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ABSTRACT- Electrohydraulic servosystems exhibit highly nonlinear behavior to the effect that classical linear
controllers, e.g., PD, usually achieve a limited performance. Load static and dynamic parameters variations are
also contributing to the limitation of their position and force tracking performance. This paper presents a model-
based controller applied to a fully detailed model of an electrohydraulic servosystem aiming at improving its
position and force tracking performance. Fluid, servovalve, cylinder and load dynamics are taken into account.
Simulation results show the strategy to be promising in controlling hydraulic servoactuators. The approach can
be further extended to the control of hydraulically driven manipulators and simulators.
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INTRODUCTION
Many mobile, airborne and stationary applications
employ hydraulic control components and
servosystems. Hydraulic servosystems can generate
very high forces, exhibit rapid responses, and have
a high power-to-weight ratio compared to other
technologies. On the other hand, they exhibit a
significant nonlinear behavior due to the nonlinear
flow/pressure characteristics, oil compressibility,
time varying eigenfrequency behavior, nonlinear
transmission effects, flow forces acting on spool
and friction, which is not only largely uncertain but
is greatly influenced by external load disturbances.
In recent years, many control schemes that do not
depend on operating point linearizations have been
proposed to improve hydraulic servosystem
performance [1]. This approach sacrifices controller
performance in favor of its robustness, while
another study uses a classical analysis to point out
that common PID controllers are inadequate for
force tracking due to hydraulic system fundamental
limitations, [2]. Pressure feedback has been used to
improve the performance of classical PD
controllers, [3]. Various other controllers from
neural to adaptive have maintained good
performance of electrohydraulic servosystems, [4-
6]. However, the response of such a system heavily
depends on the load and its variations, thus the
performance and robustness of neural controllers is
an issue. The nonlinear adaptive force control
scheme of an active suspension achieves better
performance than conventional linear controllers,
[5], where only cylinder uncertainties were
considered. The same applies to [7] where the back-
stepping approach of [5] was extended from force
to motion control using a hydraulic actuator with a
three-way valve. Load uncertainty parameters were
taken into account to result in a precise motion of a
single-rod hydraulic actuator, [6].

A hybrid position/ force control scheme was
proposed, using a time-delayed dynamic inversion
and a Lyapunov analysis, respectively, [8. 9]. In
these papers, either the servovalve leakages have
been neglected or unreasonable acceleration
estimations have been used in the feedback control
law by twice differentiating the actual ([8]) or
desired ([9]) piston position. Also, the cylinder
output force is calculated from the pressure drop
across the cylinder and therefore, not at the load.
Another time-delayed scheme is introduced for
torque tracking in constrained and free motion for a
hydraulic robot with proportional valves, [10]. The
dynamics of the hydraulic servosystem were
replaced by a simple time-delay, while a force
sensor measured the actual torque. In constrained
motion, where the dynamics of the system are
simplified due to the small piston rod movement,
force tracking is quite good. However, the
reduction of system dynamics to a simple time-
delay results in poor force tracking in free motion.
A model-based controller of a hydraulically driven
manipulator was studied but the feedforward
controller terms are calculated using desired and
not actual positions, leading to poor results, [11].
In this paper, a fully detailed model of an
electrohydraulic servosystem, which includes fluid,
servovalve, servoactuator and load dynamics, is
presented and used for evaluating the proposed
model-based controller for force tracking control,
both in free and constrained motion. It also
compares its position tracking performance to that
of a classical linear controller, using intensive
simulations. Load dynamic and static parameters
are varied widely so as to test the proposed
controller in various load conditions. Simulation
results show the technique to be promising in
providing robust position and force control and in
extending the approach to hydraulically driven



manipulators and motion platforms. The paper is
organized as follows. Following system physical
modeling, a model-based controller for both
constrained and free motion is developed, and
simulation results are provided. Comparisons
against classical control are presented.

PHYSICAL MODELING
The development of an accurate dynamic model for
a hydraulic servosystem is important for
understanding the system and for developing a
robust controller. To this end, a description of the
dynamics for the fluid subsystem, the servovalve,
the cylinder and the load is required.
Fig. 1 shows a hydraulic servoactuator, including a
servovalve, a cylinder, a force sensor and an inertial
load. The dynamic model must also take into
account the power supply (a variable displacement
constant pressure pump) and transmission line
dynamics. Small loses due to filters or other
hydraulic components are lumped into line losses.

Fig. 1. Schematic model of hydraulic servoactuator.

