
  

  

Abstract— This paper introduces alternative behaviors 
described by the SLIP model when it is subject to a range of 
initial conditions. A non-dimensional SLIP model and a 
numerical return map search scheme are used to determine 
fixed points as a function of non-dimensional leg stiffness and 
vertical displacement under friction constraints. A SLIP model 
behavior analysis is performed, using an analytical stance 
phase approximation, by diverging from the fixed points, i.e. by 
increasing/decreasing initial horizontal velocity, and/or 
touchdown angle. The results show that beyond the regular 
fixed points, the SLIP model performs an alternative, stable 
behavior that repeats itself every two cycles of motion. We call 
these 2nd-order fixed points and the regular ones 1st-order fixed 
points. A numerical simulation scheme was developed to 
investigate 2nd-order fixed points for a wide range of horizontal 
velocities and touchdown angles. Results show that 2nd-order 
fixed points respecting the friction cone constraints exist that 
can lead to a number of different behaviors such as high jumps, 
obstacle avoidance of different heights, or backward motion. 

I. INTRODUCTION 

The Spring Loaded Inverted Pendulum (SLIP) template 
describes the dynamic behavior during locomotion of a 
number of animals, and is used for several robot design and 
control implementations [1]. To name a few, a monopod 
robot that exploits an underwater SLIP version (U-SLIP) is 
presented in [2]. An extended 3D Dual-SLIP walking 
strategy for uneven terrains was used to generate trajectories 
for a biped model [3]. To preserve a SLIP-like hip trajectory 
during low velocities, researchers add energy by actively 
compressing the leg spring of a compliant quadruped robot at 
mid-stance [4]. A new version of the hexapod SLIP-based 
runner, and a more detailed dynamic model (R2-SLIP) were 
presented [5]. These robots exploit the SLIP model to achieve 
a limit cycle forward motion using parameter values and 
initial conditions inside a “safe” range without considering 
alternative behaviors like high jumps, or moving backwards. 

Following the introduction of the SLIP model, its 
behavior for different initial conditions and its limits were 
investigated. A J-shaped dependency was determined 
between the angle of attack and leg stiffness for periodic 
motion patterns at a running speed; conditions except forward 
running were not investigated [6]. Although further analysis 
led to expressions characterizing periodic gaits, and their 
stability and bifurcations [7], constraints like friction were 
not taken into consideration, and period-doubling behaviors 
were not investigated in detail. Stable cycles of higher 
periods appeared when a planar, passive, two-link model 
resembling a human leg was exploited [8] for initial 
conditions and stability estimates to be found. 

The SLIP model is an ideal model that needs to be 
adjusted when used in real-world applications. A robotic leg 
is controlled to realize an undamped SLIP model by 
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cancelling the undesired damping factors through positive 
feedback based on Kalman filter estimates [9]. A hopping 
robot designed as a realization of the running SLIP model 
utilizes a linearized Raibert step controller to achieve extreme 
jumping and forwards-backwards locomotion with external 
position feedback [10]. Using the swing leg retraction (SLR) 
method, the otherwise unstable conservative SLIP model can 
be stabilized and controlled, and the non-conservative SLIP 
can have increased robustness [11]. An extension of the SLIP 
model by adding a hip actuation to compose a tail-actuated 
one (TSLIP) was presented in [12]. 

The SLIP model is a simple mass-spring system; however 
only an approximate analytical solution predicting the center 
of mass trajectory during the stance phase can be obtained. 
The “bottom-to-apex” return map approximations are 
calculated using the iterated application of the mean value 
theorem for integral operators applied to a nonintegrable 
system perturbation [13]. Stance phase equations of motion 
were simplified by assuming a small angular sweep and 
spring compression [14]. Results show that for spring 
compression up to 20%, angle of attack ≥ 60 deg. and angular 
sweep ≤ 60 deg., the approximation yields 1% spring 
compression and 0.6 deg. angular tolerance. 

