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Self-stabilising quadrupedal running by mechanical design
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Dynamic stability allows running animals to maintain preferred speed during locomotion over rough terrain. It appears that
rapid disturbance rejection is an emergent property of the mechanical system. In running robots, simple motor control seems
to be effective in the negotiation of rough terrain when used in concert with a mechanical system that stabilises passively.
Spring-like legs are a means for providing self-stabilising characteristics against external perturbations. In this paper, we
show that a quadruped robot could be able to perform self-stable running behaviour in significantly broader ranges of forward
speed and pitch rate with a suitable mechanical design, which is not limited to choosing legs spring stiffness only. The results
presented here are derived by studying the stability of the passive dynamics of a quadruped robot running in the sagittal plane
in a dimensionless context and might explain the success of simple, open loop running controllers on existing experimental
quadruped robots. These can be summarised in (a) the self-stabilised behaviour of a quadruped robot for a particular gait
is greatly related to the magnitude of its dimensionless body inertia, (b) the values of hip separation, normalised to rest leg
length, and leg relative stiffness of a quadruped robot affect the stability of its motion and should be in inverse proportion
to its dimensionless body inertia, and (c) the self-stable regime of quadruped running robots is enlarged at relatively high
forward speeds. We anticipate the proposed guidelines to assist in the design of new, and modifications of existing, quadruped
robots. As an example, specific design changes for the Scout II quadruped robot that might improve its performance are
proposed.
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1. Introduction

Negotiation of rough terrain is the most important reason
for building legged robots, instead of wheeled and tracked
ones. Animals exhibit impressive performance in handling
rough terrain and they can reach a much larger fraction
of the earth landmass on foot than existing wheeled vehi-
cles. Their robotic counterparts have not yet been benefited
from the improved mobility and versatility that legs offer.
Early attempts to design legged platforms resulted in slow
moving, statically stable robots, which are still the most
prevalent today (see Berns 2008 for a survey).

In this paper, however, we focus on dynamically stable
legged robots. Two decades ago, Raibert (1986) set the stage
with his groundbreaking work on dynamic legged locomo-
tion by introducing very simple controllers for stabilising
running on his one-, two- and four-legged robots. Later
on, Buehler (2002) designed and built power autonomous
legged robots with one, four and six legs, which demon-
strate walking and running in a dynamic fashion. The un-
derlying fundamental principles exemplified by his robots
were minimal actuation, coupled with a suitably designed
mechanical system featuring springy legs, and simple con-
trol laws that excite the natural dynamics of the mechanical
system.

∗Corresponding author. Email: egpapado@central.ntua.gr

Patrush and Tekken robotic quadrupeds by Kimura et al.
(2007) are examples of another design and control approach
for dynamically stable running. On the basis of principles
from neurobiology, Kimura et al. proposed a controller
based on a Central Pattern Generator (CPG) that alters its
active phase based on sensory feedback and results in adap-
tive dynamic walking on irregular terrain.

Despite their morphological and design differences all
these robots are propelled forward using control laws with-
out intense feedback. For instance, Poulakakis et al. (2006)
demonstrated recently on the quadrupedal robot Scout II
that simple controllers, requiring only touchdown detection
and local feedback from motor encoders, can be used to sta-
bilise running. These controllers simply position the legs at
a fixed touchdown angle during the flight phase and result
in stable bounding.

In a non-literal sense, these experimental findings in
robotics are in qualitative agreement with developments in
biology. As experimental evidence suggests, the high-level
nervous system is not required for steady-state level walk-
ing and running, and mechanisms entirely located within
the spinal cord are responsible for generating the rhythmic
motions of the legs during locomotion (see McMahon 1985
and Pearson 1976).
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Furthermore, control during rapid locomotion is domi-
nated by the mechanical system as recent research in phys-
iology indicates (see Kubow and Full 1999 and Full and
Koditschek 1999). Kubow and Full developed a simple,
two-dimensional, dynamic model of a hexapedal runner to
explore the role of the mechanical system in control. This
model had no equivalent of nervous feedback and it was
surprisingly found to be inherently stable. This pioneering
work first revealed the significance of the mechanical sys-
tem in simplifying control by demonstrating that stability
could result from leg moment arm changes alone. There-
fore, it is reasonable to assume that intense control action
relying on complex feedback from multiple sensors is not
necessary to generate and sustain walking and running.

In an attempt to study the basic properties of sagit-
tal plane running, Schwind (1998) proposed the Spring
Loaded Inverted Pendulum (SLIP) template, which, despite
its structural simplicity, was found to sufficiently encode the
task-level behaviour of animals and robots. These early re-
sults were also confirmed by Full and Koditschek (1999),
who further set the basis for a systematic approach in study-
ing legged locomotion by introducing the templates and
anchors modelling and control hierarchy.

In addition, recent research conducted independently by
Seyfarth et al. (2002) and Ghigliazza et al. (2003) showed
that when the SLIP is supplied with the appropriate initial
conditions and for certain touchdown angles, not only does
it follow a cyclic motion, but it also tolerates small pertur-
bations without the need of a feedback control law. This
inherent stability of the SLIP model is a very interesting
property.

The formal connection between templates, such as the
SLIP, and more elaborate models, which enjoy a more
faithful correspondence to the morphology of the robot,
has not yet been fully investigated (for preliminary results,
see Saranli and Koditschek 2003). Also, as was shown by
Cherouvim and Papadopoulos (2005), controllers specif-
ically derived for the SLIP will have to be modified in
order to be successful in inducing stable running in more
complete models that include pitch dynamics and comprise
energy losses.

However, simplified models have been proved to be
helpful in the design of controllers that exploit the passive
dynamics of the system, resulting in considerable energy
savings, which is a critical requirement for autonomous
legged locomotion. A notable example of such controllers
is the one in ARL’s Monopod II at McGill by Ahmadi
and Buehler (1997) and the one by Papadopoulos and
Cherouvim (2004). It is also generally accepted that run-
ning is essentially a natural mode of the system and that
only minor control and energy effort are required to main-
tain motion.

