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Abstract - In this wOI'k we show that an Auobot can be 

made to behave as a !"Obotic swing. This is achieved by 

contI'oIling the fil'st joint, pI'ovided that a given condition is 

satisfied. When this condition is not satisfied, the system 

undel'goes thl'ough singulal' points. Even when this happens, we 

al'e again able to make the system behave as a swing by 

contI'oIling the second joint and employing a new Enel'gy 

Pumping stmtegy. This stmtegy pl'esents impOl-tant advantages 

compal'ed to pI'eviously PI'oposed stmtegies, as it is the only one 

that can stal-t the system f!"Om I'est and dI"ive it to lal'ge heights. 

MOI'eovel', it is fast and I'equi!'es vel'y small tOI·ques. 

Index Terms - Robotic swing, enel'gy pumping, gymnast 

robots, underactuated systems. 

I. INTRODUCTION 

The swing problem has attracted the interest of a 
number of researchers during the last thirty years. 
Indeed, the problem is very interesting as it involves 

increasing the energy of a multibody system using internal 
(chemical in the case of humans) energy or motions. 
However, most research focused on dynamic analysis rather 
than on methods that can result in robotic swinging using 
controls. Also , none of these studied the effects of singular 
points or verified if the proposed movements are feasible for 
a particular under-actuated system. 

The work up-to-date can be classified in two broad 
categories. The first deals with swing analysis and reports 
alternative kinematic strategies without a plan to implement 
them with active control. They also focus on techniques that 
allow an increase of the width of oscillation of a system (for 
Energy Pumping) but do not deal with how to make the 
system swing with a given amplitude and keep this 
oscillation constant, see for example [1-7]. One of the 
earliest works considered the swing model as a simple 
pendulum with variable length, [1]. Several years later, a 
strategies for initiation and pumping the swing from a 
standing position was published following a qualitative 
approach [2]. Swinging from standing and sitting positions 
was studied and it was concluded that the swing is best 
characterized as a forced oscillator, [3] , [4]. Two different 
kinds of swinging were compared in [5]. In another study, 
the question whether people act as self optimizing machines 
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while they swing was investigated, [6]. These studies do not 
address the issue of robotic swinging, which is dealt with in 
[7] , using a sitting swing strategy but relying only on linear 
controls based purely on common experience. 

The second type of work deals with the Acrobat 
problem in which the goal is to bring the system (an 
underactuated inverted pendulum) to the up right position, 
[8-12]. In his pioneering work, M. Spong used partial 
feedback linearization to bring the Acrobot to the upright 
position, [9]. Later, researchers tried to achieve the same 
goal, but most controllers were based on energy methods 
(e.g. [10] , [11]). Other works have used Lyapunov methods 
and were successful to bring the first Acrobot link to any 
desired position [12]. Bringing the Acrobot to the up right 
position with constraints to the second link has been studied, 
[13]. This kind of motion is close to the motion that 
gynmasts make on the high bar. 

The aim of this paper is to study robotic swinging of an 
Acrobot-type robot using partial model based control. Here, 
the second link is restricted from making a full revolution. 
The encountered singular points due to the loss of angular 
momentum coupling are studied. Their dynamic nature is 
explained, as well as how they can be avoided using a new 
swinging strategy. A new energy pumping strategy is 
proposed that presents important advantages over existing 
strategies. This strategy can start the system from rest, is fast 
and requires low torques. 

II. SYSTEM DYNAMICS 

To study the robotic swing and the pumping of energy that 
occurs, (i.e. the transfer of energy from the actuated dof to 
the unactuated one), an Acrobot-type system is employed. 
The Acrobot is an under-actuated robotic system with two 
degrees of freedom, (dot) , i.e . the angle of the first link, ql ' 
and the angle of the second link, q2' see Fig. 1. Of those, 
only the second dof is actuated. 

Figure 1. Acrobot system and its parameters. 

978-1-4244-4685-8/09/$25.00 ©2009 IEEE 928 



Since the structure of this robotic system approximates a 
sitting person swinging, it was chosen as the system to be 
studied here. 