In this paper, we investigate alternative behaviors 
described by the SLIP model, when it is subject to a range of 
initial conditions. Non-dimensional equations of motion of 
the SLIP model and a numerical return map search scheme to 
are employed to determine fixed points as a function of non-
dimensional leg stiffness and vertical displacement under 
friction constraints. We perform an analysis of the SLIP 
model behavior by diverging from the fixed points, i.e. by 
increasing/decreasing initial horizontal velocity and/or 
touchdown angle. For this analysis, we use an analytical 
approximation for the stance phase. The results show that 
beyond the determined fixed points, the SLIP model exhibits 
alternative, stable behaviors that repeat themselves every two 
cycles of motion. We call these 2nd-order fixed points, and 
the regular ones 1st-order for consistency. Due to limitations 
of the analytical approximation, a numerical simulation 
scheme is developed to investigate 2nd-order fixed points for 
a wider range of horizontal velocities and touchdown angles. 
Results show that 2nd-order fixed points observing the friction 
constraints do exist, and can lead to a number of different 
behaviors such as high jumps, obstacle avoidance of different 
heights, or backward motion. These fixed points exist in a 
continuous space, and transitions between them can be 
achieved at the next cycle of motion by simply changing the 
touchdown angle and/or the forward velocity. 

II. SLIP MODEL 

The SLIP model was introduced to describe dynamic legged 
locomotion in the simplest way. The model is planar, 
conservative, and consists of a point mass equal to a system’s 
total mass and a massless spring as the compliant leg (Fig. 1). 
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Figure 1. The SLIP model, basic variables, and its two phases. 

A. Phase dynamics 

The SLIP model has two phases, flight and stance. For the 
stance phase, the SLIP leg-ground interaction model assumes 
a rigid terrain, and a revolute joint connecting leg and terrain. 
For this assumption to hold, the leg should not slip, i.e. the 
reaction force must be in the friction cone defined by 

 FG ≤ (CoF)NG   (1) 
where CoF is the coefficient of friction, FG is the ground 
horizontal force, and NG is the vertical ground force, see Fig. 
1. In addition, NG should not be negative. Both reaction force 
components are obtained using a Newton-Euler formulation, 

 FG = mx − k(l0 − l)sinγ   (2) 
 NG = m( y + g)+ k(l0 − l)cosγ   (3) 
Using Cartesian coordinates and a Lagrangian formulation, 
the equations of motion for the stance phase are 
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where all variables are defined in Table I, and 

 L = l0 − (xtd − x)
2 + y2⎡⎣ ⎤⎦

1/2( ) (xtd − x)2 + y2⎡⎣ ⎤⎦
−1/2

  (5) 

while the rest of variables and parameters are presented in 
Table I. Flight phase equations of motion are derived using 
(4) by zeroing the compliance terms. A more compact form 
can be derived, if the following 
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are substituted in (4): 
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B. Threshold functions 

The flight phase ends with a touchdown and the flight starts 
with a leg liftoff, see Fig. 1. These events are triggered 
according to the zero crossings of the threshold functions: 

 h1,2 = y − l0 cos(γ td )   (10) 

 h2,1 = l − l0   (11) 
When (10) is zero crossed, the Center of Mass (CoM) y-axis 
coordinate allows the leg tip (toe) to just touch the ground for 
a given touchdown angle γtd corresponding to the transition 

from flight to stance. When (11) is zero crossed, the spring 
length is equal to the uncompressed value and corresponds to 
the transition from stance to flight phase. Each threshold 
function is used only when then appropriate phase is in 
progress, i.e. (10) for the flight and (11) for the stance phase. 

TABLE I.  SLIP PARAMETERS AND VARIABLES. 

Symbol Quantity 
x (m) Body CoM x-axis coordinate w.r.t. O1xy 
y (m) Body CoM y-axis coordinate w.r.t. O1xy 

m (kg) Body mass 

l (m) Spring length 

l0 (m) Spring uncompressed length  

k (N/m) Spring constant 

γ (deg) Spring angle w.r.t. O1xy 

g (m/s2) Gravity acceleration 

r (m) Body CoM radial coordinate w.r.t. O2L 

φ (deg) Body CoM angular coordinate w.r.t. O2L 

a0 Angle of attack 

td As index: value at touchdown 

lo As index: value at liftoff 

0 As index: variable initial values 

1 As index: flight phase 

2 As index: stance phase 
* As exponent: nondimensionalised parameter/variable 

C. Dimensional Analysis 

Despite its simplicity, the SLIP model holds complicated 
relations between parameters and variables, mostly due to 
coupling. To investigate these relations, and to obtain results 
and conclusions for different designs, non-dimensionalization 
is employed. The non-dimensional variable of time t is: 