In this paper, motivated by the experimental findings in
existing robots, we attempt to provide an explanation for
simple control laws being adequate in stabilising complex

running tasks, such as bounding. It is the simplicity of these
robots’ design and control, together with experimental suc-
cess, that initiated our attempts for this work. Our analysis
departs from the recent developments regarding the self-
stabilisation property of quadruped robots, such as Scout
II by Poulakakis et al. (2006), where it is shown that the
dynamics of the open loop passive system alone can confer
stability of motion. It was found that bounding gaits can be
passively generated as a response of the system to an appro-
priate set of initial conditions and a regime where the sys-
tem is self-stabilised against small perturbations from the
nominal conditions was identified. However, this regime
involved running with forward speeds of 3–4 m·s−1 and
bounding with 100–200 deg·s−1 (pitch rate), which is not
practically achievable with existing quadruped robots.

In our work, the stability analysis of the passive dynam-
ics of robotic quadrupeds is studied in a dimensionless con-
text (Chatzakos and Papadopoulos 2009), revealing further
intrinsic properties of quadrupedal running and unveiling
aspects of robotic quadrupeds that have a similar config-
uration but a different scale. It is shown that a suitable
quadruped mechanical design can provide self-stabilising
characteristics against external perturbations that originate
in leg–ground interactions or in motor control. This re-
sults in dynamically stable running with bounding gaits
with physically realistic and practically achievable forward
speeds and pitch rates. We anticipate the guidelines pro-
posed hereinafter to assist in the design of new, and modi-
fications of existing, quadruped robots.

To investigate passive stability, a simple mechanical
model of a quadruped robot running in the sagittal plane
that encodes the targeted task-level behaviour (steady-state
bounding) is employed. The model is unactuated and con-
servative, so that the properties of the natural dynamics
of the system can be revealed. It includes pitching, which
is a very important component of the motion that is not
captured by point-mass models like the SLIP. To broaden
our analysis and reveal the effect of scaling, dimensional
analysis is employed to this model. It will be shown that
the proposed conservative model of the quadruped robot
can passively bound for a wide range of robot physical pa-
rameters and rapidly reject disturbances, as an emergent
property of suitable mechanical system design, to maintain
running.

To identify conditions that permit the generation of
passive running cycles and study their stability proper-
ties, a Poincaré return map, whose fixed points describe
the cyclic bounding motion, is derived and studied numer-
ically. Bounding and pronking (essentially bounding with
no body pitching) gaits, which are of great experimental in-
terest in existing quadruped robots, are analysed. It is found
that both can be passively generated as a response of the
system to an appropriate set of initial conditions. Paramet-
ric regions, where the system is self-stabilised against small
perturbations from the nominal conditions, are identified.
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Hence, proper selection of new robots’, or modification of
existing robots’, physical parameters might result in en-
larged regions of stable running, i.e. perform self-stable
running behaviour in significantly broader ranges of run-
ning speed and control parameters.

It is worth mentioning that the early results from sim-
ilar approaches adopted to study quadrupedal running in
the past (see Iida and Pfeifer 2004, Zhang et al. 2004 and
Poulakakis et al. 2006) are confirmed by our study. We
therefore believe that the proposed guidelines, which are
described in detail in Section 3, are plausible in the real
world and might be used to extend the self-stable behaviour
of quadruped running robots through inspired mechanical
design. Furthermore, our results might also explain the suc-
cess of simple, open loop running controllers on existing
experimental quadruped robots and facilitate the design of
legged locomotion controllers that take advantage of the
system’s natural dynamics.

2. Methods

In this section we introduce a simple model, i.e. a template,
for studying and analysing gaits where the pitching motion
is a significant mode in the system’s motion, e.g. bounding
or pronking. Inspired by the SLIP model (Schwind 1998),
which exhibits natural stability, we aim at identifying a tem-
plate for studying the dynamics of gaits with body pitching
motion. Note that the stability of bounding and pronking
gaits cannot be studied using the SLIP as a template, since
this model does not capture the body’s oscillatory pitching
motion.

As soon as the appropriate template of the physical
model is defined, which is a set of dependent and indepen-
dent variables and all of the parameters that are thought to
be significant, the complete equations made from this list
of variables will be manipulated to be independent of the
choice of units, i.e. dimensionless. The non-dimensional
variables will then be formed into groups that define the
morphology of the quadruped robot or that correspond to
ratios of robot physical parameters in the model equations,
such as the Reynolds number or Froude number (Alexan-
der 1977; Reynolds 1883) that often arise in models of
geophysical fluid dynamics.

The resulting model will be used next to analyse the pas-
sive dynamic behaviour, i.e. the unforced response, of the
system. Understanding the properties of a passive and con-
servative model is crucial for deriving mechanical design
(and controllers), which will exploit its passive dynamics.
The control action should aim to help the robot move in
the way it wishes to move, while the mechanical design
should excite its natural dynamics. As a result, the effort
of the actuators can be reduced, leading to increased power
efficiency. Moreover, the complexity of the system design
is significantly reduced, thus increasing the reliability and
decreasing the cost. The core of this approach is to find

mechanical design principles to excite the dynamics of the
system and enlarge the domain of attraction of the passively
generated cyclic motion. This will be greatly facilitated by
identifying the main parameters that affect the motion of
the system and by finding conditions among the variables
that lead to passive cyclic motion.

Since dynamically stable running gaits are to be studied,
techniques drawn from modern dynamical systems theory
will be used. To this end, a return map that describes the
bounding motion will be numerically constructed. Then a
searching procedure for finding its fixed points will be pro-
posed. In doing so, the Newton–Raphson method will be
employed. A large number of fixed points are generated by
this method. All of these fixed points possess symmetric
properties, which are very useful in making the search pro-
cedure systematic. This will be apparent in the next section,
where most of the analysis is undertaken.

