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Abstract

In this paper, a novel model-based controller for a six Degree-of-Freedom (dof) electrohydraulic Stewart–Gough plat-
form is developed. Dynamic models of low complexity are employed that describe the salient dynamics of the main elec-
trohydraulic components. Rigid body equations of motion and hydraulics dynamics, including friction and servovalve
models are used. The developed feedback controller uses the system dynamic and hydraulic model to yield servovalve cur-
rents, so that the error dynamics converge asymptotically to zero, independent of load variations. In this approach, force,
pressure or acceleration feedback is not required. Simulations with typical desired trajectory inputs are presented and a
good performance of the controller is obtained. The proposed methodology can be extended to electrohydraulic serial
or closed-chain manipulators and simulators.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The original Gough six Degree-of-Freedom (dof) platform was developed in 1954 [1,2]. In 1965, the pro-
totype parallel mechanism was used as a 6-dof motion platform for a flight simulator [3]. Since then, a number
of studies on this mechanism and its variations have been published, i.e. [4]. The mechanism can be driven
electrically or electrohydraulically. The kinematics and dynamics of the Stewart–Gough (S–G) platform has
been studied by many researchers [5–9]. However, actuation dynamics have not been considered. Although
electrohydraulic S–G platforms have been used extensively, little published work on their full dynamics includ-
ing actuation and control, exists.

Hydraulics science combined with controls, has given new thrust to hydraulics applications. The main rea-
sons why hydraulics are preferred to electromechanical drives in some industrial and mobile applications,
include their ability to produce large forces at high speeds, their high durability and stiffness, and their rapid
response [10]. Hydraulic regimes differ from electromechanical ones, in that the force or torque output is not
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Nomenclature

A piston area [m2]
b viscous friction parameter [N s m�1]
C fluid capacitance [m4 s2 kg�1]
Cd discharge coefficient [–]
d1, d0 system length parameter [m]
e position error vector
f (a) servovalve nonlinear function [m7/2 kg�1/2], (b) excitation frequency [s�1]
Fact actuator output force [N]
Fc, Fv Coulomb, viscous friction vector
Fc, Fs, Fv Coulomb, static and viscous friction force [N]
Fc0, Fs0 Coulomb and static friction parameter [N]
Fext external force [N]
Ffr, F�fr friction vector
Ffr,p actuator friction force [N]
Fp actuator force vector
Fp hydraulic piston force [N]
hFi vector element of M�€‘þ V� þG� þ F�fr [N]
g (a) acceleration of gravity (a) [m s�2], (b) servovalve nonlinear function (b) [m7/2 kg�1/2]
G, G* gravity vector
Gp,in internal leakage coefficient of cylinder [m4 s kg�1]
J Jacobian matrix
i servovalve current [A]
Ixx, Iyy, Izz moment of inertia about the center of platform mass of X, Y, Z axis [kg m2]
Kp, Kv control gain matrices
K0,1, K1 positive servovalve constants [m7/2 kg�1/2], [m7/2 kg�1/2/A]
‘ actuator length [m]
‘ actuator length vector
m platform mass [kg]
M, M* mass matrix
P total system power [W]
p pressure [bar]
p, q, r Euler angle of platform at X, Y, Z axis [rad]
pc, qc, rc trajectory constants [rad]
ps, pT power supply and return pressure [bar]
Q fluid flow [m3 s�1]
r0, r1 system length parameters [m]
t time [s]
V, V* centrifugal and Coriolis vector
x generalized coordinates vector
x0, y0, z0 generalized coordinates of the center of platform mass at X, Y, Z axis [m]
xc, yc, zc, zc1 trajectory constants [m]
q fluid mass density [kg m�3]
s torque/force vector
f close-loop natural damping [–]
x close-loop natural frequency [rad/s]
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Indices

act actuator
C Coulomb
des desired
ext external
fr friction
in internal
p piston
s (a) static, (b) supply
T tank (return)
v (a) valve, (b) viscous
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proportional to actuator current and therefore, hydraulic actuators cannot be modelled as force/torque
sources, but as controlled impedances. As a result, controllers that have been designed for robot control,
assuming the capability of setting actuator force/ torque, cannot be used here.

Nguyen et al. [11] have developed a joint-space adaptive control scheme applied to an electromechanically
driven Stewart platform-based manipulator, using the Lyapunov direct method, and under the assumption
that platform motion is slow compared to the controller adaptation rate. Also, Kim and Lee studied and
applied a high speed tracking control of a 6–6 electric Stewart platform, using an enhanced sliding mode con-
trol approach [12].