The model of the hydraulic subsystem was
developed using Linear Graphs ([12]), which allow
a systematic generation of system state-space
equations, using three sets of equations, namely the
elemental equations and the compatibility and
continuity equations. In hydraulic systems, element
equations describe the relationship between
pressure and flow for the elementary hydraulic
elements such as the inertial, capacitor and resistive
element. Compatibility equations result in pressure
drop equations along a closed circuit, while
continuity equations result in flow continuity at
systems nodes or closed surfaces.
The model, in its detailed form is useful in
understanding the physical phenomena in the
system and can be used to evaluate controller
performance in simulation. Modeling of several key
components is discussed next.

Hydraulic Unit and Transmission Lines
The custom-made constant pressure power unit,
equipped with a PARKER PVP41 Series variable
displacement piston pump, is modeled as a source
of constant pressure, while transmission lines are
modeled as an inertance, a resistance and a
capacitance connected in a T-configuration (lump-
parameter line model). This is a suitable description
for simulation purposes provided that the frequency

of oscillations in the system is significantly less
than that corresponding to wave propagation, [13].

Servovalve
The MOOG G761 Series servovalve is a high
performance two-stage design valve. The output
stage is a closed center, four-way, sliding spool,
while the pilot stage is a symmetrical double nozzle
and flapper, driven by a torque motor. Since its
natural frequency is orders of magnitude higher
than the desired closed loop bandwidth, only its
orifices resistive effects was taken into account, and
is described by ([14])

P C Q QR R R R= ◊ ◊ (1)
where PR  is the pressure drop across the orifice,
QR  is the flow through the orifice and the
coefficient of CR  is a function of fluid density r ,
the orifice area A  and the discharge coefficient Cd ,

C C AR d= ◊ ◊( )r 2 2 2 (2)

The valve spool position modulates the orifice area,
which in turn affects the magnitude of CR , and is
controlled by an input voltage command. The
square root of the inverse of the orifice resistance,
called hereafter servovalve orifice hydraulic
conductance GR  is defined as G CR R= -1 2/ .
The four symmetric and matched servovalve
orifices make up a four-legged flow path of four
nonlinear resistors modulated by the input voltage
and thereby the servovalve is modeled as the
hydraulic equivalent of a Wheatstone bridge. Two
schematic model versions of the servovalve are
given in Fig. 2 where the orifice leakage is taken
into account (Fig. 2.b) and neglected (Fig. 2.a).

Fig. 2. Schematic model of servovalve, when orifice leakage is

(a) neglected and (b) taken into account.

In the latter case, only two nonlinear resistors are
required to build the servovalve model. However,
in this case and for simulation purposes, two
dynamic models should be used for the servovalve,
in order to allow for both forward and backward
motions of piston rod. In other words, to have the
sign of rod velocity changed, the servovalve must
be able to reverse the oil flow direction, as required
by the headside and rearside piston gyrators
equations, respectively, see Fig. 3.
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where A1 and A2  are the piston areas at headside
and rearside, respectively (see Fig. 1).
This reversal of flow can be obtained either by
using two pressure sources, one set always at pump
pressure, while the other set always at tank
pressure, or by assuming that the “polarity” of the
pressure source changes according to the sign of the
input voltage sent to the servovalve.
Contrarily, modeling the servovalve as a hydraulic
bridge the topology of the real servovalve is
respected and the servovalve model is the same for
any input command. The direction of oil flow, i.e.,
the direction of rod motion, is obtained by
following the appropriate flow path, which is
controlled by the input command sign. However,
this modeling choice introduces numerical stiffness
problems, because two of the four resistances of the
bridge are always very large, [15]. On the other
hand, it also introduces the hydraulic damping of
the real system, caused by the residual flows
leaking through the orifices when the servovalve is
closed. This modeling technique for the servovalve
is followed in this paper.
Due to symmetry and match of the orifices the
magnitude of CR  of any orifice can be obtained
from one orifice for any input command. The other
orifice resistances are calculated as

C i C i C i C

C i C i C i C
R sv R sv R sv R P A

R sv R sv R sv R P B

1 3 3

2 4 1

( ) ( ) ( )

( ) ( ) ( )
,

,

= = - =
= = - =

Æ

Æ
(5)

where CR P A, Æ  and CR P B, Æ  are the orifice resistances

of each flow path, see Fig. 2. As shown in previous
works, experimental data for the servovalve orifice
conductances can be obtained and a polynomial
representation of GR  can be found using curve
fitting algorithms, [16], [17].

