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Abstract. Mobile manipulator systems, comprised of a mobile platform with onaooe
manipulators,are of great interest in a number @pplications. Thispaper presents a
methodology for computing actuator commands for such systems that allow them to follow

desired end-effector andplatform trajectories without violating

the nonholonomic

constraints.Based on aeduction ofthe system dynamics, model-basedcontroller is
designed toeliminate trackingerrors without requiring largegains. The validity of the
methodology isdemonstratedusing differential-drive andcar-like mobile manipulator

systems.
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1. INTRODUCTION

Mobile manipulator systems consist of a mobile
platform equippedwith manipulators. Applications
for such systemsabound inmining, construction,
forestry, planetary exploration and the military.

A host of issuegelated tomobile manipulators
have been studied ithe past.These includelynamic
and static stability, force development and
application, control in the presence of base
compliance,dynamic coupling issues, etcsee for

can be equally applied tononholonomic and
holonomic mobile robots. Limand Seraji describe
the designand implementation of real-time control
systemapplied on a 7degree-of-freedonfDOF) arm
mounted on a 1-DORolonomic platform, [9]. The
redundant equations are solugsing weightedpseudo
inverses and a geometry-based control scheme.

The dynamics ofnonholonomic systems are
more complex compared to those of holonomic ones.
Saha and Angelederivedthe equations ofmotion of
such systems using Mewton-Euler approachnd a
natural orthogonal complement of the matrix

example [1-4]. However, in these studies, the mobile associatedwith the velocity constraintequations

manipulator system is assumed to be non-moving.

Mobile platformsare subject to nonholonomic
constraints that arise from wheel kinematigktion
planning for mobile platforms isconcernedwith
obtaining open loop controls whictsteer the
platform from an initial state to a final one, without
violating the nonholonomic constraintsee for
example [5-6]. The emphadi®re is inobtaining a
desired final state for the driving platform and
possibly of itstrailersandnot in path following. A
survey on recent developments incontrol of
nonholonomic systems can be found in [7].

Moving mobile manipulators systemgresent

written in linear homogeneous form, [1@arkar et
al. developed aunified approach tathe control of
mechanical systems subject to holonomic and
nonholonomic constraints, [11]. Thiepproach was
used for trajectory tracking and path following.

This paper focuses on trajectofgllowing and
control for mobile manipulators. Two commonly
available platforms, acar-like and a differentially
driven platform, equipped with a two-link
manipulator, are used. Thiifferential kinematics for
the two systems iglerived tomap platformand end-
effector velocities to actuatorvelocities, without
violating the nonholonomic constraints. This allows

many unique problems that are due to the coupling ofspecifying paths and trajectories for both the platform

holonomic manipulators with nonholonomic bases.

Seraji presents a simple on-liapproach fomotion
control of mobile manipulators usingqugmented

and the manipulatorend-effector.Next, Lagrange’s
method and orthogonal complementsire used to
obtain thereducedequations ofmotion. A model-

Jacobian matrices, [8]. The approach is kinematic andbasedcontroller is designedfor the differentially-

requires additionalconstraints to be met for the
manipulator configuration. Theroposed approach

driven mobile manipulato(DDMM) that eliminates
tracking errors. To illustrate the proposed



methodology, the problem of crack sealingsiadied, differential kinematicsare written for simplicity for
in which the end-effectorfollows a complex path  point F on the mobile platform and for point E of the
while the platform moves along a smoother path. end-effector.
Focusing on the platform first, expressions are
derived that relate the wheel rates to thdinear

2. KINEMATIC MODELLING OF MOBILE velocity of point F and to the platform rate of
MANIPULATORS rotation, ¢ . Simple analysis shows thahese
differential kinematics are described by

