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Abstract— An important phase in On-Orbit servicing 
missions is robotic docking. Successful docking is subject to a 
number of parameters and conditions. In this work, the robotic 
impact docking between two space systems is considered. The 
docking of a robotic Chaser to a Target spacecraft is modeled 
using a multibody approach. The impedance properties 
required for an impedance controller that will ensure adequate 
probe-drogue contact time for docking are computed and are 
related with their mechanical counterparts. This time is derived 
analytically employing a mechanical equivalent system, and 
validated experimentally on a planar zero gravity emulator 
facility, allowing the selection of impedance parameters for 
successful docking.  

I. INTRODUCTION 

The exploitation and commercialization of space will require 
in the near future robotic systems capable of construction and 
assembly of large infrastructure, as well as of tasks such as 
astronaut assistance, docking and berthing for servicing 
missions, or space debris handling. The above fall under the 
broad term of On-Orbit Servicing (OOS). A number of space 
agencies have addressed OOS activities with missions such 
as JAXA’s ETS-VII [1], NASA’s Orbital Express [2] and the 
Robotic Refueling Mission (RRM) [3], or with on-going 
projects, such as ESA’s hArmonised System Study on 
Interfaces and Standardization of fuel Transfer (ASSIST) [4]. 
Autonomous robotic OOS can vastly improve on-orbit 
operations, and in parallel, reduce the risks to human life. 

Docking, i.e. the firm connection between two 
spacecrafts, or between a free-flying robotic servicer and a 
serviced spacecraft, is important in many OOS tasks. It is a 
demanding task due to impacts, lack of fixed base, and 
dynamic coupling [5], requiring intense astronaut training. 
Therefore, it is a clear candidate for autonomous execution; 
to this end, extensive studies and experiments are needed.  

A common docking scheme, which is also adopted in this 
paper requires that the end-effector enters a drogue and stays 
there for finite time during which a mechanism is deployed to 
connect the two spacecrafts (soft docking) see Figure 1. If 
this time is not enough, then docking fails or the mechanism 
jams. Therefore, understanding the dynamics and control of 
the process is of critical importance. Being able to estimate 
contact time and velocities based on spacecraft parameters, 
controller gains, and relative motions prior to impact, is of 
vital importance for successful docking.  
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Figure 1. Chaser (not shown) probe and Target (not shown) drogue during 
docking. (a) Probe entering the drogue. (b) Impact, (c) Soft docking 
allowing relative motions, (d) Hard (rigidized) docking, [4]. 

Recent works on docking take into account the system 
dynamics, either post, [6], or prior to impact, [7]. 

During docking, hard collisions may result in serious 
damage or destruction of a target and failure of the mission, 
as a result, compliance plays an important role to the success 
of the mission. Two approaches are often used, passive and 
active compliance. Passive compliance utilizes mechanical 
compliance with no control time delay but with limitation for 
operations. On the other hand, active compliance is a big 
research topic in robotics which can bring solutions to many 
problems. Impedance Control (IC) is an example of active 
compliance control which incorporates the use of lumped 
parameters [13]. For a single manipulator in dynamic 
interaction with its environment, IC can regulate the 
relationship between end-effector position and interaction 
force, [14]. IC can be used also, to minimize the impact 
forces and the developed impulses by using the concept of 
virtual mass [12]. To manipulate an object by multi-arm 
robotic systems, the Multiple Impedance Control (MIC) has 
been proposed and compared with various control strategies 
in [15]. The MIC enforces a desired reference impedance on 
both the manipulator end-points, and the manipulated object, 
and hence, an accordant motion of the manipulators and 
payload is achieved. An important part in IC is the proper 
tuning of impedance parameters. A parameter tuning method 
by setting a desired coefficient of restitution and a desired 
damping ratio was proposed in [11]. 