Servocylinder
The servovalve drives a custom-made double-
acting single-ended MOOG servocylinder with an
internal analog R-Series MTS linear displacement
transducer and special low friction seals and glands.
Because of the latter, the stick-slip effect is minimal
and the piston friction is only due to Coulomb and
viscous friction. The piston areas are not equal, thus
two gyrators are used to describe the conversion of
pressure to force, see Fig. 3. The piston gyrator
equations are given by Eqs. (3) and (4).

System Full Model
The graph of the full model of the hydraulic
servosystem is shown in Fig. 3. This also includes
an inertial load and a force sensor between the load
and the rod, which is modeled as a first order
system with high stiffness and damping. The

application of continuity and compatibility laws,
along with individual elements equations, leads to a
set of nine nonlinear first order differential
equations as follows,

Ṗ P P R Q CL s CL L L L1 1 1 1 1= -( ) -( ) (6)

Q̇ P P P IL CL R L1 1 1 1 1= - -( ) (7)

Ṗ Q A v Q Q R P CL p R R in L1 1 1 2 4 1= - - - -( ) (8)

Ṗ Q Q A v Q R P CR R p L in L2 2 4 2 2 2= + + ◊ - +( ) (9)

Q̇ P P P IL R CL L2 2 3 2 2= - -( ) (10)

Ṗ Q P R CCL L CL L L2 1 2 2 2= -( ) (11)

˙

( )
v A P A P B v B v v

F F v F M
p p p s p L

Ks p gp p

= - - - -( )( +
- - - )

1 1 2 2 (12)

Ḟ K v vKs s p L= -( ) (13)

v̇ F B v v F ML Ks s p L gL L= + -( ) -( ) (14)

where P P PL = -1 2  is the load pressure drop and the
remaining variables are defined in Table I.

Table I. Nomenclature.

Variable Definition

RL, CL, IL Resistance, capacitance and inertance of lines

QL, Qsv, QA Flow in lines, to/from cylinder, due to motion

Ps, PP, PT Supply and servovalve inlet/outlet pressures

C1, C2 Fluid capacitance in cylinder chambers

P1, P2 Pressure in cylinder chambers

Mp, ML Piston and load inertia

F(vp), Bp, Coulomb friction & viscous friction coeff.

vp, vL Piston and load center of mass velocity

Fgp, FgL Gravity force on piston and load

Bs, Ks Damping and stiffness of force sensor

θ Angle with respect to the horizontal

Fp, Fs Force acting on cylinder and load (measured)

Vsv, isv Input voltage and current to servovalve

Ksv, Ksv,o Servovalve gain and its value for isv = 0

xd, vd, Fd Desired position, velocity and force

ep, eF Position and force error

KP, KV, KF Position, velocity and force error gain

Fig. 3. Electrohydraulic servosystem full model.

The servovalve pressure drop and flow variables
PR1, QR2 , PR3  and QR4  are associated with the state



variables through pressure drop and flow equations
as result of application of the compatibility and
continuity laws, respectively and of algebraic
manipulations. It has been assumed that the transfer
of power is exclusively from the hydraulic system
to the load. Other assumptions related to physical
limitations are presented in [18].

CONTROL
Having the detailed servosystem model, several
position and force control laws were set up and
evaluated using MATLAB/ Simulink.

Control System Setup
The custom-designed benchmark setup shown in
Fig. 4 was built at the NTUA to test the proposed
controller. The particular design of the setup allows
for easy changes in the static and dynamic
components of the inertial load, driven by the
hydraulic actuator. This is achieved by varying the
angle of the cylinder with respect to the horizontal
and by changing the cylinder-see inertia, by adding
or removing weight.

Fig. 4. Schematic of control system setup and benchmark.

A MOOG G122-202A1 Series controller is used to
read the servocylinder headside and rearside
pressure (from two pressure sensors on the valve
manifold), and the piston rod position and velocity
(from the built-in analog LDT). A force cell at the
end of the rod will provide the load force. The
controller card will be interfaced to a PC running
the QNX real-time operating system. To use
nonlinear and model-based controllers, the PID
control section of the card will be by-passed and the
card will be used only for reading sensors
measurements and for sending the appropriate
control voltages to the servoamplifier. The
servoamplifier in turn will send appropriate input
currents to the servovalve.