The most commonlyvailablemobile platforms use
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either adifferential drive or a car-likedrive. The - SCp+ Sp S Co-— Sp
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former employs two independently driven wheels i r lg-r s 9,
with a common axisand castersthat addstability to Ye |51 2307 O 30T 3
the mobile platform. The later is a tricyaesign in 0] r r '
which the driving front wheel is alsaised for b b
steering. : : .
where?}, and ¢, are the angular velocities of thedt
2.1. Differential Drive Mobile Manipulator and right wheslrespectively and the symbolsand s
Consider themobile manipulator systerdepicted in have been used mstea_d_ aifs andsin. Eq. (3) .ShOWS
Fig. 1. that the output velocitieare nonzero even ifonly

one wheel is rotating. Furthermore, in contrastan
like mobile platforms, this type of platform has the
1,=0.30m 1,=0.30m e ability to change its orientation on the spot.

,=0.15m  b=0.30m Keeping the first two equations in matrix Eq. (3)
l;=0.35m  r=0.10m anddisplaying the rotation matrix explicitly, we can
l,,=0.12m write
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From this equation we observthat if |, =0,

i.e. if the manipulator ignounted on the axis that
connects the wheel centers, then skeondmatrix in
Eq. (4) becomesingular. This isbecausall points

The platform moves by driving the two . . . .
. . i along this axis mushave avelocity perpendicular to
independentwheels as shown in the figure. We . !
it, and therefore, one degree of freedom idost.

assume that the speed at which this system moves i . : . :
. . ounting the manipulatoraway from this axis
low andthereforethe two drivenwheels do notslip .
removes this problem.

sideways. Henceahe velocity of the platforntenter The end effector linear velocity isfound using

of mass, vy, is perpendm_ular o the wheaxis. ts the fact that the base velocity is knoandgiven by
and y components are given by Eq. (4). Therefore, this velocity is written as

X =g Cosp andy, =v,sing %1 %] [co —soTd 3,7 +¢
Eliminating v, from the above equations we obtain { }={ i|+|:S(p co }Ln sz ) ®)

_ Driven” ‘o
Mobile Platform Wheel

Fig 1.  Mobile manipulator system on a
differentially-driven platform.

Vel LV 2
X; SNQ — Y, cos¢ =0 @ where x_, y., arethe x and y components of the
Eq. (1) is a nonholonomic constraiahd cannot be  velocity of E, andthe J, (i, j = 1,2) termsare the

integrated analytically to result in a constraint
betweenthe configuration variables of the platform,
namely X.,y, and ¢. As is well known, the

elements of the fixed-base Jacobian of the
manipulator employed, given by

configuration space of the system is three- Ji = sin(@,) =1, sin(@, + 7,) (63)
dimensional (completely unrestrictedhile the J, =-,sn(®, +¥,) (6b)
velocity space istwo-dimensional. This constraint,

written for the manipulator mount point F, becomes  J, =1, cos(%3,) +1, cos(d, + 9,) (6c)
X.sing—y.cosp+¢l, =0 () J,, =1, cos(®, + I,) (6d)

wherel is the distance between G and F. Due to theyhere|, |, are the lengths of the upper arand the

gatL_lre gf tthtlﬁ ZC_’f';Stra't'f‘ti the plt‘?‘”“l'”g Imust be forearm respectively,and 9,, ©,, are the joint
esigned at the difierential kinemalics Tevel. variables of the manipulator, see Fig. 1.

To construct viable system trajectories, the Note that the platform rotation rate,, is still



present in Eq. (5), as amput term. Thisrate is
written in terms of the wheel ratesing thethird
equation from Eq. (3)Next, combining Egs. (4) and
(5), theforward differential kinematics of the mobile
manipulator system is obtained as

X.] [co -sp 0 O

Ye| |sp cp O O
x| |0 0 cp -sp
Ye] [0 0 sp cp
r/2-Jd,rlb r/2+3,rib 3, 3,7,
~(e+d)rlb (.+3)rib 3, I, |9
ri2 r/2 0 0|y
—l,rib l,-r/b 0 0|9,
=x=RJ v=JV %)

2.2. Car-like Mobile Manipulator (CLMM).

Next, consider asimple mobile manipulator system
whose platform includes a froahd reawheels, see
Fig. 2. Therearwheelsareparallel to the main axis
of the carwhile the front wheel isusedfor steering
the platform. Again, the wheds do not to slip sideways.