 t* = t / s   (12) 
where s is a time scale chosen to be the pendulum period, as 
this is usually slower than spring oscillation: 

 s = l0 / g( )1/2   (13) 
All lengths are non-dimensionalized using the spring 
uncompressed length l0: 

 x* = (1/ l0 )x, x* = (s / l0 )x, x* = (s2 / l0 )x   (14) 

 l* = l / l0   (15) 
while the spring angle and its derivatives become, 

 γ * = γ , γ * = sγ , γ * = s2γ   (16) 
Using (14)-(16), the stance phase equations of motion (9) 
take the non-dimensionalized form: 
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where l* and γ* are given from: 

 l* = (xtd
* − x*)2 + y*2⎡⎣ ⎤⎦

1/2
  (18) 

 γ * = atan( y*,xtd
* − x*)   (19) 

If the time scale s is substituted using (13) and the relative leg 
stiffness R defined as: 

 R = (kl0 ) / (mg)   (20) 
is used, (17) takes a simpler form: 
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Threshold functions (10) and (11) change likewise: 
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 h*1,2 = y
* − cos(γ td

* )   (22) 

 h*2,1 = l
* −1   (23) 

III. FIXED POINT SEARCH SCHEME 

A fixed point search scheme, similar to the one used in [15], 
has been developed using MATLAB and applied to the non-
dimensionalized SLIP model (21) - (23) to determine which 
initial conditions at apex, i.e. touchdown angle γtd,0 and 
horizontal velocity , yield steady state cyclic motions for a 
given initial vertical displacement . 

The return map P is defined using the apex height of the 
motion cycle, i.e. the maximum vertical displacement. A 
function is needed that maps the apex height states of the 
initial cycle n to those of the next one (n+1). If the state 
vector at the next cycle is equal to the initial, then the cycle is 
repeatable, i.e. a fixed point is identified. The initial 
touchdown angle γtd,0 and the initial horizontal velocity  at 
apex are considered as the search space states χ, while the 
initial vertical displacement  at apex is the input parameter 
u which is kept constant during the search. The system of 
equations whose solution is sought is of the form, 

 χn+1 = P(χn ,un )   (24) 

 χ = [ x0
* γ td,0 ]

T and u = y0
*   (25) 

In the analysis presented in this paper  was chosen to 
have value equal to 1.273 to meet a specific vertical 
displacement-leg length ratio which corresponds to a medium 
sized legged robot. Likewise, the relative leg stiffness R value 
is in the range of 40 to 140. The analysis can be extended to 
different range values of  and R. The initial touchdown 
angle γtd,0 and horizontal velocity  ranges have been chosen 
to exceed realistic values so that the results provide general 
conclusions and patterns. The identified fixed points form a 
continuous surface, see Fig. 2, and show that the touchdown 
angle γtd,0 increases as relative leg stiffness R decreases and/ 
or horizontal velocity  increases. 

 
Figure 2. Fixed points for R 40-140 and initial vertical displacement 1.273. 

To determine fixed points for specific SLIP parameters 
set, i.e. m=4kg, k=12000N/m and l0=0.275m, and initial 
conditions, i.e. x0=0m, y0=0.35m and 0=0m/s, first the non-
dimenionalized variables and parameter are computed as: 
R=84.1, =0, =1.273, =0. The results for the specific 
values form a continuous line and are presented in Fig. 3. The 
CoF was chosen to be 0.7 as the mean value for concrete – 
rubber interactions. The large circle marker (blue) fixed 
points satisfy the friction cone constraints, while the small 
full circle (red) ones do not and the motion is not achievable 
for the given CoF. Note that the friction cone constraints are 
implemented after the fixed point detection. If the CoF is 

increased, more small full circle fixed points will become 
large, but of course their value will not change. 

 
Figure 3. Fixed points using friction cone contraints with 0.7 COF. 