2.1. Template

The complexity of four-legged animals and robots can be
reduced to relatively simple models, that can then be used
to analyse a system’s behaviour, by taking into account syn-
ergies, i.e. parts that work together in coordinated action
or operation, and symmetries, i.e. the correspondence of
parts on opposite sides of a plane through body (Full and
Koditschek 1999). By synergies, we mean parts that work
together in combined action or operation, e.g. groups of
muscles, joints, legs, etc. By symmetries we mean the cor-
respondence of parts on opposite sides of a plane through
the body.

In this section we use a simple model, i.e. a template, for
studying and analysing gaits where the pitching motion is a
significant mode in the system’s motion, e.g. the bound and
the pronk. Pronking is essentially bounding with no body
pitching, and has only the flight and double stance phases.
Although pronking may reduce in practice to bounding with
very limited pitching, it does offer advantages in control
design. Note that bounding and pronking gaits cannot be
studied using the SLIP as a template, since this model does
not capture the body’s oscillatory pitching motion.1 To this
end, such a template, which is commonly used to analyse
the basic qualitative properties of quadrupedal running in
the sagittal plane, is shown in Figure 1, while its associated
parameters needed to describe it are given in Table 1.

As shown in Figure 1, the planar model represents the
lateral half of a quadruped, and consists of a rigid body

1A pronking animal or robot does not pitch at all, only a bound-
ing one does. Consequently, the SLIP can be used to study the
pronk. However, in real situations the robot is continuously per-
turbed and the SLIP does not capture such disturbances in body’s
pitching motion. Therefore, it cannot be used to study a system’s
stability properties and examine whether these disturbances de-
cay in subsequent steps resulting to stable pronk or they grow and
eventually repetitive motion is lost.
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Figure 1. Parameters of the template for quadrupedal running in plane and gait phases.

and two springy massless legs, attached to either side of the
body. Actuators control the angle of each leg with respect
to the body and the torque delivered by each leg. Each
modelled leg represents the back or the front leg pair, in
which the two back or front legs are always in phase and
is called the virtual leg (Raibert 1986). Each virtual leg
has twice the stiffness of the robot leg and includes friction
modelling, as the sum of Coulomb and viscous friction. The
torque delivered at each hip and the force along each robot
leg is equal to half the corresponding ones at the virtual
leg.

The gaits referred to are the pronk, in which all the robot
legs are always in phase, and the bound, in which the back
pair of legs is in phase, as is the front pair. The bound may
involve up to four motion phases, while the pronk has only
the double stance and flight phases. Note that this model
can also be used to study other sagittal plane running gaits,
such as pacing, or trotting, in which the stability of pitching

motion is important and cannot be modelled by point-mass
hoppers like the SLIP.

System dynamics are derived using a Lagrangian for-
mulation, with generalised coordinates to be the Cartesian
variables describing the centre of mass (COM) position
and the main body’s attitude. During flight, the robot is un-
der the influence of gravity only. Throughout the stance
phase, the robot’s toes are fixed on the ground and act as
lossless pivot joints. The dynamics for any phase may be
derived from that of the double stance by removing ap-
propriate terms. Hence, only the double stance dynamics
is given in the form of a set of differential and algebraic
equations:

mẍ = −(fb + k (lo − lb) − ff r,b) sin γb − τb cos γb/lb

−(ff + k(lo − lf ) − ff r,f ) sin γf − τf cos γf /lf

(1)

Table 1. Variables and indices used.

Symbol Units Variable Symbol Units Variable

x m COM horizontal pos. b Nt·m·s−1 Damping coefficient
y m COM vertical pos. hapex m Flight apex position
θ deg Body pitch angle g M·s−2 Acceleration of gravity
γ deg Leg absolute angle m kg Body mass
ϕ deg Leg relative angle J kg·m−2 Body inertia
xbt m Back toe horizontal pos. d m Hip joint to COM distance
xft m Front toe horizontal pos. f — As index: front leg
l m Leg length b — As index: back leg
lo m Leg rest length j — Dimensionless body inertia
k Nt·m−1 Leg spring stiffness r — Relative leg stiffness
τ Nt·m Torque delivered at hip p — Dimensionless hip separation
f Nt Axial force at leg Fr — Froude number
ffr Nt Overall friction force s — Time scale
fc Nt Coulomb friction ∗ — As superscript: dimensionless
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mÿ = (fb + k(lo − lb) − ff r,b) cos γb − τb sin γb/lb

+ (ff + k(lo − lf ) − ffr,f ) cos γf

− τf sin γf /lf − mg (2)

J θ̈ = τb − d(fb + k(lo − lb) − ffr,b) cos(γb − θ )

+ τf + d(ff + k(lo − lf ) − ffr,f ) cos(γf − θ)

+ dτb sin(γb − θ )/lb − dτf sin(γf − θ)/lf (3)

where

γb = atan2 (y − d sin θ, xbt + d cos θ − x)

γf = atan2(y + d sin θ, xft − d cos θ − x) (4)

lb =
√

(xbt − x + d cos θ )2 + (d sin θ − y)2

lf =
√

(xft − x − d cos θ )2 + (d sin θ + y)2 (5)

ffr,i = fc sign(l̇i) + bl̇i , i = b, f. (6)

2.2. Scaling

Dimensional analysis can be applied to all quantitative mod-
els and offers an efficient way to display complex datasets.
Usually, it makes the subsequent analysis much more use-
ful, because the physical model, as first written, is rather
general. The premise of dimensional analysis is that com-
plete equations can be written in a form that is independent
of the choice of units, and variables appear in combinations
that are dimensionless. For our study, such dimensionless
variables are introduced as follows:

t∗ = t

s
(7)

x∗ = x

lo
, ẋ∗ = s

ẋ

lo
, ẍ∗ = s2 ẍ

lo
(8)

y∗ = y

lo
, ẏ∗ = s

ẏ

lo
, ÿ∗ = s2 ÿ

lo
(9)

θ∗ = θ, θ̇∗ = sθ̇ , θ̈∗ = s2θ̈ (10)

where s is the time scale of the system, and the rest of the
variables are defined in Table 1.