To model impact docking and validate control 
methodologies, the employment of alternative modeling 
approaches is needed [8]. Lumped parameters models are 
used for rigid impacting bodies providing satisfactory results, 
[9]. To obtain experimentally results, various concepts have 
been identified. A Hardware-In-the-Loop (HIL) simulator 
was used via a method to model the impact between two 
rigidly fixed systems, [10]. However, the time delay due to 
HIL set limits to the system parameters that could be used. 
Furthermore, the contact duration was shorter than the time 
needed to compute the robot dynamics, adding energy to the 
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system and leading to instability of the closed-loop system 
and inconsistencies in the simulation results. Another 
docking procedure was proposed, in which the systems were 
rigidly fixed and not floating as they are in space; hence the 
results obtained involve inaccuracies [11]. Contact dynamics 
models were validated against experimental results in [16]. 
However, the employed fixture was rigidly fixed; hence 
inaccuracies resulted. For these reasons, air bearings facilities 
present a high fidelity emulation system, if the planar motion 
of the robots is adequate. The Control Systems Laboratory 
(CSL) at the National Technical University of Athens 
(NTUA) has developed a planar air bearing emulator to test 
most complex operations such as docking and 
implementation of different kind of control theories [18]. 

In this paper, docking of a robotic Chaser to a Target 
spacecraft employing an impedance-controlled manipulator is 
studied. In order to gain some further insight on the docking 
process and to derive some useful conclusions, the docking is 
modeled using a simplified 1D multibody approach, as is 
common in the literature [5]. The impedance gains required 
for an impedance controller that will ensure adequate probe-
drogue contact time for docking are compared with their 
mechanical counterparts via the employment of a simple 
mechanical equivalent system; adequate though to draw some 
first conclusions. Moreover, the analytically derived 
conclusions, are also validated experimentally on the CSL 
planar zero gravity emulator facility, allowing the selection of 
impedance parameters for successful docking. 

II. DOCKING SCENARIO AND REQUIREMENTS 
One of the proposed scenarios for docking between two 
spacecrafts consists of a manipulator mounted on a Chaser 
and equipped with a probe, entering a drogue, mounted on a 
Target spacecraft. The probe is required to remain inside the 
drogue cavity for a finite time td, so that the docking 
mechanism deploys and locks the probe in the drogue cavity, 
see Figure 1c.  

Based on the approach of equivalent two-body system 
modelling (see also [17]), the controllable Chaser spacecraft, 
consists of a main body and an articulated manipulator. The 
main body (base) with its appendages are lumped to a mass 
mc while the probe tip having mass mpt. The manipulator is 
modeled as an impedance-controlled actuator. The Chaser 
body position is denoted by xc and the position of the probe 
tip by xpt, while the Target position is denoted by xt, see 
Figure 2. The probe-drogue contact is modelled as a very stiff 
spring of stiffness ki and damping bi, modeling energy loses. 

Initially, the Chaser spacecraft moves at a constant 
relative velocity urel,0 with respect to the Target, approaching 
the Target spacecraft and its drogue. The motion of the 
probe-tip inside the drogue cavity consists of three phases: (a) 
Entering, from the moment the probe-tip enters the drogue 
until it impacts with the far end of the cavity, (b) Impact and 
(c) Exiting, from the moment the impact is concluded and the 
probe-tip loses contact with the drogue cavity far end, until it 
exits the cavity. Thus, the total time ttot the probe-tip remains 
inside the drogue cavity, is given by, 
 ttot = ten + timp + tex  (1) 
where ten is the entering time, timp is the impact time and tex is 
the exiting time. For the docking mechanism to have enough 
time to be deployed and lock the probe-tip inside the drogue 

cavity, this time must be no less than td , i.e., 
 ttot ≥ td  (2) 
Clearly, the entering time ten depends on the initial relative 
velocity urel,0 and on the drogue cavity length ddc only: 
  ten = ddc urel ,0  (3) 

 
Figure 2. Model of the Chaser spacecraft with probe impacting on the 
drogue-equipped Target spacecraft. 

III. IMPEDANCE CONTROLLER DESIGN 
In this section, an impedance filter for the appropriate 
control of the probe-tip is introduced aiming in a desired 
impact behavior. The equations of motion of the system 
shown in Figure 2, are the following: 
  mcxc =−Fc   (4) 
  mpt xpt =Fc − Fi   (5) 

  mt xt =Fi   (6) 
where Fc is the controlled force applied on the probe-tip and 
Fi is the impact force between the probe-tip and drogue.  