Control techniques can be used to compensate for the nonlinearities of electrohydraulic servosystems. Non-
linear adaptive control techniques for hydraulic servosystems have been proposed by Garagic and Srinivasan
assuming linearization [13], and by Sirouspour and Salcudean using backstepping [14], approaches. The mod-
elling of an experimental hydraulic robot arm and the implementation of a model-based motion controller
that compensates for dynamic forces have been presented by Honegger and Corke [15]. However, this control-
ler was not successful partly due to the use of desired configuration information and not of the measured one.
A tracking controller for electrohydraulic servosystems, but with force and pressure feedback requirements,
has been developed, including a fast model-based force tracking loop [16].

Further, the modelling and control of an inverted, ceiling-mounted electrohydraulically driven Stewart
platform has been studied, using the virtual work principle [17]. The controller employed pressure feedback.
Work on the same mechanism, in which a Lyapunov analysis approach has been used for designing a nonlin-
ear controller, has been presented in Ref. [18]. A robust tracking control design for a 6-dof hydraulically dri-
ven Stewart type mechanism has been developed, using two Lyapunov-based types of controllers [19].

In this paper, a model-based controller for a 6–6 electrohydraulic S–G platform with symmetric joint loca-
tions is developed. Dynamic models are used that describe the rigid body equations of the S–G platform and the
hydraulics dynamics of its actuation system. Servovalve models and friction are included in the model. The
developed control scheme employs rigid body and actuation dynamics and yields the servovalve input current
vector, in analytical form, so that the error dynamics converge asymptotically to zero, independent of load vari-
ations. Unlike other approaches, in this one, feedback of force, pressure, acceleration or of their derivatives is
not required. The performance of the developed controller is illustrated using typical trajectories. The proposed
methodology can be extended to electrohydraulic serial or closed-chain manipulators and simulators.

2. Dynamic modelling

In this section, the dynamic model of a 6-dof electrohydraulic S–G platform servomechanism is developed.
This is a six dof closed kinematic chain mechanism consisting of a fixed base and a movable platform with six
electrohydraulic actuators supporting it, see Fig. 1.

The equations of motion of a S–G platform mechanism are derived using a Lagrangian formulation and are
written as
Plea
Mec
MðxÞ€xþ Vðx; _xÞ þGðxÞ þ Ffrð _xÞ ¼ s ð1Þ
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Fig. 1. Schematic view of a 6-dof S-G platform.
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where x = (x0,y0,z0,p,q, r)T is the 6 � 1 vector of the platform generalized coordinates, x0, y0, z0, are the plat-
form center of mass Cartesian coordinates, p, q, r are the platform Euler angles, M(x) is the 6 � 6 positive
definite mass matrix of the system, the 6 � 1 vector Vðx; _xÞ represents forces/torques arising from centrifugal
and Coriolis forces, the 6 � 1 vector G(x) represents torques due to gravity, Ffrð _xÞ is the 6 � 1 vector of the
forces/torques due to friction, and s is the 6 � 1 vector of the generalized applied forces.

Eq. (1) can be further extended using the transformation between mechanism actuator forces and the gen-
eralized applied forces [4], which is given by,
Plea
Mec
s ¼ JTFp ð2Þ
where J = J(x) is the Jacobian 6 � 6 matrix of the system, and Fp is a 6 � 1 vector representing actuator forces
given by,
Fp ¼ ðF p;1; F p;2; . . . ; F p;6ÞT ð3Þ
where Fp,j, j = 1,2, . . ., 6 are individual hydraulic forces acting on the platform.
Further, using mechanism differential kinematics, see Appendix B, the platform Cartesian motion described

by Eq. (1) can be transformed in its joint space and written as
M�ðxÞ€‘þ V�ðx; _xÞ þG�ðxÞ þ F�frð _‘Þ ¼ Fp ð4Þ
where ‘ = (‘1,‘2, . . .,‘6)T is the 6 � 1 vector of the mechanism actuator lengths, M*(x) is a 6 � 6 positive def-
inite mass matrix, a 6 � 1 vector V�ðx; _xÞ represents the centrifugal and Coriolis forces, the 6 � 1 vector G*(x)
represents the forces due to gravity, and F�frð _‘Þ is the 6 � 1 vector of the joint space friction forces. The terms
M*(x), V�ðx; _xÞ and G*(x) are given, respectively by (see Appendix B),
M�ðxÞ ¼ ½JðxÞT��1
MðxÞJðxÞ�1 ð5aÞ

