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ABSTRACT 
To enhance current robotic OOS capabilities, 
autonomous operations must be considered, that will 
rely on advanced controllers. The design and 
adaptation of such controllers requires reliable system 
identification methods and algorithms, especially 
regarding the system inertial parameters and 
flexibilities. The main objective of the OBSIdian 
project is the development and application of System 
Identification (SYSID) methodologies based on 
appropriate formulations of system dynamics and the 
subsequent development and application of 
appropriate identification algorithms. This will result 
in the development of an on-board computational 
efficient and reliable software for SYSID. 

1 INTRODUCTION 

In the future, missions focusing on the construction of 
large systems on-orbit, servicing of existing space 
assets, or end-of-life disposal of satellites from 
valuable GEO locations will proliferate. These tasks 
fall under the broad terms of On-Orbit Servicing 
(OOS) and On-Orbit Assembly, the importance of 
which is generally accepted by both space agencies 
and the private sector investing in space. 

A cost-effective way to tackle these challenges is to 
use Space Manipulator Systems (SMS). To enhance 
current OOS capabilities, autonomous operations must 
be considered, that will rely on advanced controllers. 
The design and adaptation of such controllers require 
reliable system identification methods, especially 
regarding the system inertial parameters and 
flexibilities. 

The main objective of the OBSIdian project is the 
development and application of System Identification 
(SYSID) methods based on appropriate formulations 
of system dynamics and the subsequent development 

and application of appropriate identification 
techniques/ algorithms. This will result in the 
development of an on-board computational efficient 
and reliable software for SYSID with the purpose of 
generating corrective models and eventually 
controllers, when these models cannot be predicted 
reliably by computational models (due to 
uncertainties, non-linearities, un-modelled dynamics 
etc.), or by scaled (i.e. scaling difficulties) or lab 
experiments (e.g. sloshing). Model validation and 
verification strategies are also OBSIdian’s objectives. 
The OBSIdian mission scenario lies on a basic OOS 
concept, which includes a servicing Chaser satellite 
equipped with a manipulator, and a Target satellite; 
fuel sloshing effects and flexible appendages are taken 
into consideration, see Figure 1. 

 
Figure 1: A target satellite mated with a chaser satellite 

using a manipulator. 

Specifically, the OBSIdian project focuses on the 
SYSID during two distinct OOS specific phases. The 
first phase takes place before any contact with the 
Target satellite, during which the Chaser performs 
internal SYSID tasks with the goal being to identify 
with high accuracy the necessary values of its own 
system parameters. If the Target is cooperative, it may 
perform similar tests on itself, in order to transmit 
updated data to the Chaser. However, from the SYSID 
point of view, the same methods to those for the 



Chaser can be used. The second phase takes place after 
the Target rigid capture by the Chaser’s manipulator 
during berthing. Here the aim is to identify with high 
accuracy the system parameters of the rigidly mated 
full system. Note that both experimental (i.e. inputs 
specifically designed for identification) and 
operational (i.e. regular inputs applied during 
operations) SYSID methods are considered. 

To evaluate the performance of the various 
developed identification methods and algorithms, and 
observe the associated requirements, as well as their 
advantages and disadvantages during the identification 
of various types of uncertain parameters (i.e. inertial 
parameters, sloshing model parameters and flexible 
appendages modal parameters), several Benchmark 
Problems have been envisioned. Thus, one of the 
outcomes of these tests will be the trade-off analysis 
and choice of the most efficient methods and 
algorithms. Subsequently, these methods and 
algorithms will be employed in more realistic cases, 
namely the Study Cases, in which all the studied types 
of uncertainties are simultaneously taken into account. 

In this paper, the Benchmark Problems will be 
described briefly and partially, focusing on the (planar 
initially) models, the identification methods (proposed 
or developed by the authors) for each Benchmark 
Problem and some of the identification algorithms 
used. As the project is still ongoing, preliminary 
results on Benchmark Problems will be presented. 

2 IDENTIFICATION ALGORITHMS 

In OBSIdian, in case of lumped models such as the 
spacecraft (S/C) rigid body and the sloshing model, 
parametric identification is considered. Moreover, in 
case of continuous models such as flexible 
appendages, modal analysis algorithms will be used. 