IV. FIXED POINT ANALYSIS 

Fixed points found in Sect. III using the apex return map 
satisfy the property for periodic motion. If the passive and 
conservative SLIP model is released with an initial energy 
level at apex, i.e. initial vertical displacement , horizontal 
velocity  and vertical velocity =0, and the initial 
touchdown angle γtd,0 (energy allocation) which corresponds 
to the given horizontal velocity (fixed point) is used, then the 
response is an infinitely repeatable motion with the same 
characteristics in all cycles. But what happens if the initial 
energy level ( ) and/ or energy allocation (γtd,0) are different 
from the ones calculated as the fixed point values? And what 
happens as the values diverge from the ones of Fig. 2? 

To answer these questions, the analytical approximation 
for the center of mass trajectory during stance phase 
described in [14] was exploited. This approximation is valid 
for spring compressions up to 20%, angle of attack ≥ 60deg. 
and angular sweep ≤ 60deg. [14]. The analytical solution 
during the flight phase is a ballistic trajectory. The polar 
coordinates (r, φ) (Fig. 1) are used to describe the SLIP 
motion during stance phase. The trajectory is given by 

 r(t) = l0 −
rtd
ω̂0

sinω̂0t +
ϕ td
2 l0 − g
ω̂0
2 (1− cosω̂0t)   (26) 

 
ϕ(t)=π −α0+ 1−2(ϕ td

2 −g / l0 )ω̂0
−2( )ϕ tdt+

+2ϕ tdω̂0
−1 (ϕ td

2 −g / l0 )ω̂0
−2sinω̂0t+ rtd (ω̂0l0 )

−1(1−cosω̂0t)⎡⎣ ⎤⎦
  (27) 

where 

 ω̂0 = k / m+ 3(rtd
2ϕ td l0

−2 )2⎡⎣ ⎤⎦
1/2

  (28) 
Polar coordinates (rtd, φtd) and speeds at touchdown are 
calculated using the flight phase ballistic trajectory 
analytical equations. The stance phase duration is: 

 tst = π + 2arctan (g − l0ϕ td
2 ) / ( rtd ω̂0 )( )⎡

⎣
⎤
⎦ / ω̂0   (29) 

The fixed point analysis scheme initiates from a fixed 
point at apex (γtd,0, y0, 0, 0=0m/s) and uses the flight phase 
analytical equations to calculate the CoM trajectory for the 
phase duration (tfl). Then the analytical approximation for the 
stance phase trajectory (26)-(28) is used for the appropriate 
duration (tst) calculated using (29) with touchdown values the 
flight phase last ones. The process repeats itself with liftoff 
values for the flight phase, the stance phase last values. Each 
motion cycle is considered from apex to apex. 

At first, the fixed point at =1.0m/s and γtd,0=6.13deg. 
was chosen for the analysis as it fulfills the approximation 
constraints for small angular sweep and spring compression. 
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The results of the analytical calculations are presented in 
Table II under the column “Fixed Point”. 

TABLE II.  TWO CYCLE SLIP ANALYTICAL CALCULATIONS. 

 Variable Fixed Point Point 1 Point 2 
START CYCLE 1 

Apex1  (m/s) 1.000 1.500 1.000 

 y0 (m) 0.350 0.350 0.350 

 γtd,0 (deg) 6.13 6.13 12.00 

 tfl (s) 0.125 0.125 0.129 

 ytd (m) 0.273 0.273 0.269 

TD1  (rad/s) -3.140 -4.948 -2.604 

 tst (s) 0.060 0.058 0.061 

END CYCLE 1 – START CYCLE 2 

Apex2  (m/s) 0.999 1.652 0.580 

 y (m) 0.350 0.326 0.384 

 γtd (deg) 6.11 12.31 -1.73 

 tfl (s) 0.125 0.108 0.149 

 ytd (m) 0.273 0.269 0.275 

TD2  (rad/s) -3.138 -5.049 -2.269 

 tst (s) 0.060 0.058 0.061 

END CYCLE 2 – START CYCLE 3 

Apex3  (m/s) 0.999 1.505 0.993 

 y (m) 0.350 0.349 0.357 

 γtd (deg) 6.11 6.41 11.95 

 tfl (s) 0.125 0.124 0.130 

 ytd (m) 0.273 0.273 0.270 

The response can be seen in Figs. 4 and 5 (blue line) and is 
periodic. Every variable value at the end of every cycle is 
equal to the initial value and every cycle is identical, as 
expected. Consequently, the initial horizontal velocity value 