Hydraulic Servoactuator Description for Control
In order to provide an equation sufficient for
control purposes Eqs. (8) and (9) are combined by
taking the difference of pressure derivatives P1  and
P2  between the cylinder chambers multiplied by the
headside and rearside sides, respectively,

Ḟ Q Q A C Q Q A C
A v R A C A C P

p R R R R

p p in L

= -( ) + -( ) +
- - +( )

1 4 1 1 3 2 2 2

1 1 2 2

(15)

where by definition, the first part of the resultant
equation is the derivative of cylinder output force
and A A C A Cp = +1

2
1 2

2
2 , while the flows to and

from the servovalve, from the application of
continuity law, have been written as

Q Q Q

Q Q Q
L R R

L R R

1 1 2
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= +

(16)

For deriving the control law, the servovalve orifice
conductances are estimated as a linear function of
the input current. For positive input commands
these are given by

G i K i C

G i K i C
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R P B sv l sv R o
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where CR o,  has a very large value, which refers to
the resistance of the orifice at servovalve closure,
and Km  and Kl  are positive constants, which
correspond to the main and leakage flow path,
respectively. For negative input commands Km  and
Kl  in Eq. (17) are reversed.
Using Eq. (15), flow/pressure through an orifice
equations, Eq. (1), and Eqs. (17), it can be written

˙
,F A v K K ip p p sv o sv sv+ - = ◊ (18)

where the cylinder internal hydraulic losses have
been neglected due to servocylinder design and the
use of special seals and glands that minimize these
 losses. Thus, the servovalve gain  Ksvand Ksv o, are
defined by the equation
K i K Q Q A C Q Q A Csv sv o R R R R+ = -( ) + -( ), 1 4 1 1 3 2 2 2

(19)
The terms Ksv  and Ksv o,  depend on orifice
conductance, the position of the piston rod, which
modifies the capacitance of cylinder chambers, the
servovalve inlet and outlet pressure and the cylinder
chambers pressures. Provided that the pump and
tank pressures can approximate the inlet and outlet
pressure of the servovalve, respectively, Ksv  and
therefore Ksv o,  are simplified. However, three
variables have to be measured to calculate estimates
of Ksv  and Ksv o, . Using conductances, Eq. (19)
results in
K i K G P P G P A C

G P G P P A C
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Replacing the GR according to Eq.(17), (20) yields
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Cylinder force Fp  in Eq. (12) is expressed as the

sum of the required force to accelerate the piston
FMp , the viscous and Coulomb friction Ffr , the

gravity force acting on piston and the load applied
force Fs  measured by a force sensor

F F F F Fp Mp fr gp s= + + + (22)



The measured force Fs  in Eq. (14) is the sum of the
required acceleration force FML  and the
gravitational force FgL

F F Fs ML gL= + (23)

Since the natural frequency of the force sensor is
orders of magnitude higher than any other exhibited
in the system it is assumed that v vp L@ .
Substituting Eqs. (22) and (23) in Eq. results in

M M v M M g
B v A v K K i

p L p p L

p p p p sv o sv sv

+( ) + +( ) +
+ + - = ◊

˙̇ cos
˙ ,

q
(24)

which can be used to describe the electrohydraulic
actuator when the resulting motion is of concern.
In most cases, the load mass is orders greater than
the piston mass, i.e., M M ML p L+ @ . This
assumption, together with v vp L@ , and Eqs. (23),
(24), lead to a useful description of the hydraulic
servoactuator dynamics for force control, i.e.

˙ ˙ ,F B v A v K K is p p p p sv o sv sv+ + - = ◊ (25)

where the whole inertia is assigned at the load.

Force Control
The force tracking performance of the proposed
model-based force controller is evaluated on the
full hydraulic servosystem, described by Eqs. (6)-
(14), using MATLAB/Simulink. A constrained task
and a free motion task are investigated next.
In the first case, where the motion of the piston rod
is considered constrained by a physical obstacle,
e.g., a wall, it is assumed that both the velocity and
the acceleration of the piston rod are zero. This
assumption simplifies Eq. (25) and reveals that the
input command modifies only the magnitude of the
derivative of the measured force

˙
,F K K is sv o sv sv- = ◊ (26)

By setting the input current command for model-
based force control of the constrained cylinder as

i F K F F K Ksv
MBFC

d F d s sv o sv= + -( ) -( )˙
, (27)

where the desired force Fd  is given by
F F Fd dL gL= + (28)

where FdL  is the net desired force applied by the

cylinder on the load and FgL  is an estimate of the

gravitational force on the load. Defining the force
error as e F FF s d= -  and provided that the

estimates of Ksv , Ksv o,  and FgL  are accurate, Eq.