2.1 Parametric Identification 

To employ some of the parametric identification 
algorithms, specifically least squares algorithm and its 
modifications, such as Instrumental Variables (IV) and 
Total Least Squares (TLS), the model dynamics must 
be expressed linearly with respect to a minimal (of 
minimum dimension) vector of parameters α: 

  (1) 
where Y is the regressor matrix which contains only 
measurable quantities, and b is a vector which contains 
only known or measurable quantities. 

In this paper, parametric identification based on the 
promising IV, TLS, and Unscented Kalman Filter 
(UKF) algorithms will be presented. 

2.1.1 Total Least Squares (TLS) 

The TLS is ideally suited for situations in which all 
data are corrupted by noise, which is almost always the 
case in engineering applications. Specifically, the 
Singular Value Decomposition (SVD) of [Y b] can be 
used to find a unique solution: 

  (2) 

Hence, the TLS solution for α is obtained as [1]: 
  (3) 

2.1.2 Instrumental Variables (IV) 

The IV algorithm deals with noisy regressor matrices 
and proposes to build an appropriate instrument matrix 
V. The IV solution for α is obtained as: 

  (4) 
A classical solution is to build V from simulated data 

 instead of measured data, [2]. The iterative 
procedure adopted [2], is presented in Figure 2. 

 
Figure 2: The flowchart of the IV algorithm. 

2.1.3 Unscented Kalman Filter (UKF) 

In UKF, a state-space formulation of a linear/ 
nonlinear system dynamics is considered, 

  (5) 
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where x(t) is the extended state vector consisting of 
both the states and system parameters to be estimated, 
and u(t) is the input. 

Moreover, the general form of the dynamic 
equations of the systems under study in this paper is,  

  (6) 
where Η is system inertia matrix, vector C contains the 
remaining terms, and , Q are the vectors of 
generalized accelerations and forces of the system, 
respectively. In this case, and considering constant 
vector of parameters  over time, 

  (7) 

2.2 Modal Analysis 

Modal analysis makes use of measurements to 
estimate modal parameters, consisting of modal 
frequencies, damping ratios, mode shapes and modal 
participation factors. Two main classifications are the 
most common. 

The first classification is between Experimental 
(EMA) and Operational (OMA) Modal Analysis. In 
EMA, the excitation for the identification process is a 
user choice, while in OMA, the excitation is the one 
applied during a specific operation. The second 
classification is between identification algorithms that 
use data in the time domain (TD) and those that use 
data in the frequency domain (FD). The measured data 
can be in the form of either Frequency Response 
Functions (FRFs) for FD algorithms or impulse 
responses for TD algorithms. 

In this paper, identification results based on the 
promising modal analysis algorithms Least Square 
Complex Exponential (LSCE), Rational Fraction 
Polynomial (RFP), Covariance-driven Stochastic 
Subspace Identification (SSI-COV) and Data-driven 
Stochastic Subspace Identification (SSI-DATA) will 
be presented in a set of simulations. 

3 IDENTIFICATION METHODOLOGIES FOR 
SPACE SYSTEMS 

3.1  Inertial Parameter Identification 

Inertial parameter identification methods can be 
classified as vision-based [3]-[4], as those that use 
equations of motion [5]-[6], and as momentum-based, 
[5], [7]-[9]. The vision-based methods are applicable 
in the pre-capture phase and they can identify only 
some satellite’s inertial parameters. The methods 

based on the equations of motion are sensitive to 
sensor noise since they require noisy acceleration 
measurements. Momentum-based methodologies do 
not require acceleration measurements and 
subsequently, they are less sensitive to sensor noise. 
Hence, they can be considered as the most promising 
methods for inertial parameter identification. 

3.2 Identification of Flexible Appendages 

The problem of parameter estimation for flexible 
components is particularly well studied for structural 
applications such as those in civil engineering; 
examples of spacecraft applications exist as well. On-
orbit identification experiments of structural modal 
parameters have been implemented on some 
spacecrafts such as the Hubble Space Telescope (HST) 
[10], the Galileo spacecraft [11], and the Engineering 
Test Satellite VIII (ETS-VIII), [12]. In [13], 
accelerometer data from the ROSA flight experiment 
on ISS were analyzed in an attempt to identify the 
ROSA system modal parameters. 