The equations of motion may be derived using the 
Lagrangian of the system and are described by, 

M(q)q + CCq, qJq + G(q) ="T (1) 

where q = [ql'qJT , "T = [0,1JT, and M , C , and G are 
given in Appendix A. 

In this paper, we are interested in designing a controller 
capable of initiating a swinging motion of the system and 
converging to a swinging oscillation with given amplitude. 
Since the robotic swing is underactuated, one can directly 
control one of the two degrees of freedom only. As it will be 
presented later, a dual strategy is chosen to swing the robotic 
system. If we understand the swing system well enough to 
produce a close to ideal energy pumping strategy, then the 
convenient second degree of freedom (q2) is used as our 
controlled variable. However, if no such strategy is 
available, then the first degree of freedom (ql) is controlled 
under the requirement to oscillate such that the entire system 
behaves like a swing. In both cases, we use partial model­
based control with nonlinear terms cancellation. 

III. ROBOTIC SWING WITH CONTROL ON THE FIRST JOINT 

Swinging when ql is controlled is facilitated by the 
coupling terms in (1). Due to this fact, no special strategy is 
needed to initiate swinging, and this is clearly an advantage. 
Since the first joint is not actuated, its motion must be 
generated by the actuator acting on the second joint. 

Another advantage is that employing control on ql and 
studying the resulting response of q2 ' allows one to develop 
a new strategy for swinging and Energy Pumping. However, 
a disadvantage of using control on ql is the appearance of 
singular points. When these occur, the system is unable to 
pump energy smoothly, and as a consequence, the required 
torque gets large accelerating the second link. Next, we 
develop the swinging strategy with control on ql and start 
with planning. 

1) Planning 
Here ql is controlled. We are interested in initiating 
swinging, and upon reaching a desired amplitude, to be able 
to hold the motion so that the system at the steady state 
swings. A simple strategy is to require that ql changes as a 
sinusoidal function with continuously increasing width of 
oscillation, 

where, 

qld (I) = qloffser + Cl . sine OJI) 

lk.1 
C= 

I k·l
f 

= C
l f 

for If> I ~ 0 

for t ~ If 

(2) 

(3) 

where k is the constant rate at which the oscillation 
amplitude increases, If is the time at which the steady state 
oscillation occurs, C

l f 
is the width of oscillation at the 

steady state, and OJ is the lower natural frequency of the 
system, computed around the stable equilibrium point of the 
robot; this enables the system to swing, requiring small 
torque. This strategy works even if the input frequency is 
not equal to the lower natural frequency of the system. 
However, in such a case, a higher torque will be needed. 

In (2), qloffser determines the angle around which the 
oscillation occurs. For swinging and the conventions in Fig. 
1, qloffser is 270° . Fig. 2 shows the oscillation of the first 
joint around its offset value. The response can be divided in 
two different states, 
(a) The transient state, where Energy Pumping occurs and 

the width of oscillation continuously increases, and, 
(b) The steady state, where Energy Pumping does not 

occur and the width of oscillation remains constant. 

10 20 30 40 50 60 
t [s) 

Figure 2. The transient and steady state response for the first joint angle. 

Although (2) and (3) are very simple, they still allow one to 
define both the If' the width of oscillation C

l 
and the speed 

at which this is reached, k. Obviously, these parameters 
have an effect on required actuator torques and size. 

2) Model Based Control 
Here, our aim is to force the system to follow the trajectory 
described by (2). This can be done using a partial Model 
Based Control technique with nonlinear term cancellation. 

To do this, a second order differential equation, with 
respect to ql' that contains the input torque is needed. This 
can be obtained using the equations of motion, (1). By 
eliminating q2 from (1), we come up to the following: 

ql ·~+BI='[2 (4) 

where: 

~= gl (ql' q2) 
-(P2 + P3 ·cos q2) 

(5) 

B = J;(ql ,q2, i]1' i]2) 

I -(P2+P3.cosq2) 
(6) 

where functions gl' J; ,P2 and P3' are given in Appendix A. 
The following controller makes sure that ql will reach 

its desired value in prescribed time, 

'[2 = (qld + kp ·(qld - ql)+ kd · (i]ld - i]l))· ~ + Bl (7) 

Equation (7) constitutes a Model Based Control with 
nonlinear term cancellation. Assuming knowledge of system 

929 



parameters, terms ~ , and B) cancel the nonlinear terms in 
(4), while the terms in the parentheses constitute a PD 
feedback controller that can regulate the system response 
using the control gains kp' kd . 

