of a certain null space, the authors

proposed a bidirectional approach, in which two desired

paths were planned, one starting from the initial

configuration and going forward and one starting from

the final configuration and going backwards. The final

path was made of these two paths, up to the point where

they intersected. However, this method was not immune

to null space problems and resulted non-smooth joint

trajectories that required that the joints come to a stop at

the switching point.

In another attempt to plan a space robotic system's

motion, Papadopoulos proposed a method that allowed

Cartesian motion of the manipulator from an initial point



to a final point avoiding dynamic singularities, [5]. The

method involved small Cartesian cyclical motions of the

end-effector designed in such way as to change the

attitude of the spacecraft to one that was known of

avoiding dynamic singularities, [5], [6].

Recently, Franch et al. have employed flatness

theory to plan trajectories for free-floating systems.

However, their method requires selection of robot

parameters so that the system is made controllable and

linearizable by prolongations, [7].

In this paper, a path planning methodology in joint

space for planar free–floating space manipulator systems

is developed that allows control of  spacecraft’s attitude

using manipulator motions. The method is based on

mapping the nonholonomic constraint to a space where it

can be satisfied trivially. Smooth and continuous

functions such as polynomials are employed, driving the

system to a desired configuration. Two cases are studied.

First, the general case where the manipulator is mounted

on an arbitrary point of the spacecraft is studied and the

corresponding transformation is found. In addition, a

particular transformation is found for the case where the

manipulator is mounted on the center of mass of a

spacecraft. It is shown that the derived transformation

allows for smooth configuration changes in finite time.

Limitations on reaching arbitrary final systems

configurations are discussed. An example illustrates the

proposed methodology.

II DYNAMICS OF FREE-FLOATING SPACE MANIPULATORS

A space manipulator system consists of a spacecraft and

a manipulator mounted on it, as shown in Figure 1. When

the system is operating in free-floating mode, the

spacecraft’s attitude control system is turned off. In this

mode, no external forces and torques act on the system,

and hence the spacecraft translates and rotates in

response to manipulator movements.
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Fig. 1. A Free-Floating Space Manipulator System.

This section develops briefly the equations of

motion of a rigid free-floating system. For simplicity, the

manipulator is assumed to have revolute joints and an

open chain kinematic configuration, so that, in a system

with  N -degree-of-freedom (dof) manipulator, there will

be N+6  dof.

Under the assumptions of absence of external

forces, the system Center of Mass (CM) does not move,

and the system linear momentum, P=M ˙ r CM , is constant.

With the further assumption of zero initial momentum,

i.e. ˙ r CM (0)= 0 , the system CM remains fixed in inertial

space, i.e. rCM = const , and the origin, O, can be chosen

to be the system’s CM.

The N  equations of motion for a free-floating

system can be found using a Lagrangian approach, and

have the form, [3]

  
H q( )˙ ̇ q +C q, ˙ q ( ) ˙ q = (1)

where 
  
H q( )  is an N N  positive definite symmetric

matrix, called the reduced system inertia matrix, and

  
C q, ˙ q ( ) ˙ q  contains the nonlinear Coriolis and centrifugal

terms. The N 1 column vectors 
  
q , ˙ q  represent

manipulator joint angles and velocities, and the N 1
vector  is the manipula tor  joint vector equal to

1, 2 ,..., N[ ]
T

. In these N  equations of motion, Eq. (1),

the spacecraft attitude and position variables do not enter

because the system kinetic energy does not depend on

spacecraft attitude or position nor on its linear or angular

velocity when the initial angular momentum is zero and

the system is free of external forces and torques.

However, the attitude of the spacecraft enters in Eq. (2),

which represents the conservation of angular momentum

and can be computed with its help as, [1],

  
0

0 =
0
D

-1 0
Dq

˙ q (2)

where 
  

0

0
 is the spacecraft angular velocity expressed in

the spacecraft 0 th  frame, and 
  
0
D , 0

Dq  are inertia-type

matrices of appropriate dimensions.