By substituting (7)–(10) into the equations of motion,
given by (1)–(6), one gets a dimensionless description of
the system. The resulting motion of the COM is then char-
acterised by a time scale, which is associated to the inverse
of the natural frequency of the horizontal motion:

s2g

lo
= 1 ⇒ s =

√
lo

g
. (11)

Selection of this particular time scale of the system results
in a number of dimensionless parameter groups, which are
widely used by experimental biologists. These include: (a)
the Froude number Fr (Alexander 1977), defined as

Fr = v√
glo

(12)

where v is the robot forward speed, (b) the dimensionless
body inertia j (Murphy and Raibert 1984), i.e. the robot’s
body inertia normalised to md2:

j = J

md2
(13)

and (c) the leg relative stiffness r (Blickhan 1989), which
is given as

r = klo

mg
. (14)

Since we are primarily interested in the forward motion
aspects, the choice of the time scale, as in (11), is advanta-
geous and will be used next to set the equations of motion
dimensionless. While the individual dimensionless equa-
tions would be different if one uses a different time scale,
the relationships between them would be invariant.

The following dimensionless parameters are also intro-
duced: (a) the normalised half hip separation p:

p = d

lo
(15)

and (b) the dimensionless viscous friction coefficient b∗:

b∗ = b

m

√
lo

g
or b∗ = 2ζ

√
r (16)

where ζ is the damping ratio.
Force and torque variables are finally normalised as

f ∗
i = fi

mg
, i = b, f, c and τ ∗

i = τi

mg lo
, i = b, f.

(17)

The desired dimensionless description of the system
results from substituting (7)–(11) and (13)—(17) to (1)–
(6), and it is presented next for the double stance:

ẍ∗ = (f ∗
f r,b

− f ∗
b − r(1 − l∗b )) sin γ ∗

b − τ ∗
b /l∗b cos γ ∗

b

+ (f ∗
f r,f − f ∗

f − r(1 − l∗f )) sin γ ∗
f

− τ ∗
f /l∗f cos γ ∗

f (18)
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ÿ∗ = (f ∗
b + r(1 − l∗b ) − f ∗

f r,b) cos γ ∗
b − τ ∗

b /l∗b sin γ ∗
b

+ (f ∗
f + r(1 − l∗f ) − f ∗

f r,f ) cos γ ∗
f

− τ ∗
f /l∗f sin γ ∗

f − 1 (19)

pj θ̈∗ = −(f ∗
b + r(1 − l∗b ) − f ∗

f r,b) cos(γ ∗
b − θ∗)

+ (f ∗
f + r(1 − l∗f ) − f ∗

f r,f ) cos(γ ∗
f − θ∗) + τ ∗

b /p

+ τ ∗
f /p + τ ∗

b sin(γ ∗
b − θ∗)/l∗b

−τ ∗
f sin(γ ∗

f − θ∗)/l∗f (20)

where

γ ∗
b = atan2(y∗ − p sin θ∗, x∗

bt + p cos θ∗ − x∗)

γ ∗
f = atan2(y∗ + p sin θ∗, x∗

f t − p cos θ∗ − x∗)

(21)

l∗b =
√

(x∗
bt − x∗ + p cos θ∗)2 + (p sin θ∗ − y∗)2

l∗f =
√

(x∗
f t − x∗ − p cos θ∗)2 + (p sin θ∗ + y∗)2

(22)

f ∗
f r,i = f ∗

c sign(l̇∗i ) + b∗ l̇∗i , i = b, f. (23)

2.3. Similarity

A similarity rule maintains the constancy of a non-
dimensional number. The simplest similarity rule is geo-
metric similarity. Here, the ratio of any lineal dimension
to a characteristic length of the system is constant and all
dimensions are magnified by the same factor as compared
to a base configuration. For example, if the same materials
are used, the mass of a system scales with the cube of the
length in geometrically similar systems.

Just as geometric similarity refers to shapes, the concept
of dynamic similarity refers to motion. Two motions are said
to be dynamically similar if one could be made identical to
the other by multiplying all linear dimensions by some con-
stant factor and all time intervals by another. Additionally,
dynamic similarity in legged locomotion requires that the
Froude numbers of the motions of two quadruped animals
(or robots) are equal (Alexander 1977).

According to the dimensional analysis presented previ-
ously and by observing the dimensionless description of the
system, given by (18)–(23), dynamically similar motions
require further that the dimensionless parameters in (13)–
(15) are equal for motions with the same characteristics,
e.g. flight apex, body pitch angle and pitch rate. Repeating
for clarity, these parameters, which are connected to robot
morphological characteristics, are: (a) the dimensionless
body inertia j , (b) the leg relative stiffness r and (c) the

normalised half hip separation p, defined in (13), (14) and
(15), respectively.

Next, we use an evidential example based on biologi-
cal data to show similarity requirements. Let the rest leg
length be the characteristic scale length. This implies that
by doubling the rest length of the leg, the robot is scaled up
by a factor of two. Body mass is proportional to the third
power of the characteristic length, while the gravitational
acceleration does not scale with size. Therefore, in order for
the robot to keep moving in a dynamically similar fashion,
the leg stiffness should be quadruplicated, see (14), since
the relative stiffness of the leg should be kept constant. This
is consistent with biology findings in animal scaling laws
by Farley et al. (1993), where the leg springiness increases
with body mass, i.e. k ∝ m2/3.