To achieve a desired impact behavior, the interaction 
force can be controlled by an impedance controller with 
appropriate parameters. The impedance filter is selected as: 

  mf (xpt − xc )+ bf ( xpt − xc )+ k f (xpt − xc ) = −Fi   (7) 
where mf, bf, kf  are the mass, spring and damper impedance 
parameters to be determined. The selection of these is of 
paramount importance as they affect the success of docking 
directly. Using (4)-(7), the applied actuator force Fc required 
to achieve the desired impedance behavior of (7), is 

 

 

Fc = Fi ((mf mpt −1)µc,ef ) m f( ) + µc,ef bf ( xc − xpt ) mf

+µc,ef k f (xc − xpt ) m f  

 (8) 

where µc,ef  is the effective mass of the Chaser, 
 µc,ef = mptmc / (mpt +mc )   (9) 

Selecting the mf equal to mpt, Fc does not depend on Fi and as 
a result a F/T sensor is not required. Then, the controlled 
force Fc reduces to: 

  Fc = kd ( xc − xpt )+ kp (xc − xpt )   (10) 
where kp, kd are controller gains given by, 

 kd = µc,ef bf /mf ,  kp = µc,ef k f /mf   (11) 

IV. PASSIVE SYSTEM 
For a better understanding of the system under observation, 
the behavior of the actuator is represented by a spring-
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damper system, see Figure 2b, with spring stiffness kc and 
damper coefficient equal to bc. The correspondence of the 
passive system to the active one can be seen by setting: 

 kc = kp  and bc = kd   (12) 
Once the desired behavior is established using passive 
system experiments and analysis, (11) and (12) allow the 
selection of the impedance filter parameters, for the robotic 
manipulator control. 

Focusing on the passive spring-damper system, during 
docking and after the first impact between the probe-tip and 
the drogue, the former tends to bounce back, as the large 
mass of the Target base is initially unaffected by the impact 
with the small probe-tip mass. The Chaser base, also of large 
mass compared to the probe, pushes the probe-tip through the 
spring, forcing it to small amplitude and high frequency 
chatter, not affecting the Chaser base motion. To reduce this 
chatter, a mechanical spring pretension is introduced which 
results in a nonlinear spring behavior. This can be 
approximated by an equivalent spring, given by a describing 
function equivalent as 

 kc = kcp + 4kcp p πΑ   (13) 
where kc is the equivalent spring without pretension, kcp is 
the pre-tensed spring, p is the pretension length and A is the 
amplitude achieved during chattering.  

Impact time. This system has two natural frequencies. 
The high natural frequency corresponds to the fast oscillation 
between the low-mass probe-tip and the drogue cavity inner 
wall, while the low natural frequency corresponds to the slow 
relative motion between the two spacecraft bases; this is the 
one responsible for the total impact time. 

The compression and restitution phases of the impact can 
be approximated as part of a harmonic motion; it can be 
described as the half-period of a sinusoidal motion with 
period Timp . In fact, for impact durations of less than 1 s, this 
approach yields very good results. Thus, the duration of the 
impact is,  
 timp = Timp 2 = π ω d  (14) 
where ωd is the damped frequency given by, 

 ω d = 1−ζ 2ω 0   (15) 
where ω0 is the slow natural frequency, 

 ω 0 = k / µ   (16) 
and ζ is the damping ratio given by, 

 ζ = b 2 kµ   (17) 
The k is the equivalent spring constant for springs in series, 
 k = kc ki kc + ki( )   (18) 
and b is the equivalent damper for dampers in series, 

 b = bc bi bc +bi( )   (19) 
where, bc is found assuming critical damping for the tip as, 

 bc = 2 mptkc   (20) 
The contact between two metallic bodies is lightly damped. 
Then, the value of the “fictitious” damper, bi is taken as 1-
10% of the value that results in critical damping, bi,cr, i.e. of, 

 bi,cr = 2 µki  (21) 
The equivalent two-body system mass µ is: 

 µ=mc mt mc +mt( )   (22) 
From (14), it can be seen that the lower the axial spring 

stiffness k is, the longer the total impact time timp becomes. 
To study how the Chaser and Target masses affect the 

total impact time, for a given axial spring stiffness kc, the 
masses of both Chaser and Target are varied and the term 
π µ = timp 1−ζ 2 k  is obtained as a function of these 
masses, see Figure 3. This figure shows that increasing either 
mc or mt results in longer total impact time timp. Thus, for a 
given Target spacecraft of mass mt, a larger Chaser mass mc 
results in a longer total impact time timp. 