For simplicity, in this paper we focus on a free-

floating robotic system consisting of a two degree-of-

freedom (dof) manipulator mounted on a spacecraft. The

spacecraft is constrained to move in the plane

perpendicular to the axis of the manipulator rotation

(Planar Case). Considering the planar free-floating space

manipulator and assuming zero initial angular

momentum, the conservation of angular momentum, Eq.

(2), is written as

D ˙  0 + D1 +D2( ) ˙ q 1 + D2
˙ q 2 =0 (3)

where q1 , q2 , are manipulator relative joint angles and

0  is the spacecraft’s attitude. The coefficients D, D1  and

D2  in Eq. (3) depend on system parameters and on angles

q1 , q2 . This equation can be written also as

D0
˙  0 +D1

˙  1 +D2
˙  2 =0 (4)

where 1 , 2  are manipulator absolute joint angles, see

Fig. 1. The terms D0 ,D1 and D2  in Eq. (4) depend on

system parameters and angles 0 , 1 , 2 , and are given

in Appendix A.



The angular momentum, given by Eq. (3) or (4),

cannot be integrated to analytically yield the spacecraft

orientation 0  as a function of the system’s

configuration. However, if the manipulator joint angle

trajectories is known as a function of time, then Eqs. (3)

or (4) can be integrated numerically to yield the

trajectory for the spacecraft orientation. This

nonintegrability property introduces nonholonomic

characteristics to free-floating systems, and results from

the dynamic structure of the system. In other words, it is

not due to system kinematics, as is the case with the

nonholonomic constraints in mobile manipulators.

III NONHOLONOMIC PATH PLANNING

In this paper, we focus our attention in finding a path for

a free-floating space manipulator system, which connects

its initial configuration described by 0

in , 1

in , 2

in( ) to the

final one, described by 0

fin , 1

fin , 2

fin( ) . It is desired that

the spacecraft orientation is controlled actuating the two

manipulator joints only. It is well known that this

problem is not trivial, since one must satisfy the

nonholonomic constraint and achieve a change in a three-

dimensional configuration space with two controls only.

Next, a planning methodology is described that allows

for a systematic approach in the planning of systems

subject to nonholonomic constraints of the form of Eq.

(3) or (4). Here, Eq. (4) is used because in this case it is

much easier to find the desired transformation.

The constraint given by Eq. (4) is scleronomic and

can be written in the Pfaffian form,

P 0 , 1, 2( )d 0+Q 0 , 1, 2( )d 1+R 0 , 1, 2( )d 2=0 (5)

where,

P 0 , 1 , 2( ) = I0 +
m0 m1 +m2( )
m0 +m1 +m2

r0
2

+
m0 r0

m0 +m1 +m2

l1 m1 +m2( )+ r1m2[ ]cos 0 - 1( )

+
m0m2

m0 +m1 + m2

r0 l2 cos 0 - 2( )

(6a)
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,

2( ) =I
1

+
m0 m 1

m 0 +m 1 +m2

l
1

2

+
m

1
m

2

m
0

+m
1

+m
2

r1
2

+
m

0
m
2

m
0

+m
1

+m
2

l1 + r1( )
2

+
m 0 r0

m0 +m1 +m 2

l
1
m
1

+m
2( ) + r

1
m

2[ ]cos 0
-
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2
m

2

m
0

+m
1

+m
2

m1r1+m0 l1+r1( )[ ]cos 1 - 2( )

(6b)

R 0 , 1 , 2( ) = I2 +
m2 m0 +m1( )
m0 +m1 +m2

l2
2

+
m0m2

m0 +m1 + m2

r0 l2 cos 0 - 2( )

+
m2 l2

m0 +m1 +m2

m1 r1 +m0 l1 + r1( )[ ]cos 1 - 2( )

(6c)

where the geometric and mass properties in Eq. (6) are

defined in Figure 1.

Note that Eq. (5) contains three differentials.

Planning can be facilitated if this form is transformed to

one in which two differentials appear. This is indeed

possible because it is known that nonintegrable Pfaffian

equations of the form of Eq. (5) can be written as, [8],

du+vdw =0 (7)

where u, v, w are properly selected functions of 0 , 1 , 2 .