V�ðx; _xÞ ¼ ½JðxÞT��1½Vðx; _xÞ �MðxÞ _Jðx; _xÞ � _x� ð5bÞ
G�ðxÞ ¼ ½JðxÞT��1

GðxÞ ð5cÞ
A number of methods exists, that can be used to model the friction vector F�frð _‘Þ [20]. A widely used method
models friction as
F�frð _‘Þ ¼ F�vð _‘Þ þ F�cð _‘Þ þ F�s ð6Þ
where F�vð _‘Þ, F�cð _‘Þ and F�s are the viscous, Coulomb and static friction vector respectively, with elements,
F �v;jð _‘jÞ ¼
bj

_‘j; _‘j 6¼ 0; j ¼ 1; 2; . . . ; 6

0; _‘j ¼ 0; j ¼ 1; 2; . . . ; 6

(
ð7aÞ
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Plea
Mec
F �c;jð _‘jÞ ¼
F �c0;jsignð _‘jÞ; _‘j 6¼ 0; j ¼ 1; 2; . . . ; 6

0; _‘j ¼ 0; j ¼ 1; 2; . . . ; 6

(
ð7bÞ

F �s;j ¼
F ext;j; jF ext;jj < F �s0;j;

_‘j ¼ 0; €‘j ¼ 0; j ¼ 1; 2; . . . ; 6

F �s0;jsignðF ext;jÞ; jF ext;jj > F �s0;j;
_‘j ¼ 0; €‘j 6¼ 0; j ¼ 1; 2; . . . ; 6

0; _‘j 6¼ 0; j ¼ 1; 2; . . . ; 6

8>><
>>: ð7cÞ
where bj is the jth parameter for viscous friction element, F �c0;j is the jth parameter for Coulomb friction ele-
ment, Fext,j is the jth external force element, F �s0;j is the jth breakaway force element and
signð _‘jÞ ¼
þ1; _‘j > 0; j ¼ 1; 2; . . . ; 6

0; _‘j ¼ 0; j ¼ 1; 2; . . . ; 6

�1; _‘j < 0; j ¼ 1; 2; . . . ; 6

8><
>: ð8Þ
3. Hydraulic modelling

The electrohydraulic actuation servosystem of the platform consists of pistons, servovalves, controllers,
sensors and a hydraulic power supply. Next, simple models of the system major components are introduced.

Hydraulic supplies include pumps that are usually constant pressure piston pumps, driven by induction
electric motors. Therefore, a pump is modelled as a constant pressure source. Further, they may include accu-
mulators for filtering pressure pulsations from the pump, but also for allowing the use of smaller rating pumps
by providing additional flow when needed. Such an accumulator, is modelled as a hydraulic capacitor [21].

A single rod hydraulic servocylinder is illustrated schematically in Fig. 2. The equations relating mechanical
to hydraulic variables are described by,
Q1 ¼ A1
_‘þ C1 _p1 þ Gp;inðp1 � p2Þ ð9aÞ

Q2 ¼ A2
_‘� C2 _p2 þ Gp;inðp1 � p2Þ ð9bÞ

A1p1 � A2p2 ¼ F p ð9cÞ
F act ¼ F p � F fr;p ð9dÞ
where Q1, Q2 are the flows through the two cylinder chamber ports, p1, p2 are the chamber pressures, A1 is the
piston side area, A2 is the rod side area, C1, C2 are the fluid capacitances in the cylinder chambers, Gp,in rep-
resents the cylinder internal leakage conductance, Fp is the hydraulic force, Ffr,p is the actuator friction force,
and Fact is the net actuator output force. In the case of a hydraulic cylinder with a double rod, the two areas A1

and A2 are equal and therefore, Eqs. (9) are simplified.
Control of a hydraulic system is achieved through the use of servovalves, see Fig. 3a. Only the resistive

effect of a valve is considered here, since their natural frequency is much higher than that of the mechanical
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Fig. 2. Schematic model of hydraulic servoactuator.
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Fig. 3. (a) A drawing of a real servovalve, (b) schematic model of servovalve.
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load. It is also assumed that the geometry of the valve is ideal, e.g. the valve has sharp edges and zero cross
leakage [22,23].