1,=0.30m

1,,=0.15m
I,=0.35m
l,,=0.12m

Fig. 2. Car-like mobile manipulator system.

For simplicity, the manipulator isnounted at
point F, where the steering wheelligatedalso. For
this point the nonholonomic constraint is written as
X, Sing —y. cosg+¢l =0 ®)
where x. and y, arethe xand ycomponents of the
velocity v, of point F respectivelyand | is the

Eg. (10) maps the two input velocities, and y, to
the three output velocities, x.,y, and ¢. If one

eliminates the input velocities, the nonholonomic
constraint given by Eq. (8) results. Inspection of Eqg.
(10) reveals that one of its columnszexo Therefore,
if the mobile platform is not movingu( =0) then

neither the position nor the orientation of the
platform can be changed using the steering wheel.

Eqg. (10) is in a form not suitabl®r planning
becauseits Jacobian contains aero column. To
solve this problem, the first twequations in Eq.
(10) are rewritten as follows

e T6 Toan]

Note that thischange ofthe input velocities gives a
Jacobian form that is always invertiblehen
inverted, it results intwo variables from which the
desiredrate and steering anglecan be foundafter
simple manipulation.

As in the case of thdifferentially-drivensystem,
the end-effector linear velocity is written as

X X co —spJd, I, 0 +¢
M R e
Ye | [Yel LS@ co |3, Jn| 0,

where theJ, (i,j=12) are defined in Egs. (6).

Next, the platform rotatiomate ¢ is substituted

using Eq.(9c) andthe resultingequation isappended
to Eqg. (11) to yield the system differential kinematics

r
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Ye Sp Co 0 0 W-Sy
=x=RJ,w=J,w (13)

wherew corresponds to the last column vector in Eq.
(13) and the remaining variablebave beendefined
before.

distance between the point F and the back wheel axis3. PATH PLANNING FOR THE CRACK

The differential kinematics of thear-like mobile
platform are described by the following equations

X, =V, cos(@+Y)=wr cos(p+7) (9a)
Ye =0 SiN(@+7) =orsin(p+7) (9b)
0= &siny LA y

| | (9¢)
where y is the steering angley, =wr is the

velocity at point F, @ is the front wheelangular
rate, andr is its radius. Egs. (9) can be written as
X.| [coslp+y) O
Ye |=| sin(@+7) O{f}
¢ I"-siny 0

(10)

SEALING PROBLEM

The task we tackle ithis section is tayenerate the
desireddriven wheel raténputs so that thelatform
and the end-effector follow given trajectories. A
typical application forthis problem is therobotic
crack-sealing, where aobotic mobile platform is
required to follow a given path, while tlemd-effector
must follow some crack on the pavement.

Egs. (7)and(13) can beused to generatdesired
input velocities so that the platfornrand the
manipulator's end-effector both follow desired
trajectories. Since botkquations takento account
the nonholonomic constraints, trmputed wheel
speedgesult in motions thatre achievable by the



mobile manipulator system. The platforangular
velocity ¢ is found using the last equation in Eq. (3)
or Eq. (9¢c). The platform orientation #®und by 13 (h4d)7+tm?+.2)+ 2 0,0+0,+8,)
integrating this angular velocity. 2 2 2
We assume that the shape of tmack tofollow ~ where m, m;, m,, J, J, J, arethe massesand the
is available. Setting some time in which the task moments of inertia of the platform, the firmtd the
must beaccomplishedresults in thedesired end- second link respectivelyand X, Yo, X,, Y, X, Vs, the
effector trajectory described by £t) and \ {(Xe o). X, and y components of the velocities of tenter of
The curve followed bythe point F on the mass of the platform, and the first and the sedinid
platform either is arbitrarily specified on the respectively.
condition that thedistance between {xy:) and (x, Adding constraint forces as input terms forms the
yg) is within the reach of the manipulator, or equations of motion of theonstrainedsystem.Here,
corresponds to a prescribpdth for which thesame  theseforces areresponsible fornot allowing the
condition follows. Otherwise, the task is retisible  wheels toslip sideways. Theconstrained dynamics
and, as wewill see, a singularity will occur. If the are written in vector form as
motion of point F is noprescribedout is free, then doL oL