The method of finding the proper functions u, v, w

is analytically presented in [9]. It is briefly described here

for completeness. Eq. (5) can be transformed into Eq. (7),

if the following equations hold

P=
u

0

+v
w

0

, Q=
u

1

+v
w

1

, R=
u

2

+v
w

2

(8)

To find the unknown functions u , v , and w , the

differential equations that they must satisfy are

constructed. To this end, we define the following

auxiliary functions,

 P =
Q

2

R

1 , 

 Q =
R

0

P

2 , 

 R =
P

1

Q

0 (9)

Substitution of Eq. (8) into Eq. (9) and subsequent

multiplication of  P  by w 0 , of  Q  by w 1 , and

of  R  by w 2  respectively, and addition of the results

yields the following differential equation for w

 P 
w

0

+  Q 
w

1

+  R 
w

2

=0
(10)

Similarly, multiplying  P  by v 0 ,  Q  by

v 1 , and  R  by v 2  respectively, and adding the

results, yields the following differential equation for v

 P 
v

0

+  Q 
v

1

+  R 
v

2

=0 (11)

Therefore, both w  and v  satisfy the same first order

partial differential equation, i.e. any solution to Eq. (10)

is also a solution to Eq. (11).

Finally, multiplying  P  by P u 0 ,  Q  by

Q u 1  and  R  by R u 2 , adding the results, and

using Eqs. (8), and (10) yields

 P 
u

0

+  Q 
u

1

+  R 
u

2

= P  P +Q  Q +R  R 0 (12)



The right hand side in the above equation does not

vanish, because the condition of integrability is not

satisfied. If the system were holonomic, then u  would

have satisfied the same differential equation as v  and w .

Next, the partial differential equation, Eq. (10), is

solved to yield w . The general solution to it is any

function of the two independent integrals

a 0 , 1, 2( ) = k1 (13a)

0 , 1, 2( ) = k2 (13b)

of the subsidiary system, [10],

d
0

P'
=
d

1

Q'
=
d

2

R'
(14)

In Eqs. (13), k1 and k2  are arbitrary real numbers.

For simplicity let w  equal to one of these integrals,

w = a 0, 1, 2( )= k1 (15)

Eq. (5), in view of Eqs (8) and (15), yields

Pd 0 +Qd 1 +R d 2 =

u

0

d 0 +
u

1

d 1 +
u

2

d 2 = du = 0
(16)

i.e. for any particular value k1 of w , Eq. (5) is a perfect

differential. Next, a solution for u  is obtained by

integration of Eq. (16) under the constraint imposed by

Eq. (15). Eq. (16) is used to find u  by expressing any

variable and its differential, say 2  and d 2 , with respect

to the other variables and k1. Substitution of these into

Eq. (16) results in a perfect differential dh 0 , 1,k1( ).
Integration of this differential results in the function

h 0 , 1,k1( ). Replacing k1 using Eq. (13a), results in the

function u 0, 1, 2( ). Hence, expressions for u  and w

have been found. The expression for v  is found using

any of Eqs. (8).

This transformation is very helpful for planning

purposes. Indeed if we chose functions f  and g  as

w= f t( ) (17a)

u=g w( ) (17b)

v=
du

dw
= g' w( ) (17c)

then Eq (7) is satisfied identically. Therefore, the

planning problem reduces to choosing functions f  and g
such that they satisfy the initial and final configuration

variables. Such functions can be polynomials, splines, or

any other continuous and smooth functions. For example,

one possibility is to choose function f  as a fifth order

polynomial, so that the system initial and final

configuration, velocity and acceleration can be specified,

and function g  as a third order polynomial, so that initial

and final system configurations can be specified.

Next, this methodology is applied to free-floating

space manipulator systems in the general case, where the

manipulator is mounted on an arbitrary spacecraft point

and in the particular case, where the manipulator is

mounted on the spacecraft’s center of mass.