A typical hydraulic servovalve consists of four symmetric and matched servovalve orifices making up flow
paths through four nonlinear resistors, modulated by the input voltage, see Fig. 3a. Thereby, the servovalve is
modelled as the hydraulic equivalent of a Wheatstone bridge, see Fig. 3b. When the servovalve input current is
positive, i > 0, flow passes through the orifices 1 and 3 (path P � A � B � T), and flow leakages exist in the
valve orifices 2 and 4. Similarly, when the servovalve input current is negative, i < 0, flow passes through the
path P � B � A � T, and flow leakages exist in the valve orifices 1 and 3. This model is described by,
Plea
Mec
Qv1 ¼ f1ði;Cd; qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ps � p1

p
; Qv3 ¼ g1ði;Cd; qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � pT
p ð10aÞ

Qv2 ¼ f2ði;Cd ; qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ps � p2

p
; Qv4 ¼ g2ði;Cd; qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 � pT
p ð10bÞ
where Qv1, Qv2, Qv3 and Qv4 are the servovalve flows through the orifices 1, 2, 3 and 4 respectively, ps and pT

are the power supply and return pressure of the servosystem, correspondingly, i is the servovalve motor cur-
rent (control command), and f1(i,Cd,q), f2(i,Cd,q), g1(i,Cd,q) and g2(i, Cd, q) are nonlinear functions in the
servovalve motor current, the discharge coefficient Cd and the mass density of the fluid, q. In general, the dis-
charge coefficient is as function of the Reynolds number and valve geometry. However, fluid density and Rey-
nolds dependencies are weak for turbulent flow and therefore only the current dependency is significant here
[10]; therefore, the functions f1(i,Cd,q), f2(i,Cd,q), g1(i,Cd,q) and g2(i,Cd,q) are reduced to f1(i), f2(i), g1(i) and
g2(i), correspondingly. Because of servovalve symmetry, the current functions are given by,
f1ðiÞ ¼ g1ðiÞ ¼ f2ð�iÞ ¼ g2ð�iÞ ð11aÞ
f2ðiÞ ¼ g2ðiÞ ¼ f1ð�iÞ ¼ g1ð�iÞ ð11bÞ
Experimental results showed that it is a good approximation to assume that these functions are linear func-
tions of the input current, when flow passes through the main path, and have a constant value when flow
passes through the leakage flow path. For instance, when i > 0, the main flow path passes through the orifices
1 and 3 and therefore the functions of Eqs. (10) are written as
f1ðiÞ ¼ g1ðiÞ ¼ K1iþ K0;1 ð12aÞ
f2ðiÞ ¼ g2ðiÞ ¼ K0;1 ð12bÞ
where K1 and K0,1 are positive constants, which correspond to the main and leakage valve flow paths.
The K1 and K0,1 constants for a two-land-four-way spool MOOG servovalve were experimentally computed

[16], and the results are depicted in Fig. 4.
If leakage flows and cylinder chamber compressibility are neglected, the flows through the orifices of the

servovalve described by Eqs. (9a), (9b) are equal to the flows through cylinder chamber ports, see Eqs.
(9a), (9b), and are written as
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Fig. 4. Servovalve current functions in main and leakage path.
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Plea
Mec
Qv1 ¼ Q1 ¼ A1
_‘ ð13aÞ

Qv3 ¼ Q2 ¼ A2
_‘ ð13bÞ
4. Control design

4.1. Feedback control scheme

In this section, candidate control schemes are studied and evaluated for implementation in a real-time envi-
ronment. The schemes are discussed in terms of building blocks, computational burden, and feedback required
to achieve tracking control of the platform; the low-level control design is developed in later sections. Three
such concepts of control schemes are presented and discussed next.

The first control scheme, see Fig. 5a, called here an Operational Space control scheme, (OS), uses a feed-
back of the Cartesian coordinates of the platform. The controller uses the error in Cartesian coordinates to
compute the system control input, i.e. the valve currents. The second control scheme, see Fig. 5b, called here
a Joint Space (JS) control scheme, uses mechanism inverse kinematics for computing desired actuator length
trajectories from desired Cartesian trajectories. The actuator error lengths and speeds are fed into the control-
ler. In this scheme, actuator length feedback, provided by built-in sensors, is used. The third scheme, called
here called an Operational Error Joint Feedback (OEJF) control scheme, embeds the forward kinematics
in the feedback control loop, see Fig. 5c. Here, the computed Cartesian coordinate feedback is compared
to the desired Cartesian trajectories to yield the trajectory error driving the controller.

Examining the three alternative control schemes, we observe that the first, OS, appears to be preferable,
since it closes the loop on the actual platform position and orientation. However, this scheme requires Carte-
sian position and orientation sensors, which may be very expensive or impossible to find at the desired accu-
racies. The JS and OEJF schemes are advantageous from the practical point of view, since they require leg
displacement sensors that are present in all such mechanisms. On the other hand, these schemes present some
algorithmic complexities and numerical difficulties due to the use of forward kinematics that are described by
complex nonlinear equations, and can be solved numerically only.