 
Figure 3. Effect of mass variation on impact duration. 

Post-impact velocity. The impact results in a change in 
the relative speed between Chaser and Target. The Chaser-
Target relative speed before and after the impact is, 

 
 

urel ,0 = xt ,0 − xc,0
urel , f = xt , f − xc,f

  (23) 

respectively, where  
xc,0 , xt ,0  are the initial velocities (just 

before the impact) and  xc, f , xt , f are the final velocities (at 
separation, right after the impact) of the Chaser and Target 
spacecraft respectively. 
Τhen, the exiting time tex can be obtained by 

  tex = ddc urel , f  (24) 
It is observed that the lower urel,f is, the longer tex becomes. 

Thus, summing up the results for all three phases of 
docking, to increase the total time ttot, so that (2) holds, the 
following are required: 

(i)  Low approaching velocity urel,0. 
(ii)  Low axial spring stiffness kc at the probe. 
(iii) High Chaser and Target spacecraft masses mc, and 
mt. For a given mt, then high mc is required. 

The above requirements can be used as design guidelines, 
both in the Chaser spacecraft design, regarding its mass mc, 
the end-effector axial stiffness kc, and the impact materials, in 
mission planning, regarding the approach/impact velocity 
urel,0. More importantly, they can be used as guidelines in 
setting the Chaser manipulator impedance control 
parameters. 

V. EXPERIMENTAL RESULTS AND VALIDATION 
To verify the theoretical estimation of the docking time and 
estimate the impedance parameters of the impedance 
controller, a set of experiments was run at the 2D Space 
Robotics Emulator of the CSL at the NTUA. The emulator 
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consists of a flat granite table on which robots on air-
bearings can move, practically without friction. Since the 
robots are completely autonomous, they move as they would 
move in zero-g, although in planar, 2D motions. 

For the docking experiments, two robots were used: the 
Chaser spacecraft, which is active, and the Target spacecraft, 
which is passive. The Chaser is equipped with three pairs of 
thrusters (each providing a force of 1.2 N in on-off, in PWM, 
or in PWPF mode), and a reaction wheel. For localization, 
both robots are equipped with sets of LEDs, used by a 
PhaseSpace motion capture system with accuracy less than 
0.5 mm, see also [18]. The Chaser is equipped with a probe, 
at the base of which a Force/Torque (F/T) sensor is installed 
in order to measure the experimental impact time, while the 
Target is equipped with the corresponding drogue, see also 
[4]. Figure 4 shows the two spacecraft robots during a 
docking experiment.  

 
Figure 4. The probe-equipped Chaser spacecraft robot (left) approaching the 
drogue-equipped Target spacecraft robot, during a docking experiment at 
the CSL 2D Space Emulator facility. The inserts show Chaser video images. 

The Chaser via a PD controller moves along the straight 
line that the two robot CMs form. Just prior to the entrance of 
the probe in the drogue, the Chaser thrusters are turned off, 
leaving the Chaser and probe to move freely at constant 
velocity, until the impact in the far end of the drogue cavity 
on the Target occurs. Turning off active control prior to 
impact, is common practice in autonomous docking, as it 
eliminates stresses that may occur due to the action of 
spacecraft attitude/position control systems. 

The impact sets the Target into motion and the relative 
speed between Chaser and Target becomes such that the 
probe exits the drogue cavity again. As, ideally, both robot 
CMs, the probe-tip and the impact point on the drogue cavity 
lay on a straight line, all motions lay also on that line. 