L= 2k +9,7)+ 23,07 + S m(k7 +9,0)+
2 2 2 (17)

it is advantageous tohoose it so that it ismooth 70~ oy +AT(@A-E=0 (18)
and that its curvature doesot violate anysteering : _
angle constraints. whereq = [XF Yo @ 0 15‘2] arethe generalized

The forward kinematics of the two systems are coordinates, A is the Lagrange multiplier that
described byEq. (7), (13), in whichR is a block
rotation matrixand therefore isalways nonsingular.
The matricesl, andJ, become singular only when

corresponds tahe constrainforce, and § represents
the externally applied forces.

N Expressing Eq. (17) in terms of tlyeneralized
dety = lell.r"snd, 9, =0°,+180° (14)  coordinatesndsubstituting the result int&q. (18),
the system equations of motion are obtained as

detd, =11 r’sing, =0= 9, =0°, +180°  (15)  M(@)a+V(a,q) =E(@)Tt-A"(a)1 (19)

which means that a singularity arises when thewhereM(q) is the X5 inertia matrix, V(q,q) is the
manipulator is fully extended or folded. Indeed, in vector of position and velocity-dependent forces,
such case the desiréatation for E isnot within the E(g) is a %4 input transformation matrix,
reach ofthe manipulator,and atool at E cannot
follow the desiredpath (crack). This problemcan be
overcome by re-planning the path of F.

T= [r/ T, T, 72]T is the 4-dimensionainput torque
vector,comprised ofthe leftandright wheel torques

and the first and second manipulator joint torques, and
A is the Lagrange multiplier.

4. DYNAMICS OF THE DIFFERENTIAL Eqg. (16) shows that the constraint velocity is
DRIVE MOBILE MANIPULATOR always in the nullspace 0A(qg), so it is possible to
define four independent velocities

Applying Lagrange’s equations ofnotion directly v(t)=[v, v, v, v,] such that

cannot yieldthe dynamics of mechanicasystems - .

subject to nonholonomic constraintdditional q=Sqv() (20)

terms describing the constraint forces must be added. wherethe matrix S(q) contains the base vectors of
The system is subject to a single nonholonomic the nullspace ofA. The selection of the base of the

constraint, which isdescribed by Eq. (2). This nullspace allows théndependentelocities to have a

equation can be written in matrix form as physical meaning. We choo$¥q)
A(@q=0 (16) [rop lorsp rcp lorsp o
where, r?s,(p I ~rb~cgo r%,(p I -rb-cq)
A(@)=[sing —cosp I, 0 0] s-| 2 b 2 b 2% e
. —-r/b r/b 00
a=[x v ¢ 9 9] 0 0 10

To derive the equations of motion for the mobile L 0 0 01

manipulator system, first let_(q,q) represent the i pe of rank 4 sincedet(S'S) = (1+1.2)r?/b? 0.

unconstrained system Lagrangian. Assuming that therpe vector of the independent velocities is
massandthe moments of inertia of theasters and

the driving wheels are negligible, this is equal to V= [19/ AN 7921
Differentiating Eqg. (20),substituting theexpression



for g into Eq. (19) and premultiplying bg', yields
S'(MSU(t) + MSu(t) + V) = STEx (22)

Note that sinceSe N(A), STA"A vanishes from the
above equation. Equation (22) is further written as

MV+V =E't (23)
where M’ '=S'MS, V' =S (MSv+V), and
E' =S'E =1,,, i.e. the identity #4 matrix. Since

S is non-singular, theeducedmass matrixM" is
always symmetric and positive definite.