This characteristic is undesirable from the point of view of real-time control implementation, and cannot be
bypassed. Fortunately, today’s embedded computers can solve the forward kinematics in 5–15 ms, making it
possible to implement controllers such as JS and OEJF in real-time. If additional bandwidth is needed, the
computation time can be further reduced by using additional auxiliary linear or rotary sensors that are inex-
pensive and easy to add [24,25]. Using these techniques, additional joint positions of the mechanism are mea-
sured and the forward kinematics equations can be written as a linear algebraic system constrained by the
proper orthogonality of the rotation matrix. Usually, in S–G systems, joint angular sensors are preferred to
additional displacement sensors (due to implementation difficulties, link collision avoidance, etc.).
se cite this article in press as: I. Davliakos, E. Papadopoulos, Model-based control of a 6-dof electrohydraulic ...,
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Fig. 5. Alternatives model-based control schemes: (a) OS controller, (b) JS controller, and (c) OEJF controller.
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We note here that all control schemes in Fig. 5 depend on the knowledge of system parameters. Errors in
system parameters may result in deviation of the platform position and orientation from those desired. This
problem can be solved using appropriate identification procedures and calibration techniques [26,27].

As mentioned earlier, JS and OEJF are advantageous from the feedback point of view. Comparing these
two, we observe that JS requires additional computations due to the use of inverse kinematics. Therefore,
OEJF is preferable and is selected for further implementation of the model-based controller.
4.2. Model-based controller

In this section, the selected OEJF control scheme is used to develop a novel model-based controller allow-
ing tracking of the reference inputs for the six-dof electrohydraulic S–G platform. Desired Cartesian trajecto-
ries are used as input commands of the controller. The control law provides the current sent to the linear
hydraulic servoactuator servovalves. The control analysis is based on the system dynamic and hydraulic
model; therefore, it is assumed that the dynamic terms M(x), Vðx; _xÞ, G(x), and Ffrð _xÞ see Eq. (1), are known.
This usually requires some identification experiments, see for example [16].

In the electromechanical domain, actuator Lorentz forces are proportional to actuator current. This sim-
plifies motion control laws and allows one to achieve second-order error dynamics converging exponentially to
zero. However, a simple relationship between force and current does not exist in electrohydraulic systems.
Despite this, we are interested in studying whether such a system can be described by decoupled invariant error
dynamics, so that the error dynamics converge asymptotically to zero, independent of load variations. The
Please cite this article in press as: I. Davliakos, E. Papadopoulos, Model-based control of a 6-dof electrohydraulic ...,
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error dynamics equation which describe such a requirement is given by a second-order differential equation
such as
Plea
Mec
€eþ Kv _eþ Kpe ¼ 0 ð14Þ

where Kp, Kv are 6 � 6 diagonal matrices, which represent the control gains of the system, and e is the 6 � 1
position error vector of the moving platform, given by,
e ¼ xdes � x ð15Þ

where xdes is the 6 � 1 vector of the desired platform displacements. Note that the error dynamics in (14) are
independent of the system inertial properties, i.e. tracking error transient and convergence do not depend on
load variations.

Since Eq. (14) is a second-order differential equation, matrix factors Kp and Kv can be written in terms of
the closed-loop natural frequency and damping, xj and fj, j = 1,2, . . ., 6, respectively, for the six linear actu-
ators. Therefore, these are given by,
Kp ¼ diagfx2
1;x

2
2; . . . ;x2

6g ð16aÞ

Kv ¼ diagf2f1x1; 2f2x2; . . . ; 2f6x6g ð16bÞ
The xj and fj, j = 1,2, . . ., 6, determine the system’s stability and affect critically its transient response. There-
fore, the closed-loop natural frequency and damping are selected so that the closed-loop poles lie in a desirable
area of the left half complex plane.

Using Eqs. (9), (12) and (13), the servocylinder chamber pressures are computed as
p1jj ¼ ps �
A2

1

ðK1iþ K0;1Þ2
� _‘2

" #�����
j

; j ¼ 1; 2; . . . ; 6 ð17aÞ

p2jj ¼ pT þ
A2

2

ðK1iþ K0;1Þ2
� _‘2

" #�����
j

; j ¼ 1; 2; . . . ; 6 ð17bÞ
Using Eqs. (9c) and (17), the hydraulic forces developed by the actuators are given by,
½p1A1 � p2A2�jj ¼ A1ps � A2pT �
A3

1 þ A3
2

ðK1iþ K0;1Þ2
� _‘2

" #�����
j

; j ¼ 1; 2; . . . ; 6 ð18Þ
where ij is the current (control input) for the jth valve/actuator assembly and [p1A1 � p2A2]jj is the resulting
actuator force. However, Eq. (18) is also function of the velocity of the actuators, _‘j. Substituting Eq. (18)
in the system equation of motion, Eq. (1), the following equations of motion are derived,
f½JðxÞT��1 � ½MðxÞ€xþ Vðx; _xÞ þGðxÞ þ Ffrð _xÞ� ¼

A1ps � A2pT �
A3

1
þA3

2

ðK1iþK0;1Þ2
� _‘2

h i���
1

..