 is increased from fixed point value while the rest 
variables, i.e. γtd,0, y0, 0, are kept the same. The new 
response differs from the fixed point one and is presented in 
Fig. 4. The results of the analytical calculations are presented 
in Table II under the column “Point 1”. At the end of the first 
cycle, values are not equal to the initial ones, more 
specifically the CoM vertical displacement y is reduced and 
the horizontal velocity  is increased. At the end of the 
second cycle though, both variables return to their initial 
values. This behavior is repeatable every two cycles. The 
response is never attracted to that of the corresponding fixed 
point nor does it become unstable. The two responses have a 
phase offset due to the horizontal velocity increment. Similar 
behavior is observed when instead of the horizontal velocity, 
the initial touchdown angle is increased. 

In this case, at the end of the first cycle the vertical 
displacement is increased and the horizontal velocity is 
reduced. The results of the analytical calculations are 
presented in Table II under the column “Point 2”. Again, this 
behavior repeats every two cycles as it can be seen in Fig. 5. 

Also, Fig. 5 shows clearly that the initial touchdown 
angle acts as an energy “allocator”, since both sets of initial 
conditions, i.e. fixed point and increased touchdown angle, 
have the same energy level (   x0  y0,    y0 ). In this way, the 
maximum vertical displacement (apex height) can be altered 
by changing only the touchdown angle of every cycle. This 
result is in complete agreement with Raibert’s initial findings 
[16]. In the case of Fig. 4, the maximum vertical 
displacement can be altered also, but to obtain this behavior 
energy needs to be pumped (or dumped) into the system to 
increase (or decrease) its initial level as the touchdown angle 
is the same at every cycle. As the SLIP model is passive and 

conservative, the initial total energy level does not change but 
is distributed differently between the potential and kinetic. 

 
Figure 4. SLIP response at =1.5m/s, y0=0.35m, γtd,0=6.13deg. (thick red 
line) and at fixed point =1.0m/s, y0=0.35m, γtd,0=6.13deg. (thin blue line). 

 
Figure 5. SLIP response at =1.0m/s, y0=0.35m, γtd,0=12deg. (thick red 
line) and at fixed point =1.0m/s, y0=0.35m, γtd,0=6.13deg. (thin blue line). 

Using the fixed point analysis scheme described in this 
paragraph, we specified that if the initial values vary from 
those of the fixed point, then the SLIP model exhibits again 
an infinitely periodic motion, but with different 
characteristics and without becoming unstable or attracted 
towards some other behavior. The difference of this motion 
compared to that of the fixed point increases as the initial 
values diverge from it. Therefore, although we replied the 
question posed at the start of Sect. IV, a new question 
reasonably arises. Are there any boundaries for this kind of 
behavior, and what happens for extreme values of horizontal 
velocity and touchdown angle? To answer this question, a 
numerical scheme is developed to extend the range limitation 
of the stance phase approximate analytical solution. 

V. FIXED POINT BEHAVIOR 

To evaluate the fixed points, a numerical scheme has been 
programmed in MATLAB. The simulation core is the SLIP 
equations of motion. Each set of phase equations is integrated 
using the ODE45 function for the current time until the time 
the next phase threshold function triggers. 

The response that corresponds to the fixed points in Fig. 2 
is, as expected, the same and infinitely repeatable per cycle, 
see Fig. 6. When initial conditions differ from fixed point 
values, a repeatable behavior occurs, but with an-every-
second-cycle pattern. For consistency, we call these points 
“2nd-order fixed points”, while the single cycle fixed points 
(Figs. 2 & 3), “1st-order fixed points.” 