Eqg. (23) can betransformed further in the
operational space using Eq. (7). The result is

Mx+V=F=J"1 (24)
where M =J"M'J" and V contains all the
velocity terms. Eq. (24) is in aery useful form

because itlinks the four input torques tothe four
output accelerations.

5. MODEL-BASED CONTROL DESIGN

Eq. (24) is in the form of holonomimechanical
systemsand can be easily used for model based
control of the system. To thiend, we use the
following control scheme

t=J](MX +V) (25)
where the auxiliary accelerations are given by

X =X, +K, (X, = X)+ K, (X, —X) (26)

In Eq. (26), the subscriptl corresponds tadesired
values, andK , and K, are diagonal gain matrices

K, =diagk,}, K, =diagk,}

Assuming exact parameter  knowledge,
substituting Eqg. (26into Eq. (25),andapplying the
resultingtorques tothe mobile systenequations of
motion, theerror dynamics ofthe system result,
which are described by the following uncoupled linear
differential equations

5+ko+ke=0,i=1..4 (27)

wheree = x , — X . Egs. (27) permit the selection of

the gain matrice , andK , so as to havéhe error
eliminated according to given specifications.

6. SIMULATION RESULTS

6.1 Trajectory Planning

First, the trajectories for the two mobile
manipulators shown irFigs. 2and 3 areplanned.
Their kinematics parameters are displayed insérae
figures. For the simulation run, the total time was
chosenequal to 6s andhe initial posture of the
system wasx", y¢", ¢", 9", ¥,") = (0.5m,0.5m,
12@, -3¢, -20). The final positions for points F and

E were &, v, X, yi") = (2m, -2m, 1.9m, -
1.9m). The path fopoint F on the mobilglatform
was constructed using a third order polynomial for the
time parameterization of x and a secondorder
polynomial fory==f(x;). The given path for thend-
effector and the platform are shown in Fig. 3.

Figs. 4 and 5 present snapshots of the motion of
the differentially-driven and the car-like mobile
manipulator system respectively. Igeneral both
systemsreact inthe same wayHowever the cusp
that appears inthose figures takeplace in different
positions and has a different shape. It can be seen that
the cusp of the differentially-driven mobile
manipulator issharperthan that of thecar-like one.
This is not surprising as thédifferentially-driven
system has the ability to turn on the spot.

0.5
0 end-effector
desired path
-0.5
y (m) front point
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-15
2 . . . . -
0 0.5 1 15 2 25
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Fig. 3. Desired platform and end-effector paths.
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Fig. 4. Animation of the motion of the mobile
manipulator with a differential drive.
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Fig. 5. Animation of the motion of the mobile
manipulator with car-like drive.

6.2. Dynamics and Model-based Control

Next, we apply thanodel-basedaontrol algorithm to
the DDMM using thedesiredtrajectories in Section
6.1. The mass properties are displayed in Table 1.



Table 1. Mobile manipulator mass properties

Parameter Value Units
M 50.0 kg
m;, 4.0 kg
m, 3.5 kg
J 1.417 kg M
J 0.030 kg M
J 0.036 kg M

The controller gains are selected to force étver
dynamicsexhibit a critical responswith a settling
time equal to 1 s. The resulting gain matrices are

K, =diag{12} andK = diag{36}

Fig. 6 andFig. 7 show thetorques applied on
the two driven wheels and on the joints of the
manipulator. Asexpected,small initial end-effector
and platform errors were eliminated bye controller,
without requiring excessive control gains.

6

4 Left wheel

2

Torque (Nm)
o

Right wheel

0 1 2 3 4 5 6 7 8
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Fig. 6. Driving wheel torques.
3 T T T T T
Upper
2 '/arm
~ 1
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>
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Fig. 7. Manipulator torques.

7. CONCLUSIONS

This paper focused ontrajectory following and

methodology were used to obtain the reduced
equations ofmotion for the DDMM system. Based
on these equations, model-basedcontroller was
designed toeliminate tracking errors. Thproposed
planning and control methodology wasapplied
successfully to a crack-sealing task using a DDMM.
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