.

A1ps � A2pT �
A3

1
þA3

2

ðK1iþK0;1Þ2
� _‘2

h i���
6

2
66664

3
77775 ð19Þ
Solving Eq. (19) for the input commands, ij, j = 1, 2, . . ., 6, the components of the servovalve current vector
i = (i1, i2, . . ., i6)T are computed as
ij ¼
_‘

K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

A3
1
þA3

2

½A1ps � A2pT � hF i�
q � K0;1

K1

2
64

3
75
�������
j

; j ¼ 1; 2; . . . ; 6 ð20Þ
where hFijj represents the jth element of the vector ½JðxÞT ��1 � ½MðxÞ€xþ Vðx; _xÞ þGðxÞ þ Ffrð _xÞ�.
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Further, assuming that Eq. (14) has been achieved, Eq. (7b) is solved for €x and the result is substituted in
the elements hFijj. Then, the hFijj are given by,
Plea
Mec
hF ijj ¼ f½JðxÞ
T��1 � ½MðxÞ � ð€xdes þ Kv _eþ KpeÞ þ V ðx; _xÞ þGðxÞ þ Ffrð _xÞ�g

���
j
; j ¼ 1; 2; . . . ; 6 ð21Þ
Eqs. (20), (21) correspond to a model-based closed-loop controller that yields the servovalve current vector
for a given desired trajectory. The controller includes a model of both the mechanism and the electrohydraulic
actuation dynamics. In Eq. (21), it is assumed that J(x)T can be inverted anywhere, with the exception of
mechanism singular configurations. However, such a platform will never be driven through singular configu-
rations, as this is checked by a separate code that does not allow the mechanism to pass through such dan-
gerous poses.

The developed controller, given by Eqs. (20), (21), requires feedback of cylinder position and cylinder veloc-
ity errors only. As can be seen from Eq. (20), the servovalve current inputs are functions of the position and
velocity error vector, i.e.,
i ¼ iðe; _eÞ ð22Þ
The controller also uses the desired acceleration, i.e. no acceleration measurement is required. In contrast to
other approaches, here, force, pressure or acceleration feedback or their derivatives are not required. These
variables are typically difficult to obtain, require additional sensing and are contaminated with noise. The fact
that this controller does not require feedback of these is a clear advantage when it comes to implementing it.
The block diagram in Fig. 5c indicates the position of this controller in the overall system, in which it is rep-
resented by the block labeled ‘‘control law.”

Substituting Eq. (20) in Eqs. (10), and combining Eqs. (1), (2), (9) and (13), an equation of the form of Eq.
(14) results, which demonstrates the stability of the system. The response is stable provided that the gain
matrices are nonnegative while the error transient depends on the particular gain selection.

5. Simulation results

The tracking performance of the controller is evaluated next. Usually, in flight simulators, the platform
mass is much larger than the mass of the actuators. Due to this fact, and to simplify the terms in the equations
of motion for the needs of this paper, the terms M(x), Vðx; _xÞ and G(x) of Eq. (1) are simplified by neglecting
actuator masses. The resulting matrices and vectors, i.e., M(x), Vðx; _xÞ and G(x) are given in Appendix A, see
Eqs. (A1)–(A3). Here, the system parameters include the platform mass m = 300 kg, the moments of inertia
about the platform center of mass Ixx = Iyy = 25 kg m2, Izz = 50 kg m2, and friction parameters, bj, F �c0;j

and F �s0;j. Friction parameters were experimentally computed using a single electrohydraulic actuator, in a con-
figuration similar to that of a S–G platform [16]. The identification experiments results are shown in Fig. 6.
These yield, bj = 760 N s/m, F �c0;j ¼ 71 N and F �s0;j ¼ 245 N during piston expansion, and bj = 945.59 N s/m,
F �c0;j ¼ �16:5 N and F �s0;j ¼ �210 N during piston compression. Mechanical parametric uncertainties can be
neglected here, as the controller performance is not sensitive to these. However, an uncertainty analysis is pre-
sented in [28]. A top view of a 6–6 symmetric S–G mechanism is illustrated in Fig. 7. The joints of the movable
platform and fixed base lie at equal peripheral distances and at radii r1 = 0.5 m and r0 = 1.0 m, respectively;
the joint distances at the movable platform and fixed base are d1 = 0.2 m and d0 = 0.3 m, respectively, see
Fig. 7. Further, the valve parameters are K0,1 = 5.13 � 10�9 (m7/kg)1/2 and K1 = 1.50 � 10�5 m7/2/(A kg1/2),
see Fig. 4.