3) Singular points 
Looking carefully at (5) , (6) and (7) one can easily see that 
the denominator may become equal to zero. This point to 
the existence of algorithmic singular points. These have no 
relationship to kinematics, and cannot be computed using 
the Jacobian of the system. Their location depends on 
system physical parameters. In addition, generally these 
points appear only during the transient state. 

In order to investigate the effects of these points, we set 
as K the denominator in question and study it further. 

(8) 

As it was mentioned before, when a system comes from 
a singular point, then a denominator is becoming equal to 
zero and the controller fails. To obtain a clear physical 
meaning of what happens at such points, we find the system 
angular momentum with respect to the first joint. This IS 

given by, 

H = (p) + P2 + 2P3 COS(q2))' q) +(P2 + P3 COS(q2))q2 

= (p) + P2 +2P3 COS(q2))'Q) +K'Q2 
(9) 

The angular momentum is constituted of two terms. The 
first term is the contribution of the first link and the second 
is the contribution of the second one. Since at singular points 
K is zero, it can be seen that at such points the second link 
has no effect on system angular momentum, and the 
coupling, which is important for energy pumping, is lost. 

Singular point existence causes problems to system 
behavior. At such instances, the response of q) is not 
smooth any more, and the torque '[2 locally increases 
drastically, trying to reduce the tracking error in q). Since 
no coupling exists at these points, the torque rapidly 
accelerates the second link, making it to undergo full 
rotations. In such cases, pumping of energy is erratic and no 
proper swinging can result. Despite this, swinging may 
occur, but this may take unpredictable time. 

The important question that arises is whether it is 
possible to design a controller capable of swinging without 
requiring large torques and without unacceptably high 
accelerations of the second link. To this end, we examine 
when the term K can be nonzero. 

K = P2 + P3 COS(q2) > 0 ~ P2 > P3 

Substituting the terms P
2

' and P
3

' (10) becomes. 

m21:2 + 12 > m21Jc2 

(10) 

(11) 

Using the expression for 12 given III Appendix A, (11) 
becomes: 

3 
1 >-·1 

2 2 ) (12) 

If (12) holds, then coupling between the two links never 
fails and pumping can occur without infinite torques and 
second link accelerations. 

4) New Energy Pumping strategy 
Up to this point, swinging and energy pumping is possible 
only if (12) is in effect. An important question is whether it 
is possible to develop a new Energy Pumping strategy, 
which could provide sufficient pumping, without going 
through singular points, and even if (12) is not in effect. 

Notice that singular points appear due to the 
exploitation of the coupling between the two links and drive 
the first joint using the actuator for the second joint. 
Therefore, to avoid the singularities, it is natural to explore 
the possibility of driving the second joint directly. Based on 
this observation, our aim is to find a new strategy of Energy 
Pumping that can be used to pump energy in systems in 
which (12) does not hold. 

A new strategy can be developed influenced by the 
study of the response of q2' In order to do this, we study 
simulation results obtained using a system in which (12) 
does not hold and therefore the second link is not always 
coupled dynamically to the first one. This is motivated by 
the fact that despite the non smooth response of the system, 
after long time, the system tends to stabilize in some smooth 
swinging. This is shown in Figure 3, where the system has 
an erratic behavior for about 26 s, but swings after that time. 

We define the following variables, 

q) l/(nv (t)=q)(t+a·tj ) , a>1 
(13) 

that describe the system response during smooth swinging. 

900,---~-~--~-~--~---, 

800 

700 

600 

ci; 500 
Q) 

~ 400 

~ 300 

200 

10 20 30 40 50 60 
t (5] 

Figure 3. The response of the second angle reaches eventnally a steady state 

and smooth swinging. 

