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Abstract— This paper introduces a leg design method aiming 

at speed maximization for quadruped robots with two-segment 

compliant legs, in trotting and bounding. The proposed method 

is an effort to address the leg design challenge in a holistic way, 

exploiting the coupling between gait parameters, leg design 

parameters and hardware constraints, while remaining control 

scheme independent. Optimal body trajectories and footfalls 

are derived using a simplified centroidal dynamics model, 

whereas joint trajectories and torques are computed by a more 

complex dynamic model, incorporating actuation parameters 

and constraints. The method is applied using real robot 

parameters to yield an optimal leg design, validated through a 

realistic trotting simulation experiment. In this experiment, the 

robot achieves accelerating motion from stance towards the 

maximum speed predicted by the method. 

I. INTRODUCTION 

Recently, research in the field of unmanned terrestrial 
locomotion has focused in the advantages offered by legged 
robots. Quadruped robots seem promising in traversing 
uneven or rugged terrain in comparison to wheeled or tracked 
systems. As the legs are the means of interaction with the 
ground, the robot performance strongly depends on leg 
design. Critical design choices include the number of the leg 
segments, the segment proportions, the configuration of the 
mechanism (e.g. forward vs backward pointing knee), and the 
stiffness of any passive compliant elements. For deciding 
upon such matters, various approaches have been adopted. 

Many research teams have been inspired from biological 
data. For instance, the length and proportions of the Cheetah 
Cub’s legs were taken similar to these of small felids [1]. The 
leg length of the HyQ robot was chosen based on 
observations made by dog and horse breeders [2]. The leg 
proportions of the Pneupard robot were based on anatomical 
data of the Cheetah [3]. However, even though the 
musculoskeletal system of animals has gone through nature’s 
optimization process, robotic tasks and actuation significantly 
differ from the animals’ survival tasks and muscle actuation. 

Other researchers have based their design approach on 
simplified dynamics, where the leg is studied decoupled from 
the body for simplicity. The effect of joint configuration and 
angle of attack were studied for two-segment legs based on 
energy losses due to collisions with the ground [4]. Another 
approach focused on the kinematics of legged locomotion 
and sought the optimal leg based on manipulability measures 
[5]. The role of the shoulder’s height, the touchdown 
configuration and the range of motion for producing the 
desired supportive body forces for running were studied for 
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the leg of the MIT Cheetah [6]. The stiffness of the compliant 
elements of StarlETH’s legs was selected to minimize 
actuator work in a model of a single-legged hopper [7]. 

Finally, some approaches are based on full quadruped 
robot models. The role of knee configuration in pitching 
moments was studied for a trotting quadruped [8]. The study 
included legs with fixed proportions, inertial properties and 
stiffness for a specified control scheme. The role of leg 
stiffness, leg length and touchdown angle, in the energetic 
cost of transport of a bounding robot were studied in [9]. The 
model used however was applicable only for prismatic legs 
with no inertia. Optimal trajectories were produced for 
different tasks with a centroidal dynamics approach and leg 
proportions were found that minimized the squared sum of 
joint torques [10]. The leg configuration however was 
predetermined, passive elements were absent from the 
dynamics, and motor and strength of material constraints 
were not taken into account. For a bounding robot model 
with fixed leg proportions and configuration, the stiffness of 
compliant passive elements was found that minimizes power 
consumption at a given running speed [11]. 

In this work, we introduce a leg design method for 
quadruped robots with two-segment compliant legs, aiming 
in locomotion speed maximization. This method is an effort 
to address the problem of leg design holistically, exploiting 
the relation between gait parameters (gait, stride period, 
ground reaction forces), leg design parameters (leg length, 
proportioning, stiffness and joint configuration) and hardware 
constraints (leg material and spring properties, motor and 
gearhead operating ranges). Centroidal dynamics are used to 
facilitate trajectory optimization and more complex dynamics 
for the accurate calculation of the motor requirements. The 
method is applied with the parameters of an actual robot, and 
the optimal attributes are found that maximize speed while 
respecting hardware constraints. The optimal results are 
validated in a realistic simulation scenario, involving energy 
losses, a ground model, and acceleration from stance towards 
the highest forward velocity predicted by the method. 

The structure of the paper is as follows. In Section II, the 
method elements (gaits, dynamics, and joint trajectories 
calculation) are presented. Section III discusses in detail the 
method framework and the connections between its building 
elements. The method is applied using real robot parameters 
and its results are presented in Sections IV and validated in 
Section V. Section VI concludes the paper. 