To find the appropriate values of the pre-tensed spring kcp 
and as a result of the kc, as well as to verify the available 
docking time estimated, various experiments and simulations 
were executed. First, the masses of the Chaser and Target 
were set at mc = 23 kg and mt = 15.1 kg respectively. The 
probe-tip mass is mpt = 0.003 kg in all experiments. To study 
the effect of kc and urel,0, on the timp, nine experiments were 
run in which both kc and urel,0 took low, medium and high 
values. Furthermore, to study the effect of Chaser and Target 
mass on the docking time, experiments where run, not only 
with the initial masses, but also with lower Chaser mass (with 
Target mass as in the initial set), and with higher Target mass 
(with Chaser mass as in the initial set), see also Table 1 to 
Table 3. With the results of these experiments, the two 
controller gains kp and kd were calculated using (12) and 
thanks to mf = mpt the impedance parameters result as: 

 bf = kdmf µc,ef , k f = kpmf µc,ef   (25) 
All parameter sets that were used can be seen in Table 1 

to Table 3. For all experiments and simulations, the desired 
docking time (see also Eq. (2)) was td = 1.5 s. This time is 
related with the time that an actual probe like the one 
depicted in Figure 1 would need to deploy. 

To obtain the required velocities and time durations, first 
the pre-impact velocity of the Chaser (which is the initial 
relative velocity urel,0, since the Target is initially stationary) 
is obtained by the PhaseSpace MoCap system. In Figure 5 the 
pose of the Chaser is shown, for an experiment with kcp = 130 
N/m, mc = 23 kg and mt = 15.1 kg. 

 
Figure 5. Chaser pose history during the experiment with kcp=130N/m, mc = 
23 kg, mt = 15.1 kg and mpt = 0.003 kg. 

Note that the Chaser motion in the y-axis and its rotation 
around the z-axis are not constant due to external 
disturbances and the time that the PD controller shut down 
the robot’s thrusters. However, the change of the motion in 
the y-axis before and after the impact is negligible, 
confirming the central impact hypothesis. Figure 5 shows that 
the x-axis motion consists of two straight lines with constant 
inclinations, thus constant initial ( xc,0 ) and final ( xc, f ) 
velocities can be obtained. Moreover, it can be seen that the 
Chaser keeps on moving forward even after the impact 
(occurring at around 8.4 s), but with lower post-impact 
velocity. In this figure, the computed Chaser velocities are 

 
xc,0 = 0.038 m/s and  xc, f = 0.00868 m/s. 

The experimental duration of the impact timp is measured 
by use of the F/T sensor data. As seen in Figure 6, the F/T 
sensor measures the impact force along its z-axis, with small 
forces in magnitude measured along the other two axes for 
the reasons mentioned above. The measured timp for this 
experiment was found to be 0.79 s. Finally, the experimental 
total time ttot is obtained by the measurement of the robots 
relative velocity, the impact and by Eq. (1). 

The experimental impact time timp can, then, be compared 
to the ones that are given by Eq. (14). As can be seen in 
Table 2 the error between the theoretical and experimental 
time of contact is around 10% which is assumed to be 
reasonable for responses involving impact modeling. 

Since we have obtained the system docking response for 
the tried spring damper sets, we then compute the 
corresponding impedance gains and parameters, and simulate 
the controlled system response to find the timp and ttot, and 
compare these to the ones obtained experimentally. To this 
end, a series of simulations using MATLAB/Simulink were 
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run. The Target has been modeled as a mass with cavity, 
while the Chaser as an impedance-controlled two-mass 
system. The contact forces between the bodies under impact 
were calculated using the KV model [9]. The initial relative 
velocity is constant since the Target is initially stationary, and 
is the same as the one used in the experiments. When the 
systems come into contact, a force is developed which pushes 
away the masses under impact and at the same time the 
impedance controller exerts a specific force as prescribed by 
the impedance filter. During the simulations, the total time 
during which the probe stays inside the drogue cavity, and 
the final relative velocity, are calculated and compared with 
the experimental ones. Upon this comparison, impedance 
parameters kf and bf can be obtained, that correspond to 
successful docking through the use of (25). 

 
Figure 6. Probe F/T sensor reading during the experiment with kcp=130N/m, 
mc = 23 kg, mt = 15.1 kg and mpt = 0.003 kg. 