2.4. Analysis

It is generally accepted that bounding is essentially a natural
mode of the system, and that only minor control and energy
effort are required to maintain running. Practically, this mo-
tivated us to study the passive dynamics of the system. With
the term passive dynamics, we mean the unforced response
of the system under a set of initial conditions. The goals
of the analysis are to determine the conditions required to
permit steady-state cyclic motion, to understand the funda-
mentals of the bounding gait followed by the robot and to
find ways to apply these results to improve the performance
of quadruped robots.

The practical motivation for studying passive bound-
ing is power efficiency. Indeed, if the cyclic motion is
generated passively, then the actuators have less work to
do to maintain the motion, since they do not ‘push’ the
robot towards motions that are against its natural dynam-
ics. Furthermore, if there are operating regimes where the
system is passively stable, then active stabilisation is not
required and the motors of the robot will only compen-
sate for energy losses. For instance, using passive run-
ning, Ahmadi and Buehler (1997) reported energy sav-
ings of 93%. On the other hand, maintaining the pre-
ferred speed during locomotion over rough terrain ap-
pears to require rapid disturbance rejection, which should
be an intrinsic property of the mechanical system, espe-
cially at high speeds, and studying passive bounding will
reveal the characteristics that can provide self-stabilising
behaviour.

Overall, the benefits of an approach based on the passive
dynamics of the system are multiple, especially in simpli-
fying the mechanical electrical and electronic design and
in extending the operational range of the robot. The un-
actuated and conservative model that will be used in our
analysis is derived from (18) to (23) by eliminating ac-
tuation and energy dissipation terms. It is given here for
completeness:
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ẍ∗ = −r(1 − l∗b ) sin γ ∗
b − r(1 − l∗f ) sin γ ∗

f (24)

ÿ∗ = r(1 − l∗b ) cos γ ∗
b + r(1 − l∗f ) cos γ ∗

f − 1 (25)

θ̈ = r((1 − l∗f ) cos φ∗
f − (1 − l∗b ) cos φ∗

b )/pj (26)

γ ∗
b = atan2(y∗ − p sin θ∗, x∗

bt + p cos θ∗ − x∗)

γ ∗
f = atan2(y∗ + p sin θ∗, x∗

f t − p cos θ∗ − x∗)

(27)

l∗b =
√

(x∗
bt − x∗ + p cos θ∗)2 + (p sin θ∗ − y∗)2

l∗f =
√

(x∗
f t − x∗ − p cos θ∗)2 + (p sin θ∗ + y∗)2

(28)

f ∗
f r,i = f ∗

c sign(l̇∗i ) + b∗ l̇∗i , i = b, f. (29)

In order to evaluate the performance of the above model,
we focus on system periodic steady-state trajectories, which
are identical trajectories that repeat themselves during lo-
comotion. Following a procedure similar to Zhang et al.
(2004) and Poulakakis et al. (2006), we employ a Poincaré
Map technique to formulate these trajectories. The return
map connects the system state at a well-defined locomotion
event to the state of the same event at the next cycle. Here,
this event is chosen to be the apex height. We could select
any other point in the cycle. However, the selection of the
apex height allows for the touchdown angles of both the
front and back virtual legs to explicitly appear in the def-
inition of the return map as kinematic inputs available for
control. Note also that the vertical velocity at apex height
is always zero, which reduces the dimensions of the state
vector. A second dimensional reduction to the state vector
can be obtained by projecting out the horizontal component
x of the state vector, since it is not relevant to describing the
running gait, i.e. the distance travelled has no influence on
the locomotion cycle. This also resolves the issue that the
horizontal component x does not map to itself after a cycle,
since it will never be identical between two successive apex
height points. This is because the forward distance travelled
during one stride is always non-zero for non-zero forward
speeds. Thus, the state vector x∗ at apex height consists of
the apex height, the body pitch angle, the forward speed
and the body pitch rate only, i.e.

x∗ =
[
y∗ θ∗ ẋ∗ θ̇∗ ]

. (30)

The state vector at apex height for some cycle n, x∗
n,

constitutes the initial conditions. On the basis of these, the
flight equations, derived from (24) to (29) by removing
terms not permanent to the phase, are integrated until one
of the touchdown events occurs, e.g. front or back leg stance
(see Figure 1). The touchdown event triggers the next phase,
whose dynamics are integrated using the final conditions of
the previous state as initial conditions. Depending on sys-

tem configuration, the next phase could be either flight, i.e.
bounding without double stance, or double stance. Pronk-
ing is the case of bounding with zero body pitch rate and
the touchdown event following flight is the double stance,
which is in turn followed by flight, i.e. there is no back or
front leg stance phase.

Successive forward integration of the dynamic equa-
tions of all the phases yields the state vector at apex height
of the next stride, which is the value of the Poincaré return
map F. If the state vector at the new apex height is identical
to the initial one, the cycle is repetitive and yields a fixed
point. Mathematically, this is given as

x∗
n+1

= F(x∗
n, u

∗
n) (31)

where u∗ = [γ ∗
b,td γ ∗

f,td ] includes the inputs, which are
the touchdown angles, back and front leg. Despite the fact
that the touchdown angles are not part of the state vector
and these do not participate in the dynamics, they directly
affect the value of the return map. It is apparent from (31)
that the touchdown angles are kinematic inputs available
for ‘cheap’ control, since it is very easy to place the legs
at their target angles during the flight phase in most of the
quadruped robots.

It is important to note here that in calculating the return
map any possible sequence of the phases, which result in
different phases, e.g. symmetric bounding motion where
flight occurs after back leg stance double instead of double
stance or pronking, was considered. It must also be noted
that existence of such fixed points seems to be the rule,
rather than the exception.