II. ELEMENTS OF THE METHOD  

The developed method inputs include the robot body 
inertial parameters, the hardware constraints and the gait 
performed, and finds the optimal leg design and the gait 
parameters under which the highest forward speed can be 
reached. To this end, the method initially uses simplified 
sagittal centroidal dynamics to find the optimal body CoM 
trajectory and leg footfalls for a specified gait. Using these 
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and the inverse kinematics and dynamics of a complex 
sagittal quadruped model, the trajectories and torques of the 
leg joints are derived, and hardware constraints are evaluated. 
The optimal design is a result of an iterative process 
consisting of the aforementioned steps. This section presents 
the necessary physical descriptions and calculations, which 
are used as building elements for the method. 

A. Gait description 

Among the various gaits used for quadrupedal locomotion 
[12], trotting and bounding gaits are employed by the vast 
majority of robots running in moderate and high velocities 
due to the symmetry and the small rolling motion they 
introduce (Fig. 1), allowing use of 2D sagittal plane models. 
The proposed method aiming at leg design for high-speed 
robots, subjected to current technological limitations, focuses 
on these gaits in particular. 

In the developed method, the gait is determined by 
providing as inputs the touchdown and take-off time instants 
of the i-th leg, ttd,i and tto,i, where i ϵ {HL, FL, FR, HR} 
corresponding to hind left, front left, front right and hind 
right leg respectively. Under the assumption of equal stance 
phase duration δts for all legs (Fig. 1), the duty factor of a leg 
in one stride period T is defined as:  

 , ,( ) / /to i td i sDF t t T t T    
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Figure 1. Gait graphs of (a) bounding gait (b) trotting gait. 

B.  Quadruped dynamics 

To study the effect of leg design on quadrupedal 
locomotion, a sagittal model consisting of the main body and 
four identical legs is introduced. The main body of the 
quadruped model has mass mb, inertia Ib and hip half 
separation distance d, see Fig. 2. Each leg has two actuated 
rotary joints and a passively compliant prismatic joint. The 
leg segments are considered tubular with outer diameter do, 
inner diameter di, density ρ and material strength S. For each 
leg, the proximal to the body leg segment has length l1, mass 
m1 and inertia I1. The distal to the body compliant leg 
segment has free length l20, mass m2, inertia I2, and spring 
stiffness k. The spring mass and inertia is lumped in the mass 
m2 and inertia I2 of the distal segment. 
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Figure 2. Quadruped robot model. 

The actuators are modeled as DC motors with gear ratio n 
and rotor inertia Ir, and they are mounted on the body for 

lighter legs. The thermal limits of the motor and the 
mechanical limits of the gearbox, define maximum values for 
the short-term torque τst,max, the continuous torque τct,max and 
the angular velocity 

max
. 

The system is described in terms of the generalized 
coordinate vector q, which consists of the body Center of 
Mass (CoM) position (x, y), the body pitch angle θ, and the 
joint variables of each leg θ1,i, θ2,i, l2,i. Each time the i-th leg 
contacts the ground, forces Fx,i and Fy,i are applied by the 
ground to the leg. Following the Euler - Lagrange 
formulation, the Equations of Motion (EoM) are written as: 

 [ ]T T   Mq Cq Kq J F 0   

where M is the mass matrix, C the centrifugal/Coriolis terms 
matrix, K is the stiffness matrix, J is the Jacobian matrix of 
the legs and τ is a vector consisting of the torques τj,i, acting 
on every actuated joint (j=1, 2) of every leg. 

C. Simplified centroidal dynamics 

With the centroidal dynamics approach, the dynamics of 
the system are projected to its CoM. This approach has been 
used for CoM trajectory optimization [10], [13] and postural 
balance control of legged robots [14]. The legs of quadruped 
robots are lightweight and therefore changes in leg posture do 
not significantly affect the position of the CoM. With this 
assumption the centroidal dynamics are simplified, yielding: 

 /xx F m  

 /yy F m g   

 /    

where g is the gravitational acceleration, and m, and I are the 
mass and inertia of the centroidal model given by 

 1 24( ),b bm m m m I I    

Fx, Fy, are the forces and τθ is the torque acting on the CoM,  

 ,x i x i

i

F c F  

 ,y i y i

i

F c F  

 , ,
ˆ ( ) ( )i i i i i y i i x i

i i

c c x x F y y F          r F z 

where ic  is equal to 1 when the i-th leg is in contact with the 
ground and 0 otherwise, ri is the vector connecting the CoM 
position (x, y) with the footfall of the i-th leg (xi, yi), Fi is the 
vector of the horizontal and vertical forces Fx,i, Fy,i exerted on 
the i-th toe and yi=0 with the assumption that locomotion 
takes places on even terrain, see Fig. 3. 
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Figure 3.  Centroidal dynamics model and its properties. 