The spring with kcp = 130 N/m with pretension of 2 mm 
yields the same results as with one of kc = 147 N/m without 
the existence of the pretension given by (13). This spring’s 
stiffness gives an impedance parameter of kf = 147.0192 N/m 
and impedance damping ration of bf = 1.32833 Ns/m. Using 
these impedance parameters we can observe in Figure 7d that 
the control force applied to the tip is reasonable in magnitude 
and thanks to the derivative gain, it settles down just after the 
impact force is zeroed. The impact force and the controller 
force are almost identical due to the small mass of the probe 
tip. For the parameters mentioned above and for the probe tip 
mass of mpt = 0.003 kg, the impact time is 0.8 s and the total 
time 1.36 s, both of them close to the experimental results. 
Moreover, from Figure 6 and Figure 7a, we can observe that 
the experimental and simulated impact force has the same 
peak in absolute value. In the case that mpt is bigger e.g. mpt = 
3kg, then the controller force and the impact force as 
depicted in Figure 7b-c are not the same in magnitude and 
duration. Nevertheless, even in that case, the controller force 
settles down just after the last impact occurs. In the case that 
the impedance gains are selected arbitrary, the impact force is 
smaller in duration from the experimental one. 

The experimental post-impact relative velocities and 
those derived from the simulation using the impedance 
controller by making the appropriate choice of its parameters 
are shown in Table 1. As can be seen, the per cent error is 
10% apart from some values which can be explained to 
external disturbances. Some values of these errors can be 
explained as the experimental results showed a small, but 

non-negligible, post impact motion of both Chaser and Target 
in the y-axis (i.e. perpendicular to the 1D motion axis), 
indicating non-negligible energy loss also in that direction, 
and thus slower motion in the main motion direction. The 
experimental and estimated impact duration timp is shown in 
Table 2. As can be seen, the per cent error of the estimation is 
even lower than the errors in the estimated urel,f  due to the 
fact that the impact time is related mostly to the materials and 
the masses of the systems under contact. 

 
Figure 7. (a) Impact force for mpt = 0.003kg, (b) Impact force for mpt = 3kg 
(c). Impedance controller force for mpt = 3kg (d). Impedance controller 
force for mpt = 0.003kg 

Table 1. Experimental and estimated Chaser-Target post-impact relative 
velocities urel,f. 

Experiments  
(for all: mpt = 0.003 kg) urel,f 

(sim.) 
(mm/s) 

urel,f 
(exper.) 
(mm/s) 

eu_rel 
(%) mc, mt 

(kg) 
kcp 

(N/m) 
kc 

(N/m) 
urel,0 

(mm/s) 

23, 
15.1 

(A) 130 
168 (1) 19 17.96 16.7 7.5 
157 (2) 25 23.63 21.9 7.9 
147 (3) 38 35.92 34 5.6 

(B) 220 
268 (1) 15 14.18 11.7 21.2 
262 (2) 18 17.02 14.2 19.9 
242 (3) 38 35.92 33 8.8 

(C) 270 
335 (1) 16 15.12 13.3 13.7 
398 (2) 25 23.63 19.9 18.7 
298 (3) 29 27.41 26.7 2.7 

19.2, 
15.1 (D) 220 253 22 20.75 16,7 24.3 

23, 17.15 (E) 220 260 18 17.05 15.9 7.2 
 

As can be seen from the five cases in Table 2 with kc ≈ 
240-268 N/m, (corresponding to the five cases with kcp = 220 
N/m in Table 1, i.e. cases B, D and E), the simulated impact 
time timp drops from about 0.58 s to 0.55 s, when the Chaser 
mass drops from 23 kg to 19.2 kg (with the Target mass kept 
at 15.1 kg). Moreover, the experimental timp drops from about 
0.63s to 0.615s, for the same Chaser mass change. Note also 
that the experimental timp rises to 0.66 s when the Target mass 
is raised to 17.15 kg (with the Chaser mass kept at 23 kg). 

The experimental and estimated total available docking 
time ttot is seen in Table 3. Again the per cent errors are 
around 10%. As seen in the cases with the same initial 
relative velocity, i.e. the same impact velocity, the lower the 
axial spring stiffness is, the longer the experimental ttot 
becomes, in accordance with the developed theory. This can 
be observed by comparing Case A-2 to Case C-2, both with 
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urel.0 = 25 mm/s. By lowering kc from 270 N/m (Case C-2) to 
130 N/m (Case A-2), the total available docking time 
becomes longer by 218 ms (i.e. 14.3 %). Similar results are 
obtained by comparing other cases with similar urel.0, such as 
Case A-1 to Case B-2, Case A-3 to Case B-3 and Case B-1 to 
Case C-1 in Table 3.  