To learn from q) l/(nv and q211elV orbits, we record the 
smooth swinging response part and analyze it with the help 
of Fourier analysis. Applying an FFT algorithm on the 
steady state part of the response of q2' see Figure 4, one can 
notice: (a) the appearance of peaks at higher harmonics of 
the input frequency, and (b) that the energy of the first 
harmonic is by far the highest. This observation allows us to 
neglect the higher harmonics and keep the first one only. 
This points to the direction that q) oscillates with relatively 
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large amplitude, when q2 is a pure sinusoidal function with 
a single frequency, close to the lowest natural frequency, and 
has a constant difference in phase from ql' 

8 10 12 14 16 
w [rad/sec] 

Figure 4. Frequencies contained in q2"~ response (after the transient). 

The phase difference in question can be found by 
studying the response of q2' with ql controlled and (12) not 
in effect. In cases where the actual phase difference deviates 
from this value, then the system might still be capable of 
Energy Pumping but will require a higher torque. This 
however can only be achieved provided the input frequency 
is close to the natural frequency. 

We can now proceed with the development of a new 
strategy for Energy Pumping, i.e . we determine how the 
second link q2 should move so that the unactuated first 
angle ql increases its width of oscillation. Based on the 
previous observations, Energy Pumping can occur if the 
second angle is driven by 

(14) 

where w is the lowest system natural frequency , and cp is a 
phase difference between ql and q2' 

The advantage of this pumping strategy over others is 
that it can start with zero initial conditions and result in large 
oscillation amplitudes. Although this strategy does not 
maintain constant amplitude of oscillation, and therefore it is 
not a strategy for swinging, it is still a new strategy for 
effective Energy Pumping and can be used to increase the 
width of oscillation of a robotic swing. 

IV. ROBOTIC SWING WITH CONTROL ON THE SECOND JOINT 

The advantage of using control on q2 is that is very easy to 
be controlled since q2 is the actuated degree of freedom. As 
mentioned earlier, the disadvantage is it requires a good 
swing strategy. This is discussed next. 

1) Planning 
The system must be able to swing at desired amplitude. 
Therefore, during the transient response, a pumping strategy 
is needed. When the desired level of swinging is reached, 
pumping must stop. This is achieved by the following 
command for q2' 

-1 C2 • sin(wt + cp) 
q2)t) - • 

q2 = const. 

if C
I 
< C

l f 

if C
I 
~ C

l f 

(15) 
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where q; is the value of q2 at the moment when ql reaches 
the desirable amplitude for the first time and the first link 
angular speed is null (for smoother switching). Upon 
examination of (15) , one can easily see that to increase the 
width of oscillation, the Energy Pumping strategy 
developed earlier is used. To evaluate the performance of 
swinging, an amplitude error is defined as 

which indicates the distance of the amplitude at zero velocity 
after the stable equilibrium point from the desired one. Once 
the correct amplitude is achieved, the second joint is locked 
and the system behaves as a simple pendulum. With this 
strategy, either the transient settling time or the oscillation 

amplitude can be set. Parameter C
2

, which determines the 

maximum width of oscillation that the system can reach, is 
found by trial and error. In general, high values result III 

reduced oscillation amplitude accuracy. 

2) Model based control 
With a methodology similar to that in Section III, one can 
design a control law to force the system follow the desired 
trajectory. Following some manipulation of (1), we get, 

(17) 

where ~ , B2 are given in Appendix A and are functions of 
the states and velocities. To guarantee tracking for q2' a 
partial model based control law with nonlinear term 
cancellation is designed that yields the torque '[2 as, 

'[2 =(ij2d +kd ·(q2d -q2 )+kp ·(q2d -q2 ))·~+B2 (18) 

V. SIMULATION RESULTS 

In this section, we first assume a system in which (12) 
applies and by controlling the first joint, (controller in 
Section III) , we make it swing and realize pumping of 
energy. Next, we study a system for which (12) does not 
hold, and in which singular points exist. Using phase 
information from this system, we apply the controller of 
Section IV on the second joint and show that this results in 
smooth swinging and energy pumping. 