Using the fixed point evaluation numerical scheme, plot 
areas and boundary lines were determined and are shown in 
Fig. 7. These areas and their boundaries describe different 
behaviors of the SLIP model according to the initial energy 
level, i.e. initial horizontal velocity    x0  and vertical 
displacement y0, and energy allocation, i.e. initial touchdown 
angle γtd,0. The blue line corresponds to the 1st-order fixed 
points, see Fig. 6. Areas 1 to 3 are defined by the boundary 
lines depicted with different colors in Fig. 7. The two black 
lines set the limit for leg stumbling. The leg stumbles because 
at the end of the first cycle, the apex height does not allow for 
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adequate leg clearance for the specific touchdown angle. It is 
worth noting that the two black line limits exist because in 
both Areas 1 and 3, the vertical displacement at the end of the 
first cycle is lower than the initial one, and keeps lowering as 
we move towards the black lines until intersection. 

 
Figure 6. 1st-order fixed point at =1m/s y0=0.35m γtd,0=6.13 deg. 

 
Figure 7. SLIP model fixed points: areas and boundaries. 

The red line sets the friction cone limit, beyond of which 
the leg slips. For the current analysis, the CoF between the 
ground and the leg toe was chosen to be 0.7 (as in Sect. III). 
If the CoF for example takes a higher value, the red line will 
extend to greater touchdown angles and horizontal velocities. 

The orange line sets the boundary between Areas 1 and 2 
and is the limit at which the horizontal velocity at the end of 
the first cycle is equal and opposite to the initial one, 
resulting to zero mean horizontal velocity. This yields zero 
mean horizontal displacement with the SLIP model 
oscillating between two opposite horizontal positions (-x, x). 

Two more lines exist within Area 2 which are not 
boundaries but point to useful properties. The dark green line 
or obstacle clearance line indicates 2nd-order fixed points that 
at the end of first cycle have a maximum vertical 
displacement (Height1) determined by a horizontal velocity 
(HozVel1) which is maximum for this vertical displacement. 
In other words, as we diverge from the dark green line, the 
vertical displacement or horizontal velocity or both at the end 
of the first cycle have lower values compared to the ones on 
the line. The light green line or point reach line indicates 2nd-
order fixed points that at the end of the first cycle have the 
maximum vertical displacement (Height2) and horizontal 
velocity of zero value (HozVel2). The points of this line 
indicate the touchdown angle that allocates all the energy to 
vertical displacement for a given initial horizontal velocity. It 
should be noted here that maximum performance in terms of 
velocity or apex height depends on the initial energy level, 
i.e. on the horizontal velocity and vertical displacement. 

For a lower initial touchdown angle and/or greater initial 
horizontal velocity than those on the blue line, i.e. plot Area 
3, the SLIP model results in the response of Fig. 8. At the end 

of the first cycle (second cycle initial conditions), the vertical 
displacement y is lower and the horizontal velocity x is larger 
than those of the initial conditions. At the end of the second 
cycle, the y and x values are equal to the initial ones. Note 
that for a 1st-order fixed point (blue line), y and x are equal to 
their initial values at the end of first and each other cycle. 

For a higher initial touchdown angle and/or lower initial 
horizontal velocity from the blue line, i.e. Area 2, the SLIP 
model results in the response of Fig. 9. At the end of the first 
motion cycle, y is greater and x is lower than the initial ones, 
while at the end of the second cycle the values are equal to 
the initial ones. The SLIP response for Area 1 in Fig. 7 is 
shown in Fig. 10. At the end of the first cycle, y is smaller 
than the initial value as in the case of points in Area 3, Fig. 7.  

 
Figure 8. Area 3 2nd-order fixed point at =1.5m/s y0=0.35m γtd,0=6.13 deg. 

 
Figure 9. Area 2 2nd-order fixed point at =1m/s y0=0.35m γtd,0=12 deg. 

 
Figure 10. Area 1 2nd-order fixed point at =1m/s y0=0.35m γtd,0=32 deg. 

The horizontal velocity, on the other hand, is negative and 
its absolute value is larger than the initial one. In this area, 
the SLIP overall horizontal displacement is in the opposite 
direction from the initial horizontal velocity, i.e. the system 
moves backwards. The difference response magnitude 
between 1st-order and 2nd-order fixed points depends on the 
difference magnitude between their initial values. The more 
different the I.C.’s are, the more different the response is. 