3.3 Identification of Sloshing 

Fuel sloshing disturbs the satellite motion especially 
when fast maneuvers are required, and particularly 
when large fuel tanks are employed. To represent the 
fuel sloshing dynamics, two equivalent models are 
mainly used in the literature: the pendulum and the 
mass-spring-damper models, [10]. In [15] the 
pendulum equivalent model has been adopted and the 
effects of fuel sloshing on the inertial parameter 
identification of on-orbit manipulators has been 
addressed. However, none of the sloshing parameters 
has been estimated explicitly. To identify the 
pendulum model parameters, experiments using a full-
scale model of a flight tank were conducted [16], and 
a Kalman filter technique has been used [17]. 
However, to the best of the authors’ knowledge, there 
is lack of methodologies for the estimation of mass-
spring-damper sloshing model parameters. 

4 BENCHMARK PROBLEMS 

The Benchmark Problems (BPs) are developed in 
order to test the various parametric identification 
and modal analysis algorithms in simplified (planar) 
models, in the presence of various types of 
uncertain parameters (i.e. inertial parameters, 
sloshing model parameters and flexible appendages 
modal parameters). Thus, one of the outcomes of 
these tests will be the final trade-off analysis and 
choice of the methods to be used in the more 
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realistic Study Cases, in which all the studied types 
of uncertainties will be taken into account. 

Three BPs are envisioned, each one addressing 
the identification of a separate type of uncertainty. 

4.1 Benchmark Problem 1: Inertial Parameters 

In Benchmark Problem 1 (BP1), see Table I, the planar 
model of a single-manipulator space robot is 
envisioned, and its inertial parameters are identified. 
Two sub-problems are distinguished: BP1A with a 
free-floating space robot (i.e. no actuation on the S/C 
base), and BP1B with a fully actuated free-flying 
space robot (i.e. active thrusters and reaction wheels 
on the S/C base). No sloshing effects or flexible 
appendages are included in both cases. 

Table I. Benchmark Problems 1: Inertial Parameters 

Benchmark 
Problem 1A (BP1A) 

Benchmark 
Problem 1B (BP1B) 

Identification of inertial parameters  

Experimental parametric identification 
Model: 2D free-
floating space robot 

Model: 2D free-flying 
space robot 

As it can be seen from Table I, BP1 implements 
Experimental Identification, in the sense that the 
excitation of the system is the user’s choice, as it fits 
best the needs of the identification process. 
Furthermore, BP1 employs parametric 
identification methods. In this paper, BP1A is 
presented. 

4.1.1 BP1A: Free-Floating Case 

4.1.1.1 System Model 

The dynamics of a planar 2-DoF single-manipulator 
SMS in free-floating mode, see Figure 3, is given by 
(6) where Q=[0 ]T and 

  (8) 

 
Figure 3: A SMS with a single 2-DoF manipulator. 

where  is the S/C angular acceleration, and  
are the manipulator’s joint accelerations and 

torques, respectively. Moreover, H, C are given in [9]. 
The system angular momentum hcm expressed in the 

inertial frame is given by: 
  (9) 

where D, Dq are inertia-type quantities given in [9] and 
. 

4.1.1.2 Parameter Identification Equations 

To identify free-floating system inertial parameters, 
the Angular Momentum Conservation  approach 
(AMC), which is based on the conservation of angular 
momentum of a space manipulator system in free-
floating mode [9], and the Dynamic Equation 
approach (DE) which is based on the system equations 
of motion, are applied. 

In AMC approach, the system angular momentum 
seen in Eq. (9), is reformulated as in (1): 

  (10) 

and in DE approach, the system equations of motion, 
(6), are written as in (1): 

  (11) 

Note that in both equations, the set of inertial 
parameters  is the same and consists of parameters 
that are combinations of S/C and manipulator’s links 
inertial parameters, and is given in detail in [18]. 

4.1.1.3 Inputs and Required Measurements 

System inputs consist of the joint torques acting on the 
manipulator joints. As it can be seen by (10), the 
measurements required for SYSID based on AMC are 
the S/C angular velocity and the arm joints angles, 
rates. Furthermore, as it can be seen in (11), SYSID 
based on DE additionally requires the S/C angular 
acceleration, and the arm joints accelerations. 

Hence, the required sensors for BP1A are the 
Inertial Measurement Unit (IMU) and the manipulator 
joint-motor encoders. The angular rate error is selected 
as white noise with a typical value of Angular Random 
Walk (ARW) equal to . 