A. Model-based Control on ql 

Table I displays the parameters of a system in which 
condition (12) holds. Therefore, no singular points are 
expected while controlling the first joint. The system starts 
with null initial conditions, the settling time is chosen to be 
30 s, and the final width of oscillation of the first link, 
C

l f 
= 60° . Then, (3) yields, 

k = 0.03489 rad/s (19) 

TABLE 1. PARAMETERS OF A SYSTEM FOR wmCH (12) HOLDS. 

m
l 

[kg] m
2 

[kg] II [m] 12 [m] w [rad/s] 

10.00 20.00 0.50 1.00 4.91 



Figure 5 displays the joint angle responses and the applied 
torque on the second joint. The system response has a 
smooth and stable behavior. Angle ql follows the desired 
trajectory, and the error e, = q'd - q" (not shown), is 
practically zero. Also, as shown from the response of q2' 
the second link does not accelerate continuously and does 
not complete full rotations. Since no singularities exist, the 
input torque at the second joint is small and smooth. 

Next, the same controller is used to initiate swinging, 
but here (12) does not hold. The system parameters are 
shown in Table II. The remaining conditions are as before. 
Figure 6 shows the system response and the applied torque. 
During the transient state, angle ql follows the desired 
trajectory with some small error, which disappears at the 
steady state. Nevertheless, the second link is accelerated by 
very large torques that try to compensate for the loss of 
coupling. The result is that the link undergoes full rotations 
and no swinging is achieved. 

,OO~ 
:-10: 

o 10 20 30 40 50 
t [s] 

E 100,-----~------~----~~~~~,_,_~ 
~ 0 ""'AI\ II I \I 

N 
~ -100~----~------~----~------~~--~ 

o 10 20 30 40 50 
t [s] 

Figure 5. Response with control on ql ' without singular points. 

TABLE II. P ARAMETERS FOR A SYSTEM FOR WHICH (12) DOES NOT HOLD. 

m, [kg] 

...,. 
OJ 
Q) 

10.00 

m
2 

[kg] 

5.00 

I, [m] 12 [m] OJ [rad/s] 

0.50 0.25 4.22 

i::~ 
o 10 20 30 40 50 

...,. 1500 
g> 1000 
~ 500 

t [s] 

~ O==~ __ ~ ______ ~ ____ ~ ______ ~ ____ ~ 
o 10 20 30 40 50 

t [s] 

o 10 20 30 40 50 
t [s] 

Figure 6. Response with control on ql ' in the presence of singular points. 

Following the erratic transient phase, the system 
achieves a swinging response, see Figure 7. Fitting a 
sinusoidal functions on the response of the two angles, 
results in correlation coefficient very close to " 1 ". From 
these, the difference in phase is found to be: 

cp = 1.073 rad = 61.5 0 (20) 

60 6O,-----~----~-r-."S~am~p~'e 
40 - Fitting 

40 .., 
OJ 

~ 20 

~ 0 
Q) 
c 
';.20 

40 

..,30 
OJ 

~ 20 

10 
~ 
:!! 0 
N 
0-·10 

·20 

·30 

~~----~----~10----~15 400~----~----~10----~15 
t (s] t [s] 

Figure 7. Response of ql"~ and q,_ fitted with sinusoidal functions. 

B. Model-based Control on q2 

We apply the strategy that was developed in Section IV, 
using a system whose parameters are given in Table II. The 
desired trajectory for q2 is given by (14) and the phase 
difference is given by (20). The system starts from null 
initial conditions and C'f = 600 

. The parameter C
2 

is set to 
0.98 so that pumping is fast. Figure 8 displays the obtained 
system response. The response is smooth as desired. The 
system starts from null initial conditions and reaches the 
desired width of oscillation very quickly and with small 
amplitude errors. In addition the required torque is smooth 
and small in magnitude. 

OJ 

i JVV0NW\MMMMMM 
0 5 10 15 20 25 30 

CT t [s] 

~ 50 twNVW ! -5: ______________ . 

: 

0 5 10 15 20 25 30 
t [s] 

o 5 10 15 20 25 30 
t [s] 

Figure 8. Response with control on q, . 