(27) becomes
ė K eF F F+ ◊ = 0 (29)

which guarantees exponential force convergence.
With KF = 100 , and taking into account that the
time constant in Eq. (29) is t = 1 KF , consistency
between expected and simulated responses results
(see Fig. 5.a). The overshoot in Fig. 5.a is due to the
earlier hypothesis of lumping piston mass to the
load. Small transients near the steady state are due
to small piston motions. Note that the piston is not
still, since the servovalve oscillates around its
midpoint in order to let the pressures in cylinder

chambers to change, so as to provide the desired
load pressure drop, see Fig. 5.b.
In the case of free motion, velocity and acceleration
in Eq. (25) cannot be neglected, and have to be
compensated. Setting the input current for model-
based servoactuator force control in free motion as

i B v A v F
K F F K K

sv
MBF

p p p p d

F d s sv o sv

= + +( +
+ -( ) - )

˙ ˙

,

(30)

where the desired force is defined as in Eq. (28) and
provided that the estimation of viscous friction
coefficient Bp  and of the term Ap  are accurate, Eq.

(25) becomes a first order system, as in Eq. (29).

Fig. 5. a) Simulated and desired force and error in time

segment 0.2-0.4 s, with model-based control for constrained
rod and response of an equivalent 1st order system, b)

Simulated cylinder pressure and input voltage command, c)

Simulated & desired force and error with model-based

control in free motion.

The need of measuring the acceleration of the
piston rod can be tackled by calculating the
acceleration from Newton’s second Law and force
sensor measurements as

v v F F Mp L s gL L@ = -( ) (31)

In Fig. 5.c tracking of a desired random force is
quite satisfactory and the simulation results show
that the proposed model-based controller is
promising in providing force control of hydraulic
servosystems, given that the physical key systems
of the hydraulic servosystem are accurately
modeled through intensive experimental procedure.
Force error is not zero probably due to the
approximations and assumptions made regarding
the system dynamics and due to uncertainties in
estimating various parameters that have to be
compensated and/ or calculated.

Motion Control
Next, the force controller is used to apply the force
necessary to accelerate the load along a desired
trajectory. Briefly, the desired force, defined in Eq.
(28), is now set as

F M x M K e K e Fd L d L V p P p gL= + ◊ + ◊( ) +˙̇ ˙ (32)



Manipulating the dynamic equation and the input
current command for force control, Eqs. (25) and
(30), substituting the desired force as given in Eq.
(32), and assuming that the measured force tracks
the desired force fast and precisely, which can be
considered valid as evidenced by the results in Fig.
5.c, then the resulting error system dynamics are
approximated by a homogeneous 2nd order system

˙̇ ˙e K e K ep V p P p+ ◊ + ◊ = 0 (33)

which guarantees tracking error convergence to
zero, as long as the gains of position and velocity
error, KP  and KV , respectively, are positive. The
particular error response is controlled by the
selection of KP  and KV .
The proposed model-based controller was
compared to a fixed gain classical PD controller.
Gain selection was made so as to ensure a 2nd order
system response with critical damping and natural
frequency of w n = 10 rad / s . The performance of
the proposed model-based controller is satisfactory
regardless of the static and dynamic load variations,
see Fig. 6.a. The response of the hydraulic system is
similar to the one expected theoretically, i.e. it
results in a response of an equivalent 2nd order
system for the same position error input. Small
oscillations and discrepancies from the expected
position error response is due to differences
between the real and estimated values in the
feedforward terms, see Eq. (30).
Moreover, as shown in Fig. 6.a, a comparison
between a classical PD and the proposed model-
based controller proves the supremacy of the latter
in absolute position error, especially when the
inertia of load changes. Nevertheless, not only the
tracking accuracy of the desired trajectory is higher
with the proposed model-based controller over a
classical controller, but also the phase shift is
smaller as the frequency of the desired motion is
getting higher. In Fig. 6.b, the proposed controller
is compared against a classical PD controller for
frequencies from 1 Hz to 10 Hz. The superiority of
the model-based controller is once again obvious.

Fig. 6. (a) Simulated and desired piston position and error

with model-based control and PD control and position error,

(b) Linear PD and proposed model-based controller tracking
performance for various frequencies.

CONCLUSIONS
A model-based controller was developed for a high
performance electrohydraulic servosystem to
improve its position and force tracking
performance. The controller was tested on a fully
detailed model of the system using MATLAB/
Simulink. Position and force tracking was excellent
despite variations of load static and/or dynamic
components, making the strategy to be promising in
providing robust control to hydraulic manipulators
and motion simulators.
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