4.1.1.4 Parameters and Excitation 

System parameters for B1 are shown in Table II. 
 

Table II. Parameters of the planar free-floating SMS. 

Body li (m) ri (m) mi (kg) Ii (kg m2) 
0 - [0.99 0.99]Τ 400 66.67 
1 1.9 0.168 12.1 17.27 
2 1.73 0.168 11.7 14.10 
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The selected exciting trajectories of arm joints are 
based on truncated Fourier series, [9] and hcm=68 Nms. 

4.1.1.5 Identification Results 

The Relative Errors (RE) resulted from the application 
of the TLS, IV and UKF algorithms using the AMC  
and DE approaches are shown in Table III and Table 
IV, respectively. Note that the UKF algorithm is 
applied only based on DE since its application requires 
the use of system equations of motion. As it can be 
seen from Table III and Table IV, the TLS and IV yield 
comparable results. In the DE approach, UKF yields 
better estimates than TLS and IV; however, its 
performance depends strongly on filter parameter 
tuning and initial knowledge of system inertial 
parameters, e.g. here, it was taken as 55% . 
Moreover, and most importantly, the AMC approach 
guarantees better estimates than the DE approach 
since, as mentioned above, it is less sensitive to sensor 
noise as it does not require acceleration measurements. 

Table III. B1A TLS, IV, UKF relative errors (RE) based on 
Angular Momentum Conservation approach. 

Parameter TLS 
RE (%) 

IV 
RE (%) 

UKF 
RE (%) 

α(1) 0.09 0.09 - 
α(2) 0.28 0.28 - 
α(3) 0.25 0.25 - 
α(4) 0.57 0.57 - 
α(5) 0.18 0.18 - 
α(6) 0.10 0.10 - 
α(7) 0.38 0.38 - 
α(8) 0.02 0.02 - 

Table IV. B1A TLS, IV, UKF Relative Errors (RE) based on 
Dynamic Equation approach. 

Parameter TLS 
RE (%) 

IV 
RE (%) 

UKF 
RE (%) 

α(1) 12.67 8.16 0.28 
α(2) 18.46 17.44 0.74 
α(3) 5.53 5.23 3.66 
α(4) 13.67 18.15 10.05 
α(5) 17.31 14.64 13.77 
α(6) 8.03 4.50 0.00 
α(7) 4.49 5.54 8.22 
α(8) 2.95 1.64 8.19 

4.2  Benchmark Problem 2: Sloshing Parameters 

In BP2, see Table V, the planar model of a satellite in 
the presence of sloshing effect is envisioned. In this 
paper, a preliminary model in 1D is considered. The 
satellite parameters are assumed known and sloshing 

model parameters are identified. 
As it can be seen from Table V, BP2 implement 

Experimental Identification. Furthermore, BP2 
employ parametric identification methods. 

Table V. Benchmark Problem 2: Sloshing Parameters. 

Benchmark Problem 2 (BP2) 
Identification of sloshing model parameters 

Experimental parametric identification 
Model: 2D satellite and 2D sloshing model 

4.2.1 Preliminary 1D Model 

To study the effect of the fuel sloshing mass on the 
S/C, the S/C mass m0 and the sloshing mass ms are 
considered as a 2-DoF mass-spring-damper with 
spring and damping constants  respectively, as 
shown in Figure 4. 

 
Figure 4: A 2-DoF sloshing mass-spring-damper model. 

The equations of motion for the S/C and the sloshing 
mass are: 

  (12) 

  (13) 
where  is the force applied to the S/C, and  
and  are the position, velocity, acceleration of 
S/C and sloshing fuel Center of Mass (CoM), 
respectively. 

4.2.2 Parameter Identification Equations 

To identify the sloshing model parameters in the 
preliminary 1D sloshing model presented, the 
following methodology is developed. 

Considering the S/C velocity as the system’s output, 
the system transfer function is given by, 

  (14) 

where 

  (15) 

Eq. (14) can be written in the time domain. Moreover, 
considering the S/C CoM acceleration  as the 
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measurable quantity and by integrating twice to avoid 
the differentiation of noisy signals, (14) is given by, 

  (16) 

The equation of motion (16) for the S/C is written 
linearly with respect to the set of sloshing model 
parameters  i.e. in formulation of (1), as follows: 

  (17) 
where 

  (18) 

Based on (18), the estimated sloshing model 
parameters  can be derived easily. 