Observing simulation results of leg models, [15], 
experimental data from running quadruped animals [16]-[17], 
and from quadruped robots [1], [18], [19], the vertical ground 
force has a profile close to a half-sine impulse, while the 
horizontal force resembles a decelerating - accelerating 
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sinusoidal profile. Therefore, here the forces Fy,i, Fx,i exerted 
on the i-th toe are described as sinusoidal functions with their 
arguments lying in [0, π], and in [π, 3π] respectively: 

 , ,max ,( ) sin( )y i y y y iF t F t    

 , ,max ,( ) sin( )x i x x x iF t F t    

By applying boundary conditions to the arguments of Fx,i, 
and Fy,i, the ωx,i, φx,i, ωy,i, φy,i are found as functions of the ttd,i, 
tto,i, δts, and given by, 

 , ,/ , /y s y i td i st t t         

 , , ,2 / , ( 3 ) /x s x i to i td i st t t t         

Employing the classic Coulomb friction model, for a leg to 
remain in contact with the ground without slipping, (14) must 
hold, where μ is the Coulomb friction coefficient. Thus an 
upper bound (subscript ub) is set for the horizontal force 
amplitude in (15) so that (14) is valid throughout the stride. 

 , ,( ) ( )x i y iF t F t  

 ,max ,x x ubF F  

Introducing afx, inequality (15) is expressed as an equation, 

 ,max , , [0,1]x fx x ub fxF a F a   

To move periodically in the y and θ directions with a 
steady net forward velocity in the x direction, the robot 
should not have any net acceleration in any direction in a 
single stride circle, and thus (17), (18) and (19) must hold: 


0

0
T

xF dt   


0

T

yF dt mgT  


0

0
T

dt   

Note that the horizontal force profile defined in (11) already 
satisfies (17). From (18) and taking into account (1), (8) and 
(12), the amplitude of Fy,I is written as: 

 ,max
8 8 8

y

y

s

mgT mgT mg
F

t DF

  


    

D. Leg joint trajectories 

While the centroidal dynamics approach focuses on the 
CoM motion, if the robot’s geometry is known, motion in 
joint space can be found using the inverse kinematics of the 
sagittal model of the quadruped shown in Fig. 2, 

 1, , ,( )i 1 2,i t i t if x, y, ,d,l ,l ,x , y   

 2, , ,( )i 1 2,i t i t ig x, y, ,d,l ,l ,x , y   

where (xt,i, yt,i) are the toe coordinates. Note that for the case 

of two-segment legs, two alternative sets are obtained from 

(21) and (22), corresponding either to a knee backward or a 

knee forward configuration. 
During stance phase, if (14) holds, the legs remain in 

contact with the ground,  

 , , , ,( , ) ( ,0), [ , ]t i t i i td i to ix y x t t t   

The geometry of the leg changes during the stance phase due 
to spring compression. Therefore, apart from the inverse 
kinematics equations, also an equation referring to the spring 
compression must be introduced. By projecting the ground 
forces in the direction of the spring (compressive force is 
negative by consensus), the spring force is, 

 , , 2, , 2,sin( ) cos( )s i x i i y i iF F F        

From the definition of an ideal spring with no pretention, 

 , 2, 20( )s i iF k l l   

Using (24) and (25), the compliant leg segment deflection is 
obtained as a function of the ground forces and posture, 

 2, 20 , 2, , 2,[ sin( ) cos( )] /i x i i y i il l F F k         

Through (21), (22), and (26), the leg joint variables θ1,i, 
θ2,i, l2,i can be written as functions of the centroidal variables 
during stance phase. By differentiating (21), (22), and (26), 
the rates of the joint variables 1, 2, 2,, ,i i il  are found, too. 

In flight phase, the spring length is constant, equal to its 
free length, (l2,i=l20). The requirement for each leg during 
flight phase is to avoid collision with the ground by creating 
the necessary toe-to-ground clearance, following a first order 
continuous trajectory; non-continuous angular velocities 
would require infinite torques. Inspired by control schemes in 
which the reference toe trajectory during flight is an ellipse 
[20], a hybrid cubic polynomial/elliptical flight phase 
trajectory is selected. The cubic polynomial part ensures 
continuity for angular velocities, and the elliptical part 
provides realistic boundary conditions at midflight. The cubic 
polynomials used to interpolate the angular positions from 
take-off to mid-flight (subscript mf) and from mid-flight to 
touchdown are of the form, 


3 2

, , , , , , , , , ,j i n j i n j i n j i n j i nt t t         

where j=1, 2 correspond to the hip and knee joints and n=1, 2 
correspond to t ϵ [tto,i, tmf,i] or t ϵ [tmf,i, ttd,i]. Differentiating 
(27), the angular velocities are obtained as, 