A. Manipulator Mounted on an Arbitrary Point

Applying the method described in the previous section,

the two solutions of the subsidiary system, Eq. (14), are

(Appendix C)

a 0 , 1, 2( )=
m0 r0 m0 +m1 +m2( )
m0 l1 + r1 m0 +m1( )

cos 0

+ m0 +m1 +m2( )cos 1 +

+
m0 +m1 +m2( )m2 l2
m2 r1 +l1 m1 +m2( )

cos 2 = k1

(18a)

0 , 1 , 2( )=
m2 l2

m0 +m1+m2

m1r1 + m0 l1+r1( )[ ]cos 1- 2( )

+
m0m2

m0 +m1+m2

r0 l2 cos 0 - 2( )

+
m0r0

m0 +m1+m2

l1 m1+m2( )+r1m2[ ]cos 0- 1( )=k2

(18b)

Note that the integral a 0 , 1, 2( )  is expressed in

absolute manipulator angles while the integral

0 , 1, 2( )  is expressed in relative manipulator angles.

The former is much easier to use because it facilitates the

expression of any variable and its differential in terms of

the other two variables and their differentials. Thus we

choose the function w  be equal to integral a 0 , 1, 2( ) .

The nonholonomic constraint described by Eq. (5)

can be written in the form given by Eq. (7) if the

following transformation is used

w 0 , 1, 2( )=
m0r0 m0 +m1+m2( )
m0 l1+r1 m0+m1( )

cos 0 +

+ m0+m1 +m2( )cos 1+

+
m0+m1 +m2( )m2 l2

m2 r1 +l1 m1+m2( )
cos 2

(19a)

u 0 , 1, 2( )= 1 0 + 2 2 + 3 arcsin cos 1( )+

+ 4 arcsin c0+c1 cos 0-cos 1+c2 cos 2( )+

+ 5 cos 0 + 6 cos 1+ 7 cos 2( )

1- c0 +c1 cos 0-cos 1+c2 cos 2( )
2
+

+ 8 sin 2 0( )+ 9 sin 2 1( )+
+ 10 sin 2 2( )+
+ 11 sin 0+ 1( )+

+ 12 sin 0 + 2( )+

+ 13 sin 1 + 2( )

(19b)



v 0 , 1, 2( )=
b0 +b1 cos 0 +b2 cos

2
0 +b3 cos 1

1- c0 +c1 cos 0-cos 1+c2 cos 2( )
2

+

+
b4 cos 0 cos 1+b5 cos

2
1 +b6 cos 2

1- c0 +c1 cos 0 -cos 1 +c2 cos 2( )
2

+

+
b7 cos 0 cos 2 +b8cos 1cos 2 +b9 cos

2
2

1- c0+c1 cos 0-cos 1+c2 cos 2( )
2

+

+b10 1- c0 +c1 cos 0-cos 1+c2 cos 2( )
2

+

+b11 sin 0+b12 sin 1 +b13 sin 2

(19c)

where the coefficients ai , bj  in Eqs (19b)-(19c) depend

on system parameters and are given in Appendix B.

Note that from the system dynamics point of view,

the spacecraft is equivalent to the last manipulator body.

Therefore, the transformation must be symmetric with

respect to angles 0  and 2  or lengths r0  and l2 , etc.

Careful study of the transformation given by Eqs. (19)

confirms that indeed, this is the case here.

The transformation given by Eqs. (19a)-(19c) exists

if and only if the following inequality is satisfied

1 c0 +c1 cos 0 - cos 1 + c2 cos 2 1 (20)

This inequality obviously introduces a constraint

among the absolute angles of the system. This constraint

must always hold, therefore it does not permit the

selection of arbitrary initial and final system

configurations.

The transformation defined by Eqs. (19a)-(19c),

consists of nonlinear terms and its inverse cannot be

found easily to yield analytically variables 0 , 1 , 2  as

functions of u,v,w . This is an issue of current research.

B. Manipulator Mounted on Spacecraft CM

When the parameter r0  is equal to zero, the system

manipulator is mounted on the spacecraft center of mass.