In order to determine the conditions required to result in
steady-state cyclic motions, we resort to a numerical evalu-
ation of the return map using a Newton–Raphson method.
By employing this method, a large number of fixed points
can be found for different initial conditions and different
touchdown angles. These angles, although not part of the
state vector and not generalised coordinates, directly affect
the value of the return map as they determine touchdown
and liftoff events and impose constraints on the motion
of robot during back/front leg and double stance phases.
Variant dimensionless combinations of robot’s physical pa-
rameters, as defined in (13)–(15), also result in different
fixed points. These design parameters vary between their
extreme values found either in experimental biology ref-
erences, Farley et al. (1993) and Herr et al. (2002), or are
imposed by common sense. Particularly, they range as fol-
lows:

j = 0.70 − 1.45, r = 10 − 30, p = 0.25 − 1.00.

(32)
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2.5. Stability

The existence of passively generated bounding running cy-
cles is by itself a very important result, since it shows that
an activity so complex as bounding running can simply be
a natural motion of the system. However, in real situations
the robot is continuously perturbed, therefore, if the fixed
point were unstable, then the periodic motion would not be
sustainable. It would therefore be important to study the
stability properties of the fixed points found above and to
design controllers to improve the robustness of the system
against perturbations. In this section, we characterise the
stability of the fixed points using local stability analysis,
i.e. using the eigenvalues of the linearised return map.

The stability analysis is based on linearising the non-
linear map about a fixed point. A set of linearised equations
specifies how a perturbation on the steady cycle propagates
from one cycle to the next. The problem of stability in
discrete-time systems, such as the return map derived in the
previous section, is different from the continuous-time case,
because of the different stability domain in the complex
plane. The left half of the complex plane in the continuous
time systems is replaced by the inside of the unit circle.
Calculating the system’s eigenvalues and checking whether
or not they are inside the unit circle can verify stability for
discrete-time systems. Therefore, to investigate stability,
we assume that the apex height states are perturbed from
their steady-cycle values x̄, by some small amount 'x. The
model that relates the deviations from steady state, i.e. the
incremental or small-signal model, is

'x∗
n+1 = ∂F(x∗, u∗)

∂x

∣∣∣∣
x=x̄

'x∗
n + ∂F(x∗, u∗)

∂u

∣∣∣∣
u=ū

'u∗
n

(33)

with 'x∗ = x∗ − x̄∗ and 'u∗ = u∗ − ū∗. For small per-
turbations, the apex height states at the next stride can be
calculated by (33), which is a linear difference equation. If
all the eigenvalues of the system matrix A, where A is

A = ∂F(x∗, u∗)
∂x

∣∣∣∣
x=x̄

(34)

having magnitude less than one, then the periodic solution
is stable and disturbances decay in subsequent steps. If not,
then disturbances grow and eventually repetitive motion is
lost.

3. Results

Using this systematic procedure for finding fixed points de-
scribed previously, conclusions on how the system responds
under a set of initial conditions can be drawn. Surprisingly,
there are parametric regions where the system is stable
without the need of a closed loop controller. The purpose

of the analysis in this section is to quantify the properties of
passively generated periodic motion for quadruped robots
and to search for regions where the system can passively
tolerate departures from the fixed points.

The major question is whether there exists a regime,
where the system tolerates perturbations from the nominal
conditions without requiring any closed loop control law.
The existence of this regime raises an important ‘philosoph-
ical’ question: Is there a particular (and physically realistic)
mechanical design that provides self-stabilising characteris-
tics against external perturbations originated in leg–ground
interactions or motor control? How much feedback is nec-
essary then for developing control laws to stabilise a system,
which exhibits inherent self-stability by means of suitable
mechanical design? The answers to these questions are not
yet available. However, the existence of such mechanical
self-stabilised behaviours suggests that clock-based feed-
forward control laws can excite the dynamics of the robot
appropriately to exploit the inherent stability of the system.
The added feedback can improve the robustness of those
controllers. Therefore, we believe that results presented in
this section constitute a beginning in the right direction.

To show how motion characteristics, such as forward
speed and pitch rate, and mechanical design, i.e. combi-
nations of robot physical parameters, affect the stability of
the motion, we present figures (Figures 2–5) that display
isolines of the magnitude of the larger eigenvalue of system
matrix A, as defined in (34). The largest eigenvalue norm
is interpreted as heights with respect to the x–y plane,
where x–y variables are either motion characteristics for
the bounding gait, such as forward speed and pitch rate, or
dimensionless combinations of robot physical parameters,
as defined in (13)–(15), e.g. dimensionless body inertia, leg
relative stiffness and normalised half hip separation. For
certain values of these parameters the larger eigenvalue en-
ters the unit circle, while the other eigenvalues remain well
behaved. This fact shows that, for these parameter values,
the system is self-stabilised. In all figures, the grey-hatched
area corresponds to unstable regions, i.e. regions where at
least one eigenvalue is located outside of the unit circle and
the system is not passively stable. Broadly, we are looking
for the size of the unstable region and how that changes. The
magnitude of the ‘non-participating’ variables is shown in
the title of each subplot in every figure.

3.1. Forward speed (Froude number)

Isolines of the largest eigenvalue norm at various pitch rates
and values of dimensionless body inertia are displayed in
Figure 2. The contour plots are drawn for dimensionless
apex height 1.1, leg relative stiffness 12 and normalised
half hip separation 0.85. The magnitude of these variables
has been chosen such as to correspond to the physical pa-
rameters of Scout II (see Poulakakis et al. 2006). The reason
for this choice is to demonstrate how an existing robot can
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Figure 2. Largest eigenvalue norm at various pitch rates (x axis) and dimensionless body inertias (y axis) for dimensionless apex height
1.1, normalised half hip separations 0.85, leg relative stiffness 12 and forward speeds (Froude numbers) from 0.78 to 2.40 (subplots 1–4).

be mechanically modified in order to expand the domain of
attraction of its self-stabilised behaviour.