4.2.3 Inputs and Required Measurements 

The system input is the force  applied to the S/C by 
the thrusters. Additionally, as it can be seen in (17), in 
the 1D version of B2, the measurements required for 
SYSID are the S/C CoM position, velocity and 
acceleration. Hence, the required sensor for B2 is the 
IMU. Moreover, fusing GNSS, inertial, and 
magnetometer data may yield more accurate S/C 
position and velocity measurements. The selected 
acceleration error is white noise with a typical value of 
velocity random walk equal to . Note 
that the state of the sloshing mass cannot be measured. 

4.2.4 Parameters and Excitation 

To illustrate the proposed methodology, a satellite of 
mass m0=1004.5 kg is considered. The true values of 
the sloshing parameters are shown in Table VI. 

The applied thruster force is a sinusoidal signal of 
amplitude 44 N and frequency 0.01 Hz. 

4.2.5 Identification Results 

The relative errors (RE) of estimated parameters by 
TLS and IV algorithms are shown in Table VI. UKF 
results are not included since its implementation 
indicated the possibility of observability issues. 

Table VI. BP2 relative errors (RE) based on IV, TLS 

Parameter True 
Value 

TLS 
RE (%) 

IV 
RE (%) 

 28.7 2.44 1.86 
 0.16 1.08 3.14 
 0.03 348.84 324.87 

Although the relative errors for the parameters ms and 

ks are quite low, the relative error for parameter cs is 
large in both algorithms. However, as it can been seen 
from Figure 5, the effect of this error in satellite 
response is negligible. Figure 5 shows the relative 
error between the predicted satellite response e.g. 
x0, based on the estimated parameters and the “true” 
satellite response. 

 
Figure 5: The RE between predicted and “true” x0. 

4.3  Benchmark Problem 3: Modal Parameters 

In Benchmark Problem 3 (BP3), see Table VII, a 
rotating rigid hub with a flexible appendage mounted 
on a fixed revolute joint is envisioned, and the modal 
parameters of the flexible appendage are identified. 
Two sub-problems are envisioned: BP3A based on 
EMA and BP3B based on OMA. 

Table VII. Benchmark Problem 3: Modal Parameters 

Benchmark 
Problem 3A (BP3A) 

Benchmark 
Problem 3B (BP3B) 

Identification of appendages modal parameters 
EMA OMA 

Model: 2D flexible appendage on hub 

4.3.1 System Model 

In BP3, the dynamics of a rotating rigid hub with a 
flexible appendage, see Figure 6, can be given by (6) 
where Q=[1 0 0]T u and 

  (19) 

where is the hub angular acceleration,  are 
the n modal accelerations, where n is the number of 
dominant modes, and u is the torque applied on hub. 

 
Figure 6: A planar “appendage on hub” model. 
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Moreover, vector C is given by 
  (20) 

where K, D are the damping and stiffness matrices. 

4.2.3 Inputs and Required Measurements 

The system input in B3 is the torque applied on the hub  
by a motor. Moreover, in B3 the measurements 
required for SYSID are the acceleration of a selected 
number of appendage points. Hence, the required 
sensors for B3 are a number of accelerometers 
mounted on the appendage. In this work, the flexible 
appendage is equipped with 10 equally spaced sensors. 

The noise model assumed is a zero-mean gaussian 
white noise. The accelerometers in the simulations are 
the QA2000 from Honeywell. 

4.3.2 BP3A: Experimental Modal Analysis 

4.3.2.1 Parameters and Excitation 

The B3 system’s natural frequencies and damping 
ratios are shown in Table VIII and the mode shapes are 
plotted in Figure 7. 

Table VIII. B3 Natural frequencies and damping ratios 

Para-
meter 

Ihub  
(kg m2) 

fn1  
(Hz) 

fn2  
(Hz)   

 200 118.58 743.19 0.1 0.05 

 
Figure 7: B3 first two mode shapes. 

Furthermore, EMA methods estimate system modal 
parameters based on known artificial excitation. In this 
work, a rectangular signal is used, composed of a first 
step from 0 Nm to 2 Nm at t=0 s, followed by an 
opposite step from 2 Nm to 0 Nm at t=1 s. The duration 
is 5 s. Between 1 s and 5 s, the input is zero. 