Then, the coefficients of the nonholonomic constraint

given by Eqs (6a)-(6c), take the simpler form

P( 0 , 1 , 2 ) = 0 (21a)

Q( 0 , 1 , 2 ) = 1 + 3 cos 1 - 2( ) (21b)

R( 0 , 1 , 2 ) = 2 + 3 cos 1 - 2( ) (21c)

where the coefficients i  are given by

0= 0 (22a)

1 = 1 +
l1
2m0 m1

m0 +m1 +m2

+
m1m2 r1

2

m0 +m1 +m2

+
m0m2 l1 + r1( )

2

m0 +m1 +m2

(22b)

2= 2 +
m
2
m
0
+m

1( )l2
2

m
0
+m

1
+m

2

(22c)

3=
l
2
m
1
m
2
r
1

m
0
+m

1
+m

2

+
l
2
m
0
m
2
l
1
+r

1( )
m
0
+m

1
+m

2

(22d)

In this case, the two solutions of the subsidiary

system, Eq. (14), are

a 0 , 1, 2( )= 1= k1 (23)

0 , 1, 2( )= 2= k2 (24)

Choosing the function w  be equal to the integral

a 0 , 1, 2( ) , the nonholonomic constraint given by Eq.

(5) can be written in the form given by Eq. (7) if

u 0, 1, 2( )= 0 0 + 2 2 - 3 sin 1 - 2( ) (25a)

v 0, 1, 2( ) = 1 + 2 3 cos 1 - 2( ) (25b)

w 0, 1, 2( )= 1 (25c)

Assuming the planning has been achieved in the

u v w  space, one still needs to know the joint

trajectories and rates for achieving the planned motion.

To this end, the inverse transformation from u v w  to

0 , 1 , 2  must be found.

After some algebraic manipulations, the inverse

transformation can be found and is given by,

0 =
1

0

u - 2 w( )

1

0
2 arccos

v - 1

2 3

 

 
 

 

 
 + 3 1-

v- 1

2 3

 

 
 

 

 
 

2 

 

 
 

 

 

 
 

(26a)

1=w (26b)

2 =w+ arccos
v -

1

2
3

 

 
 

 

 
 (26c)

It is easy to see that the forward transformation

given by Eqs. (25a)-(25c) is defined for any system

configuration 0, 1, 2( ). On the other hand, the inverse

transform given by Eqs. (26a)-(26c) is defined if and

only if the following inequality is satisfied

-1
v

0
,

1
,

2( )- 1

2
3

1 (27)



It is obvious that to satisfy the constraints described by

Eq. (27), additional freedom must be introduced in the

planning scheme. A simple way to achieve this is to

introduce additional coefficients in the polynomial u w( ).
These additional coefficients should not affect the

satisfaction of the initial and final conditions but should

allow one to shape the path in the u v w  space so as to

satisfy Eq. (27).
To satisfy Ineq. (27), more than one additional

coefficients bi  are needed. However, in such a case, the

order of the function v  increases and makes an analytical

approach very difficult. Therefore, we give more freedom

by assuming that the final spacecraft orientation 0

fin
 is

free and we study which orientations are possible from

the given initial configuration. With these remarks, we let

the function u w( ) have the form

u w( ) =b4 w
4
+ b3 w

3
+ b2 w

2
+ b1w + b 0 (28)

Because of Eq. (17c), v w( )  is given by

v w( )= 4b4w
3 3b3w

2 2b2w b1 (29)

Using the initial and final system configuration and

the transformation given by Eqs. (25), the initial and final

conditions for u,v,w  are found and the following linear

system is obtained with respect to the unknown

coefficients bi , i = 0,1, 2,3 :

bi win

i
=uin b4win

4

i=0

3

(30c)

bi w fin

i
=u fin b4w fin

4

i=0

3

(30b)

i bi win

i 1
= vin 4b4win

3

i=0

3

(30c)

i bi wfin

i 1
= vfin 4b4w fin

3

i=0

3

(30d)

The above system can be solved to yield the

bi , i = 0,1, 2,3 , as linear functions of b4  and 0

fin
.

Replacing these coefficients in Eq. (29), the polynomial

v  is written as a function of the additional coefficient b4
and the unknown spacecraft final orientation 0

fin
. The

problem reduces to finding a range of values of b4  and a

range of orientations 0

fin
 which leads to paths that satisfy

Eq. (27) for all w win wfin[ ]. These ranges can be found,

studying the following function

h w,b4 , 0

fin( )=
v w,b

4
,

0

fin( )- 1

2
3

(31)

This function is a third-order polynomial with respect to

w . Due to Eq. (25b), once the initial and final 1  and 2

are given, the initial and final values of the function h

are set and known. Also, these two values always are in

the range of 1, 1[ ] for w win wfin[ ], because the forward

transformation given by Eq. (25) is always defined. Note

that the values of h  along the path are still given by Eq.