The Cartesian desired trajectories of the platform center of mass are assumed to be
x0ðtÞ ¼ xc sinð2pf1tÞ; y0ðtÞ ¼ yc cosð2pf1tÞ; z0ðtÞ ¼ zc1 þ zc sinð2pf1tÞ ð23aÞ
pðtÞ ¼ pc cosð2pf2tÞ; qðtÞ ¼ qc sinð2pf2tÞ; rðtÞ ¼ rc sinð2pf2tÞ ð23bÞ
where xc, yc, zc, zc1, pc, qc and rc are trajectory constants, f1, f2 are the corresponding position and orientation
platform trajectory frequencies, and t is the time. The trajectory parameters are, f1 = 0.6 Hz, f2 = 0.3 Hz,
xc = 0.2 m, yc = 0.1 m, zc = 0.1 m, zc1 = 1.26 m, pc = 10�, qc = 30�, rc = 30�. To compute the matrix control
gains, we first require that the response of all dofs is critically damped. Hence, fj = 1, j = 1,2, . . ., 6. Next,
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Fig. 6. Experimental results of a hydraulic cylinder friction force vs. piston velocity [16].

Fig. 7. Ground plan of a six-dof S–G platform.
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to keep power requirements under control, we require a settling time of about ts = 0.2 s, yielding xj = 10p rad/s,
j = 1,2, . . ., 6. Eq. (16) yield then the elements of Kp and Kv matrices, Kp,j = 100p2 rad2/s2 and Kv,j = 20p rad/s,
j = 1,2, . . ., 6.

Figs. 7 and 8 show the response to the desired trajectories given by Eqs. (23). The platform displacements in
the three Cartesian axes and orientation are shown in Fig. 8, and the position and orientation errors of the
platform are depicted in Fig. 9. The position errors converge to zero, as expected, and the settling time is
ts,j = 6/xj[s], j = 1,2, . . ., 6. Also, the position response of one of the six leg lengths of the mechanism, the force
acting on the platform, the input signal for the same actuator, and the total power of the system are depicted
in Fig. 10.

The robustness of the controller can be demonstrated by applying the controller to the system in the case of
erroneous parameter estimation. For example, assume that the platform load is estimated to be 5% larger than
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Fig. 9. Simulation results. (a–c) Platform position errors, (d–f) platform orientation errors.

Fig. 8. Simulation results. (a–c) Platform displacement response, (d–f) platform orientation.
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its true value and all joint locations for both the movable platform and fixed base differ by 5% from their true
values. These are rather strong assumptions, especially for the kinematic errors, as such platforms are designed
at high tolerances for ensuring smoothness of operation. The new platform position and orientation errors are
illustrated in Fig. 11. The comparison between Figs. 8 and 11 demonstrates that despite the introduction sys-
tem parameter inaccuracies, the controller leads the system to the desired location, with a small increase of
platform position and orientation errors.
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Fig. 11. Simulation results with a parametric error of ±5%. (a–c) Platform position errors, (d–f) platform orientation errors.

Fig. 10. Simulation results. A servoactuator: (a) length position, (b) actuated force, (c) input signal, and (d) total system power.
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The above examples showed that a model-based controller can be developed for an electrohydraulic system,
despite the intrinsic nature of the system, which is very different from electrically driven robots. Uncertainty
always exists, but the proposed controller works even in the presence of relatively large parametric uncer-
tainty. Obviously, a better knowledge of the parameters improves the response, and this is to be expected.
Reducing parameter uncertainty beyond some threshold requires either the use of a parameter identification
method or of an adaptive controller.
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6. Conclusions

The development of a novel model-based control for a 6–6 electrohydraulic Stewart–Gough platform was
studied. Rigid body equations describing the S–G platform motion and its hydraulic dynamics, including fric-
tion and servovalve models were employed. The feedback controller approach used the system dynamic and
hydraulic model to yield servovalve currents, so that the error dynamics converge asymptotically to zero, inde-
pendent of the applied load. In this approach, force, pressure or acceleration feedback was not required. Sim-
ulations with typical desired trajectory inputs were presented and a satisfactory performance of the controller
was observed. The proposed methodology can be extended to electrohydraulic serial or closed-chain manip-
ulators and simulators.
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Appendix A.