Here we emphasize that, to the best of our knowledge, 
the developed Energy Pumping strategy is the only which 
can start the system from zero initial conditions, and can 
lead to high swinging amplitudes in a controlled fashion. 

As was shown above, with this Energy Pumping 
strategy, the system can swing smoothly. The developed 
method allows one to require energy pumping up to a 
specific settling time or energy pumping up to a given level. 
Setting both the height (amplitude) that the system will reach 
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and the settling time requires further analysis. Also, the 
oscillation amplitude that is achieved is close but not equal 
to the desirable value. This is due to the strategy used to 
keep the width of oscillation constant and can be modified 
with increased complexity. 

VI. CONCLUSIONS 

In this work we showed that an Acrobot can be controlled to 
behave as a robotic swing. This can be achieved by 
controlling the first joint angle ql when a particular 
condition is satisfied. In this case, we can set the desirable 
oscillation amplitude, as well as the time in which this must 
be achieved. It was shown that this strategy may be subject 
to singular points depending on system parameters. These 
singular points result in large input torques, and high second 
link accelerations. When this condition is not satisfied, then 
again we are able to swing the system controlling q2 and 
employing a new Energy Pumping strategy. This new 
strategy requires that the second link should have as an orbit 
a sinusoidal function with frequency equal to the lower 
natural frequency of the system. The difference of phase 
between the two orbits depends system parameters and is 
constant. This strategy presents important advantages 
compared to others since it is the only one that can begin 
with null initial conditions and make the system reach high 
swinging amplitudes. In addition, it is very fast and requires 
very small torques. 
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ApPENDIX A 

The matrices and vectors M , C , and G , are given by, 

M = ( PI + P2 + 2P3 COS(q2) P2 + P3 COS(q2)) 

P2 + P3 COS(q2) P2 

c= ( -P3Sin(q2)q2 -P3Sin(q2)q2-P3Sin(qJ ql ) (21) 

P3 sine q2 )ql 0 

G = [ P4g COS(ql) + psg cos(ql +q2)) 

Psg cos(ql +qJ 

with parameters : 

PI = m/:I + m2/1
2 + I I 

P2 = m2/:2 + 12 

P3 = m21/e2 

P4 = ml/el + m 2 /1 

P5 = m 2 /e2 

1 2 1 2 

I I = 12 ml(ll ) , 12 = 12 m2(l2) 

lei = II / 2, le2 = 12 / 2 

The functions gl and 1; are given by : 

gl = P2 '(PI + P2 +2· P3 ·cosq2)-(P2 + P3 ·cosq2)2 

1; = -P3 .q~ 'sinq2 .(p2 + P3 ·cosq2)- P3 .q~ 'sinq2 ' P2 

-2· P3 . P2 . qlq2 . sinq2 -

-Ps ·g ·cos(ql +Q2)'(P2 + P3 ·cosQ2)+ 

+P4' g ·cosQI . P2 + P5 ' g ·cos(QI +QJ . P2 

The functions ~ and B2 are given by : 

(P2 + P3 ·cosQ2)2 
~ = P

2 
- -...:....=..--=-""-----='-=-'--

(PI + P2 +2· P3 ·cosQ2) 

ql2 '(PI + P2 +2'P3 ·cosQ2)·P3 'sinQ2 
B = + 

2 (PI + P2 + 2 . P3 . cos Q2) 

P3 ·q22 'sinQ2 .(p2 + P3 ·cosQ2) 
+ + 

(PI + P2 + 2 . P3 . cos Q2) 

+2'P3 'QI'Q2 'sinQ2 .(p2 + P3 ·cosQ2) 
+ + 

(PI + P2 +2· P3 ·cosQJ 

-(p + P . cos Q ). P . g . cos Q 
+ 2 3 2 4 1+ 

(PI + P2 +2'P3 ·cosQ2) 

P5 ·g ·cos(QI +Q2)'P3 ·cosQ2 
+ + 

(PI + P2 +2· P3 ·cosQ2) 

P5 ·g ·cos(QI +Q2)'PI 
+~~----~~~~-

(PI + P2 +2· P3 ·cosQ2) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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