(31).

To satisfy Ineq. (27), h w, b4 , 0

fin( )  must be in the

range 1, 1[ ]. This function either has no extremes for

w win wfin[ ], and therefore Ineq. (27) is always satisfied,

or has extremes whose values must be in the range

1, 1[ ]. Obviously, some limitations in the reachable

configurations may result because of this reason. The

application of the planning methodology is illustrated

next with an example.

IV. EXAMPLE

To illustrate the methodology described above, the free-

floating space manipulator shown in Figure 1 is

employed. The system parameters are shown in Table 1.

Table 1. System Parameters.

Body li m( ) ri m( ) mi Kg( ) Ii Kg m
2( )

0

1

2

.5

.5

.5

0

.5

.5

40

4

3

1.667

0.333

0.250

The main task for the system is to move from some initial

configuration 0

in , 1

in , 2

in( ) to a final one 0

fin , 1

fin , 2

fin( ) at a

given time and using manipulator actuators only. For the

simulation, the total move time is chosen equal to 10 s.

The initial configuration is 0

in , 1

in , 2

in( )= 10 o,40 o,45o( )
and the final desired one is 0

fin , 1

fin , 2

fin( )= 0

fin ,60 o,70 o( ).
In this case, the initial and final values of the function h
are 0.996 and 0.984 respectively. Since these values are

close to +1, it is advantageous to have a minimum for h ,

because this increases the range of possible final

configurations available.

Since h  is a third order polynomial, its derivative is

a second order and therefore h  can have up to two

extremes. In this example, one of these is a minimum and

is described by point A w1, h w1( )( ), and the other is a

maximum, described by B w2 , h w2( )( ) . To ensure that

only the minimum in h  appears in the range win ,w fin[ ] ,

the following conditions must hold,

w1 win ,w fin[ ] and w2 win ,w fin[ ] (32)

Under these conditions, Ineq. (27) reduces to,

h w1( ) 1 (33)

The above conditions are functions of b4  and 0

fin
.

The validity of these conditions is checked for candidate



final orientations in the range 0
fin 360o , 360o[ ]  and

b4 100, 0( ) 0,100( ) . The resulting reachable range

for the final spacecraft orientation is 0

fin 75o , 35o( ). If
the final orientation is chosen to be 0

fin
= 45o , then the

corresponding range of b4  that allow this configuration

change is b4 108, 0( ) 0,110( ) .

Figure 2 shows the motion of the free-floating space

manipulator system for a final spacecraft orientation

equal to 0
fin

= 45o  and for b4=1 . The trajectories of the

configuration variables are shown in Figure 3. The rates

of the relative joint rates and the spacecraft orientation is

shown in Figure 4. It can be seen that all trajectories are

smooth throughout the motion, and that the system starts

and stops smoothly at zero velocities, as expected. This is

an important characteristic of the method employed and

is due to the use of smooth functions, such as

polynomials.

The joint torques that correspond to the

configuration change in Fig. 2 are shown in Figures 5 and

6. These torques are computed using Eq. (1) and the

elements of the reduced inertia matrix, given in Appendix

A. As shown in Figures 5 and 6, the required torques are

relatively small and smooth. The implication of this is

that joint motors can apply such torques with ease and

therefore the resulting configuration maneuver is

feasible. These torques can be made arbitrarily small, if

the duration of the maneuver is increased.

Fig. 2. Motion Animation of space manipulator.

Fig. 3. Trajectories of system absolute angles that
correspond to the snapshots in Fig. 2.

Fig. 4. Rates of relative joint angles and of the

spacecraft orientation that correspond to the

snapshots in Fig. 2.

Fig. 5. Torque applied on the manipulator forearm.



Fig. 6. Torque applied on the manipulator upper

arm.