4.3.2.2 Identification Results 

The relative errors based on EMA of the estimated 
natural frequencies and damping ratios, and the MAC 
value for estimated mode shapes are presented in 
Table IX and Table X, respectively. 

The LSCE identifies accurately natural frequencies, 
but not all damping ratios. Other excitations may yield 
better results. The RFP and SSI-DATA perform very 

well here. The SSI-COV is capable in identifying the 
modal parameters even if the assumption of zero-mean 
white noise input is violated. However, the input 
signal needs to be chosen such that it does not 
influence the real modes in their frequential vicinity.  

As it can be seen in Table IX, SSI-COV perform 
better than the other algorithms in the studied case. 

Table IX. BP3A relative errors (RE) based on EMA 
Para-
meter 

LSCE 
RE(%) 

RFP 
RE(%) 

SSI_COV 
RE (%) 

SSI_DATA 
RE (%) 

 0.77 0.50 0.02 0.06 
 0.26 0.11 0.00 0.01 
 1.65 0.46 0.02 0.37 
 8.48 0.97 0.03 0.69 

Table X. BP3A MAC value based on EMA 

Mode LSCE 
MAC 

RFP 
MAC 

SSI_COV 
MAC 

SSI_DATA 
MAC 

1st mode 1.00 0.99 1.00 1.00 
2nd mode 1.00 0.99 1.00 1.00 

4.3.3 BP3B: Operational Modal Analysis 

4.3.3.1 Parameters and Excitation 

The parameters in BP3B are the same as in BP3A. In 
contrast to EMA methods, OMA methods are based on 
the excitation induced by the operational tasks, which 
in general is more conservative than the artificial. In 
this paper, an operational task is considered where the 
hub needs to be rotated for an angle of 5° every 1 s. 
The simulation time is 5 s as for the EMA case. This 
means that the setpoint (which is the desired hub 
angle) is composed of the addition of 5 delayed step 
functions of 0.5° of amplitude. A simple PID 
controller is implemented to compute the required 
joint torque to follow each new setpoint. 

4.3.3.2 Identification Results 

The relative errors based on OMA of the estimated 
natural frequencies and damping ratios, and the MAC 
value for estimated mode shapes are presented in 
Table IX and Table X, respectively. 

The LSCE seems to be working with our OMA case, 
even though it is an EMA method. One possible 
explanation is that our chosen OMA excitation is a 
series of (escalating) step input commands, which are 
realized with PID-control induced torques. This 
excitation, though, is close to the (ideal for LSCE) 
impulse inputs. The RFP and SSI-DATA perform very 
well in the presented case. The SSI-COV yields low 
errors in the presented case, lower than all the other 
algorithms tested here, as can be seen in Table XI. 

C = D!q+Kq

ζ n1 ζ n1

1 2 3 4 5 6 7 8 9 10
Sensor

-1

-0.5

0

0.5

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

Mode shapes

 1st mode
 2nd mode

fn1
fn2
ζ n1

ζ n2



Table XI. BP3B relative errors (RE) based on OMA 
Para-
meter 

LSCE 
RE(%) 

RFP 
RE(%) 

SSI_COV 
RE (%) 

SSI_DATA 
RE (%) 

 0.05 0.12 0.01 0.05 
 0.04 0.01 0.00 0.01 
 0.05 1.27 0.01 0.63 
 1.15 0.33 0.01 0.56 

Table XII. BP3B MAC value based on OMA 

Mode LSCE 
MAC 

RFP 
MAC 

SSI_COV 
MAC 

SSI_DATA 
MAC 

1st mode 0.99 1.00 1.00 1.00 
2nd mode 1.00 0.99 1.00 0.99 

5 CONCLUSION 

The main objective of OBSIdian is the development 
and application of system identification (SYSID) 
methods for space systems. This will result in the 
development of an on-board computational efficient 
and reliable software for SYSID. To evaluate the 
performance of the various identification methods and 
algorithms, several Benchmark Problems (BPs) have 
been envisioned. In this paper, the BPs were briefly 
described, focusing on the (planar initially) models, 
the identification methods for each Benchmark 
Problem, and some of the identification algorithms 
used. As the project is still ongoing, preliminary 
results on Benchmark Problems were presented. 
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