VI. DISCUSSION 

The SLIP response when initial conditions are perturbed was 
studied first using an analytical approximation for the stance 
phase dynamics. Results demonstrated that even if the initial 
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conditions diverge, again an infinitely repeatable behavior is 
achieved which comes back to the initial conditions at the 
end of every second cycle (2nd-order fixed points). These 
results are in agreement with the ones in [8] and [9]. Using 
them as a starting point and due to the approximation 
limitations associated with angular sweep and spring 
compression, a numerical search scheme was developed next, 
which investigated the full range of robot parameters and 
initial conditions under friction constraints. Results showed 
that within the friction constraint area in Fig. 7, distinct sub-
areas with specific characteristics and useful properties exist, 
beyond the set and line of the 1st-order fixed points. 

The 2nd-order fixed points of Areas 2 and 3 exhibit similar 
behavior. At the end of the first cycle, SLIP in Area 2 
performs a motion of higher vertical displacement and lower 
horizontal velocity than the initial conditions; vice versa in 
Area 3. These areas show that the SLIP model motion 
characteristics for a given robot parameter set can be altered 
by changing the energy level, i.e. the horizontal velocity, or 
the energy allocation, i.e. the touchdown angle, while 
stability and repeatability are maintained. In Area 1, the 2nd-
order fixed points lead to a negative horizontal velocity with 
greater absolute value than the initial one. A robot that 
exploits a fixed point of this area can change its motion 
direction and move backwards during the next cycle. 

The obstacle clearance line consists of 2nd-order fixed 
points that have a maximum vertical displacement (Height1) 
determined by a horizontal velocity (HozVel1) which is 
maximum for this vertical displacement. When the conditions 
of this line are met, a robot can surpass an obstacle of certain 
height with a maximum horizontal velocity. For the same 
energy level, higher obstacles can be surpassed, but with 
lower velocity, and vice versa. The point reach line is the 
upper limit of this behavior, as the 2nd-order fixed points of 
this line have the maximum vertical displacement (Height2) 
and horizontal velocity of zero value (HozVel2). A robot 
using the conditions of this line can perform during the next 
motion cycle a vertical high jump and reach a height related 
to its energy level and land at the same point. The zero mean 
horizontal velocity line consists of 2nd-order fixed points, 
whose horizontal velocities at the end of each cycle are 
opposite, resulting in zero mean horizontal velocity. A robot 
which is exploiting these conditions can oscillate between 
two points covering a certain ground displacement and 
reaching a certain height at the middle of its trajectory. 

The 2nd-order fixed points of Areas 1-3 form a continuous 
space, and transition between them can be performed within 
one motion cycle. The energy level can be maintained 
constant or energy can be pumped or dumped. If the energy 
level is maintained constant, then fixed point transition can 
be achieved using the energy allocation variable, i.e. the 
touchdown angle. Otherwise, energy pumping or dumping 
can be used for transition, while the touchdown angle is kept 
constant. Certainly, a faster transition can be achieved when 
both the energy level and the allocation are altered. 

VII. CONCLUSION 

In this paper, we investigated alternative behaviors that are 
described by the SLIP model when it is subjected to a range 
of initial conditions. The non-dimensionalized equations of 
motion of the SLIP model were derived and used. A 
numerical return map search scheme was developed to 

determine fixed points as a function of non-dimensional leg 
stiffness and vertical displacement under friction cone 
constraints. We performed an analysis of the SLIP model 
behavior by diverging from the fixed points, i.e. by 
increasing/ decreasing initial horizontal velocity and/ or 
touchdown angle. This analysis was conducted for variables 
and parameters corresponding to group of medium sized 
legged robots and an analytical approximation for the stance 
phase was exploited. The results showed that beyond the 
determined fixed points, the SLIP model shows an 
alternative, stable behavior that repeats itself every two 
cycles of motion. These were called 2nd-order fixed points, 
while the regular ones 1st-order. Due to limitations of the 
analytical approximation, a numerical simulation scheme was 
developed to extend the 2nd-order fixed point analytical 
investigation to a wider range of horizontal velocities and 
touchdown angles. Results showed that 2nd-order fixed points 
exist observing the friction cone constraints, and can lead to a 
number of different behaviors such as high jumps, obstacle 
avoidance of different heights, or backwards motion. 
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