Furthermore, for the same axial spring stiffness kcp and 
the same Chaser and Target masses, the lower the impact 
velocity is, the longer the ttot results. For example, for the 
three experiments of Case A, with kcp = 130 N/m, as the 
initial relative (i.e impact) velocity drops from 38 mm/s to 25 
mm/s (34.2 % drop), and then to 19 mm/s (further 24 % 
drop), the experimental ttot rises from 1.363 s to 1.739 s (27.6 
% rise) and then to 2.249 s (a further 29.3 % rise). These 
results confirm the first two theoretical guidelines, proposed 
at the end of Section IV. 

Table 2. Experimental and estimated impact duration. 

Experiments  
(for all: mpt = 0.003 kg) timp 

(theor.) 
(s) 

timp 
(exper.) 

(s) 

timp 
(sim.) 

(s) 
eth,exp 
(%) 

esim-

exp 
(%) 

mc, 
mt 

(kg) 
kc 

(N/m) 
urel,0 

(mm/s) 

23, 
15.1 

168 (1) 19 0.75 0.77 0.75 2.18 3.25 
157 (2) 25 0.77 0.73 0.78 5.77 6.3 
147 (3) 38 0.79 0.79 0.8 0.55 1.27 
268 (1) 15 0.54 0.63 0.57 13.6 10 
262 (2) 18 0.56 0.635 0.58 12.1 8.77 
242 (3) 38 0.6 0.624 0.6 3.76 3.2 
335 (1) 16 0.49 0.56 0.49 12.7 11.9 
398 (2) 25 0.52 0.6 0.52 13.7 12.7 
298 (3) 29 0.53 0.534 0.53 1.58 1.13 

19.2, 
15.1 253 22 0.55 0.615 0.55 10.9 10.7 

23, 
17.15 260 18 0.58 0.66 0.58 11.6 11.5 

Table 3. Experimental and estimated available total docking time. 

Experiments  
(for all: mpt = 0.003 kg) ttot 

(estim.) 
(s) 

ttot 
(exper.) 

(s) 
et_tot 
(%) mc, mt (kg) kcp (N/m) urel,0 

(mm/s) 

23, 
15.1 

(A) 130 
(1) 19 1.87 2.249 16.79 
(2) 25 1.63 1.739 6.11 
(3) 38 1.36 1.363 0.02 

(B) 220 
(1) 15 1.99 2.625 24 
(2) 18 1.77 2.02 12.5 
(3) 38 1.17 1.225 4.72 

(C) 270 
(1) 16 1.83 2.162 15.31 
(2) 25 1.38 1.521 9.28 
(3) 29 1.27 1.382 8.39 

19.2, 15.1 (D) 220 22 1.52 1.64 7.15 
23, 17.15 (E) 220 18 1.77 1.94 8.66 
 
Finally, by comparing experimental Case D to Case B-2, 

it can be observed that, lowering the Chaser mass mc results 
in smaller total time available for docking (ttot), while by 
comparing Case E to Case B-2, it can be observed that higher 
Target mass mt, results in longer ttot. Thus the third theoretical 
guideline proposed in Section IV, is also confirmed. 

Having assumed that the required docking time td is 1.5 s, 
(2) and Table 3 are used to determine which condition 
combinations lead to successful docking both analytically, by 
using the right impedance parameters, and experimentally. 
As can be observed, both experiments and simulations with 
the controlled system classify the cases similarly, i.e. as 
successful or unsuccessful. 

VI. CONCLUSION 
An important phase in OOS tasks is autonomous robotic 
docking; this is subject to a number of parameters and 
conditions. In this paper, docking of a robotic Chaser to a 
Target spacecraft employing an impedance-controlled 
manipulator was studied. The relation of the impedance 
gains and as a result the impedance parameters to their 
mechanical counterparts was established. The time that the 
end-effector remains in the drogue was derived analytically 
to display the effect of system parameters and conditions 
affecting it, and to yield design guidelines. Experiments 
performed on a planar zero-g emulator facility showed 
satisfactory agreement between the experimental and 
analytical results using a single–axis hypothesis to draw 
conclusions of the aforementioned relation. 
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