The main conclusion from the analysis performed by
Poulakakis et al. (2006) is that there exists a regime where
the Scout II robot can be passively stable. This was an
important result, since it showed that the system could tol-
erate small perturbations away from the nominal conditions
without any control action taken. This fact could provide a
possible explanation to why Scout II can bound without the
need of complex state feedback, using very simple control
laws that only excite its natural dynamics.

Similar findings are evident in Figure 2, where the
four subplots have been plotted for dimensionless forward
speeds (Froude number) from 2.40 to 0.78. For the par-
ticular mechanical design adopted for the Scout II robot,
the self-stable regime, where all the eigenvalues lie inside
the unit circle, is achieved for bounding at sufficiently high
forward speeds. This was also reported in Poulakakis et al.
(2006). However, as it can be deducted by Figure 2, by
changing the value of dimensionless body inertia, the Scout
II robot can expand its self-stable regime and passively
bound at surprisingly lower forward speeds. It is simple
for a robot to attain a specific value of dimensionless body
inertia by proper hip placement or redistributing body mass.

Finding 1. Great forward speed favours the self-
stabilised behaviour of quadruped robots, as it enlarges
the regime where the mechanical system can reject rapid
perturbations. When the quadruped robot is moving more

slowly, the magnitude of dimensionless body inertia must
take extreme values in order to sustain the self-stabilising
characteristics: greater than one for low pitch rates and
less than one for high pitch rates.

3.2. Dimensionless body inertia

According to Poulakakis et al. (2006), the largest eigen-
value obtained its maximum value when the pitch rate was
small. Recall that the region where pitch rate takes small
values corresponds to a pronking-like motion, where both
the front and back legs hit and leave the ground in unison
and pitch rate is minimised. Thus, they had concluded that
pronking-like motions (low pitch rates) are ‘more unstable’
than bounding (high pitch rates). This fact was also ob-
served in experiments with Scout II. As shown in Figure 2,
this is true when the dimensionless body inertia is less than
one. However, attaining a value of dimensionless body iner-
tia that is greater than one could provide the Scout II robot
with self-stabilising characteristics for pronking motions as
well. Note that the lower the forward speed, the greater the
value of dimensionless body inertia must be.

The dimensionless moment of inertia, see (13) for defi-
nition, describes the ‘resistance’ to rotational versus the ‘re-
sistance’ to translational body motion due to the mass distri-
bution (see Poulakakis 2002 for more details on the concept
of dimensionless moment of inertia). In a diagrammatic
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Figure 3. Largest eigenvalue norm at various pitch rates (x axis) and dimensionless body inertias (y axis) for dimensionless apex height
1.1, dimensionless forward speed (Froude number) 2.04, leg relative stiffness 12 and normalised half hip separations from 0.325 to 1.000
(subplots 1–4).

manner, dimensionless body inertia can be thought as two
equal point masses that represent the total mass of the sys-
tem concentrated at the hips of the torso for the case of unit
dimensionless body inertia (J = md2), located between the
hips for the case dimensionless body inertia greater than
one (J > md2) and located outside the hips for the case
dimensionless body inertia less than one (J < md2). Note
that the distance at which the point masses are located is
the radius of gyration, i.e. the distance at which the mass
of the system should be concentrated if its moment of in-
ertia is to remain unchanged. Therefore, depending on the
location of the equivalent point masses, i.e. the magnitude
of the dimensionless moment of inertia, pronking-like mo-
tion, where pitch motion is negligible, or bounding, where
the pitch motion is dominant, is favoured.

Finding 2. The self-stabilised behaviour of a quadruped
robot for a particular gait is related to the magnitude of its
body dimensionless inertia. Dimensionless body inertia less
than one provides self-stabilising characteristics for bound-
ing motions (high pitch rates), while pronking-like motions
(low pitch rates) are self-stable for quadruped robots with
dimensionless body inertia greater than one.

3.3. Normalised hip separation

The effect of normalised half hip separation is depicted
in Figure 3, as four subplots have been plotted for nor-

malised half hip separation from 0.325 to 1.000. As shown
in Figure 2, isolines of the largest eigenvalue norm at var-
ious pitch rates and dimensionless body inertias are dis-
played in Figure 3. The contour plots are drawn for di-
mensionless apex height 1.1, dimensionless forward speed
(Froude number) 2.04 and leg relative stiffness 12, which
are again adopted from the Scout II robot (Poulakakis et al.
2006).

The main conclusion drawn by analyzing Figure 3 is
that the self-stabilised regime of the quadruped robot is
enlarging, while the normalised half hip separation is de-
creasing. Decreased normalised half hip separation simply
means that body length is smaller for the same leg length.
Small body length results in increased ‘resistance’ to ro-
tational motion compared to translational motion, i.e. the
hip will move upwards due to linear acceleration instead
of moving downwards due to rotational acceleration (see
Poulakakis 2002 for more details on the concept of di-
mensionless moment of inertia). In this case, pitch motion
is not favoured and pronking-like motions dominate. For
the Scout II robot, for which the ‘resistance’ against rota-
tional motion is smaller than the ‘resistance’ against trans-
lational motion (dimensionless body inertia less than one,
i.e. J < md2), dimensionless hip separation should be as
large as possible to allow for self-stable bounding at lower
(practically achievable) pitch rates, which is easy to achieve
with proper hip placement.
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Figure 4. Largest eigenvalue norm at various pitch rates (x axis) and leg relative stiffnesses (y axis) for dimensionless apex height 1.1,
dimensionless forward speed (Froude number) 2.04, dimensionless body inertia 0.85 and normalised half hip separations from 0.325 to
1.000 (subplots 1–4).

One may reach to the same conclusion by analysing
Figures 4 and 5, where the contour plots of the largest
eigenvalue norm at various pitch rates and values of leg
relative stiffness are drawn. Once again, the magnitude of
the variables has been chosen such as to correspond to the
physical parameters of Scout II (Poulakakis et al. 2006).