V. CONCLUSIONS

A path planning methodology in joint space for planar

free–floating space manipulator systems was developed.

These systems are nonholonomic because of the angular

momentum conservation. The spacecraft moves in

response to manipulator motions, while the orientation of

the spacecraft can be controlled by actuating the joint

angles, only. The method was based on mapping the

nonholonomic constraint to a space where it can be

satisfied trivially. Smooth and continuous functions such

as polynomials were employed and the system was

driven to the desired configuration. Two cases were

studied. First, the transformation was made for the

general case where the manipulator is mounted on an

arbitrary point of the spacecraft. Then a second

transformation was found for the particular case where

the manipulator is mounted on the center of mass of the

spacecraft. It was shown that the derived transformation

allow for smooth configuration changes in finite time.

Limitations in reaching arbitrary final systems

configurations were discussed.
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APPENDIX A

The D-terms in Eq. (3) are given by:

Dj =
0di j j = 0,1,2( )

i= 0

2

D= D0 + D1 +D2

0 d0 0 = I0 +
m
0
m
1
+ m

2( )
m

0
+m

1
+m

2

r0
2

0d1 0 =
m
0
r
0

m
0
+m

1
+m

2

l1 m1 +m2( ) + r1 m 2[ ] cos q1( )= 0d0 1

0 d2 0 =
m

0
m
2

m
0
+ m

1
+ m

2

r0 l2 cos q1 + q2( ) = 0d0 2
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m

0
m
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(A1)



0d2 1=
m
2
l
2

m
0
+m

1
+m

2

m1 r1 +m0 l1 + r1( )[ ]cos q2( ) = 0d1 2

0d2 2 = I2 +
m
2
m

0
+m

1( )
m

0
+m

1
+m

2

l2
2

Replacing the relative angles by the absolute angles,

Eqs. (A1), yield the D terms in Eq. (4).

The reduced system inertia matrix, defined in Eq.

(1), for the planar case, has the form

H q( )=
0d

11
+20d

12
+ 0d

22

D
1
+D
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0d

12
+ 0d

22
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+ 0d
22

D
2
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1
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D
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APPENDIX B

The coefficients in Eq. (19b) are given by
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The coefficients in Eq. (19c) are:
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The coefficients in Eqs. (19) are:
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APPENDIX C

In this appendix, the computation of the two independent

integrals of the subsidiary system, Eq. (14), in the case of

the manipulator mounted on an arbitrary spacecraft’s

point is described in more detail. Eq. (14) takes the form

d
0

A
0
sin

1
-
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d
1

B
0
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d
2
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(C1)
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It is known that

sin - b( ) = sin cos b - cos sinb (C2)

Multiplying numerator and denominator of the first,

second and the third fraction of Eq. (C1), with sin 0 ,

-sin 1  and sin 2  respectively, and using the following

fractions property,

= = ...= =
+ + ...+

+ +...+
(C3)

yields
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From Eq. (C4), the following results

1

A0
cos 0 -

1

B0
cos 1 +

1

C0

cos 2 = k1 (C5)

Eq. (C5) is the first independent integral of subsidiary

system given by Eq. (14). Next, the second integral is

computed. Eq. (C1) can be written as

d 0 -d 1

A0sin 1- 2( )-B0 sin 0- 2( )
=

=
d 0 -d 2

A0sin 1- 2( )-C0sin 0- 1( )

=
d 1 -d 2

B0sin 0 - 2( )-C0 sin 0- 1( )

(C6)

Let,

x= 0 - 1 (C7a)

y= 0 - 2 (C7b)

z= 1 - 2 (C7c)

Eq. (C6) takes the form

dx

A0sinz -B0siny
=

dy

A0sinz-C0sinx
=

dz

B0siny-C0sinx
(C8)

Multiplying numerator and denominator of the first,

second and third fraction of Eq. (C8), with C0 sinx ,

B0 sin y , and A0 sin z  respectively, and using property

(C3), we have

C0 sinx dx -B0 sin y dy + A0 sinz dz = 0

or

A0 cos z -B0 cos y+C0 cos x= k2 (C9)

Eq. (C9) is the second integral of subsidiary system

given by Eq. (14).
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