The 6 � 6 mass matrix of the platform, M, and 6 � 1 vectors V and G of the Stewart mechanism, in case
that the dynamics of mechanism actuators is neglected, are given by,
Plea
Mec
M ¼

m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Mð4; 4Þ Mð4; 5Þ Izz cos q

0 0 0 Mð5; 4Þ Mð5; 5Þ 0

0 0 0 Izz cos q 0 Izz

0
BBBBBBBB@

1
CCCCCCCCA

ðA:1aÞ

V ¼ ð0; 0; 0; V ð4; 1Þ; V ð5; 1Þ; V ð6; 1ÞÞT ðA:1bÞ
G ¼ ð0; 0; 0; mg; 0; 0ÞT ðA:1cÞ
where,
Mð4; 5Þ ¼ Mð5; 4Þ ¼ 1

2
ðIyy � IxxÞ � sin q � sin 2r ðA:2aÞ

Mð4; 4Þ ¼ 1

4
½Ixx þ Iyy þ 2Izz � ðIxx þ Iyy � 2IzzÞ � cos 2qþ 2 � ðIxx � IyyÞ � cos 2r � sin2 q� ðA:2bÞ

Mð5; 5Þ ¼ 1

2
½Ixx þ Iyy þ ðIyy � IxxÞ � sin 2r� ðA:2cÞ
and,
V ð4; 1Þ ¼ 1

2
fðIyy � IxxÞ _q2 cos q � sin 2r � 2Izz _q_r sin q� 2ðIxx � IyyÞ�

_q_r sin q � cos 2r þ ½Ixx þ Iyy � 2I zz þ ðIxx � IyyÞ cos 2r��
_p _q sin 2qþ ðIyy � IxxÞ _p _q_r sin2 q � sin 2rg ðA:3aÞ

V ð5; 1Þ ¼ 1

4
f½2Izz � Ixx � Iyy � ðIxx � IyyÞ cos 2r� _p2 cos 2q

þ 4½Izz þ ðIyy � IxxÞ cos 2c� _p _r sin qþ 4ðIxx � IyyÞ _q_r sin 2rg ðA:3bÞ

V ð6; 1Þ ¼ 1

2
fðIxx � IyyÞ _p2 sin2 q � sin 2r � 2½Izz þ ðIyy � IxxÞ � cos 2r� _p _q sin q� ðIxx � IyyÞ _q2 sin 2rg ðA:3cÞ
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Appendix B.

The 6 � 6 Jacobian matrix, J(x), combines the generalized velocities, _x, with the actuator velocities,
_‘ ¼ ð _‘1; _‘2; . . . ; _‘6Þ T via the relationship,
Plea
Mec
_‘ ¼ JðxÞ � _x ðB:1Þ

This equation leads to,
_x ¼ ½JðxÞ��1 � _‘ ðB:2aÞ

€x ¼ ½JðxÞ��1 � €‘� ½JðxÞ��1 _Jðx; _xÞ � _x ðB:2bÞ
Finally, substitution of Eq. (B.2b) in Eq. (1), yields Eq. (4).

Appendix C

The actuator lengths are determined using inverse kinematics of the mechanism. Given the generalized
coordinates, x = (x0,y0,z0, p,q,r)T, the actuator lengths are expressed by,
‘i ¼ fx2
Bi
þ y2

Bi
þ z2

Bi
þ ðX Ai � x0Þ2 þ ðY Ai � y0Þ

2 þ ðZAi � z0Þ2 � 2½ðr11xBi þ r12yBi
þ r13zBiÞ � ðX Ai � x0Þ

þ ðr21xBi þ r22yBi
þ r23zBiÞ � ðY Ai � y0Þ þ ðr31xBi þ r32yBi

þ r33zBiÞ � ðZAi � z0Þ�g1=2
; i ¼ 1; 2; . . . ; 6

ðC:1Þ
where X Ai , Y Ai , ZAi are the coordinates of joints Ai relative to XYZ frame, see Fig. 7, xBi , yBi
, zBi are the coor-

dinates of joints Bi relative to xyz frame, see Fig. 7, and r11, r12, . . ., r33 are the elements of rotation matrix of
the platform, which are given by,
r11 ¼ cos p cos q cos r � sin p sin r; r12 ¼ � cos r sin p � cos p cos q sin r; r13 ¼ cos p sin q ðC:2aÞ

r21 ¼ cos q cos r sin p þ cos p sin r; r22 ¼ cos p cos r � cos q sin p sin r; r23 ¼ sin p sin q ðC:2bÞ

r31 ¼ � cos c sin q; r32 ¼ sin q sin r; r33 ¼ cos q ðC:2cÞ
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