Specifically, the dimensionless apex height is 1.1 and
the dimensionless forward speed (Froude number) is 2.04.
In Figure 4, the dimensionless body inertia is 0.850, as in
Scout II, while in Figure 5 the dimensionless body inertia
is chosen to be 1.225 to demonstrate the effect of relative
leg stiffness on quadruped robots with dimensionless body
inertia greater than one. The effect of normalised half hip
separation is represented graphically by Figures 4 and 5,
as the four subplots in each figure have been plotted for
normalised half hip separation from 0.325 to 1.000.

In Figure 4, it is evident that the self-stabilised regime of
bounding quadruped robots with dimensionless body iner-
tia less than one is enlarging, while the normalised half hip
separation is increasing. Contrastingly, as Figure 5 implies,
normalised half hip separation should be decreased for
quadruped robots with dimensionless body inertia greater
than one that pronk or bound at low pitch rates so as to
enlarge their self-stabilised regime. A specific value of nor-
malised half hip separation is easy to attain by proper hip
placement.

Finding 3. The self-stabilised regime of pronking-like
motions (low pitch rates) for quadruped robots with dimen-
sionless body inertia greater than one is enlarging, while
the normalised half hip separation is decreasing. Larger di-
mensionless hip separation allows for self-stable bounding
at a wider range of pitch rates for quadruped robots with
dimensionless body inertia less than one.

3.4. Relative leg stiffness

With respect to the effect of leg relative stiffness on the
stability of the motion and the self-stabilising characteris-
tics of the robot, two conclusions are drawn by analysing
Figures 4 and 5. On the basis of Figure 4, the self-stabilised
regime of bounding quadruped robots with dimensionless
body inertia less than one is enlarging, while the relative
leg stiffness is increasing. Contrastingly, based on Figure 5,
relative leg stiffness should be decreased for quadruped
robots with dimensionless body inertia greater than one
that pronk or bound at low pitch rates so as to enlarge their
self-stabilised regime.

The former can be explained by the fact that harder
springs at legs, a typical case where leg relative stiffness
is increased, result in less compression along the leg dur-
ing leg–ground interaction, which typically leads to less
pitching. Since the ‘resistance’ against rotational motion
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Figure 5. Largest eigenvalue norm at various pitch rates (x axis) and leg relative stiffnesses (y axis) for dimensionless apex height 1.1,
dimensionless forward speed (Froude number) 2.04, dimensionless body inertia 1.225 and normalised half hip separation from 0.325 to
1.000 (subplots 1–4).

is smaller than the ‘resistance’ against translational mo-
tion when J < md2 (dimensionless body inertia less than
one), self-stable motions at lower pitch rate are possible
(see Figure 4 to graphically visualise this).

On the other hand, leg relative stiffness is increased
when the mass of the system is decreased in a propor-
tional manner (see (14) for definition). Smaller mass means
that the ‘resistance’ against translational motion is less or
equivalently that the ‘resistance’ against rotational motion
is dominant. In that case, i.e. for quadruped robots with di-
mensionless body inertia less than one (J > md2), lower
pitch rates are required to allow for self-stabilising be-
haviour (see Figure 5 for depiction).

Finding 4. Leg relative stiffness for a quadruped robot
should be chosen according to the magnitude of the dimen-
sionless body inertia. Dimensionless body inertia less than
one suggests that relative leg stiffness should be as large
as possible to enlarge the self-stable regime of the system.
Contrastingly, relative leg stiffness should be decreased for
quadruped robots with dimensionless body inertia greater
than one that pronk (or bound at low pitch rates) so as to
enlarge their self-stabilised regime.

4. Guidelines

Taking into account the above-mentioned findings, the fol-
lowing design guidelines could be proposed for Scout II
quadruped robot that might improve its performance:

(1) Scout II would passively bound at lower forward speeds
by changing the value of its dimensionless body iner-
tia. By attaining a value of dimensionless body inertia
that is greater than one, it would obtain self-stabilising
characteristics even for pronking-like motions. This is
easily attained by proper hip placement or body mass
redistribution.

(2) Scout II would be able to perform self-stable bound-
ing behaviour at lower and practically achievable pitch
rates, even if its dimensionless body inertia is kept
less than one, by increasing its normalised hip separa-
tion. This could be easily achieved either by proper hip
placement or by shortening its legs rest length.

(3) The self-stabilised regime of the existing Scout II
bounding robot could be further enlarged if its legs
relative stiffness is increased, which could be attained
simply by increasing its legs’ spring stiffness or by
shortening their rest length.

5. Conclusion

The stability analysis of the passive dynamics of robotic
quadrupeds was studied in a dimensionless context, reveal-
ing further intrinsic properties of quadrupedal running and
unveiling aspects of robotic quadrupeds that have similar
configuration but different scale. It was shown that suitable
mechanical design of the quadruped robot can provide self-
stabilising characteristics against external perturbations
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originated in leg–ground interactions and motor control
and result in dynamically stable running with bounding
and pronking gaits with physically realistic and practically
achievable forward speeds and pitch rates. We anticipate
that the proposed guidelines will assist in the design of new,
and modifications of existing, quadruped robots. These can
be summarised in (a) greater forward speeds enlarge the
self-stable regime of quadruped running robots, (b) the self-
stabilised behaviour of a quadruped robot for a particular
gait is greatly related to the magnitude of its dimension-
less body inertia and (c) the values of dimensionless hip
separation and leg relative stiffness of a quadruped running
robot affect the stability of its motion and should be in
inverse proportion to its dimensionless body inertia. It is
simple for a quadruped robot to attain a specific value of
dimensionless body inertia by redistributing its body mass,
a specific value of dimensionless hip separation by proper
hip placement and a specific value of relative leg stiffness
by adjusting leg spring stiffness.
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