2

, , , , , , , ,3 2j i n j i n j i n j i nt t       

The state of the leg at take-off and touchdown can be 
found from the preceding stance phase. Therefore, to find the 
coefficients of the cubic polynomials, only the state of the leg 
at midflight is needed, here taken at the apex of an ellipse, 

 , ,( , ) ( , )t i t i i e ex y x a b   

 , ,( , ) ( ,0)t i t i e ex y a  

where ae is the horizontal semi-axis of the ellipse, 

 [ ( ) (0)] / 2ea x T x   

be is the vertical semi-axis equal to desired clearance from the 
ground, and ωe is the frequency of traversing the ellipse, 

 2 / / [ (1 )]e e T DF       

Using (29), (30), inverse kinematics and differential inverse 
kinematics, the joint angles and angular velocities are found 
at midflight. Finally, the coefficients of the cubic 
polynomials are found, by applying boundary conditions at 
take-off, midflight and touchdown in (27), (28). 

III. METHOD DEVELOPMENT 

Given a robot’s actuation system parameters and its 
mass/inertia properties, the developed method provides 
optimal leg parameters for achieving the maximum velocity 
in trotting and bounding gaits. The method consists of an 
outer stage and of two inner ones, as shown in Fig. 4. In the 
outer stage, the entire gait parameter space is spanned in 
terms of stride period, CoM height, CoM forward velocity, 
and horizontal ground force profile. For each gait parameter 
set, the first inner stage searches for the optimal CoM 
trajectory and the optimal footfalls using the simplified 
centroidal model. The goal of this optimization procedure is 
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to identify a periodical stride, while minimizing the torques 
necessary to sustain vertical ground forces. 
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Figure 4.  Flow chart indicating the different stages of the method. 

In the second inner stage, the leg design parameters, 
including segment lengths and spring stiffness, are sought for 
the optimized CoM trajectory, so that the toe remains in the 
workspace of the leg, undesired collisions of the robot with 
the ground are avoided, and strength and actuation 
constraints are respected. As the desired forward velocity 
increases, the number of successful leg designs is expected to 
decrease. The optimal design parameters set is the one for 
which the robot achieves the maximum forward velocity. The 
stages are described in more detail next. 

A. Outer Stage: Spanning the gait parameter space 

The same two stage procedure is repeated for alternative 
gait related parameters T, y(0), afx and with an increasing 
forward velocity (0)x . The procedure conducted in the outer 
stage is an exhaustive search, i.e. a search of optimal 
parameters in ‘for’ loops. The target of this exhaustive search 
is to maximize the horizontal velocity (0).x The method exits 
when the maximum (0)x is reached where a stable stride with 
reduced hip joint torques can be found (Stage 1) and 
strength/actuation constraints are valid (Stage 2).  

B. Inner Stage 1: CoM trajectory & footfall optimization 

The first inner stage has as inputs the initial conditions for 
the motion of the centroidal model x(0), ẋ(0), y(0), ẏ(0), θ(0), 

(0), the gait period T, the time instants of touchdown and 
take-off as a percentage of the period for each leg, ttd,i, tto,i and 
the magnitude of the horizontal force afx. The abscissas of the 
footfalls xi are sought for minimizing the weighted sum, 


,

,

1 2

3 ,

( ) (0) ( ) (0)

to i

td i

t

h i i
t

i

Q w w

w x x dt

        

 
 

where xh,i is the abscissa of the hip joint, see Fig. 2. The first 
two terms ensure that the motion in the θ direction is periodic 
in one stride. By minimizing these terms, no net acceleration 
in the θ direction exists, so (19) is satisfied. The third term 
ensures that the footfall abscissa of the i-th leg stays in the 
vicinity of the hip joint abscissa during the stance phase, thus 
minimizing the moment arm from the hip joint. As a result, 
the torques required to sustain vertical forces are minimized. 

In each optimization loop, alternative xi are inserted as 
inputs, (3)-(5) are solved numerically for one stride as an 
initial value problem (IVP), the body is checked not to 
collide with the ground, and the objective function is 
evaluated. The IVP is solved with a fixed step third order 
Runge-Kutta solver (MATLAB ode3), for N=1000 points, 
achieving thus high result accuracy and solution speed. The 
optimization consists of an exhaustive search step, followed 
by an interior point optimization step (MATLAB fmincon). 
The exhaustive search step locates crudely the area of the 
optimum point without getting trapped in local optima. Then 
the interior point algorithm is applied in this parameter area 
and locates the optimum point with fine accuracy. The 
outputs of this stage include the optimal footfall abscissas xi,o, 
the vector of the discrete integration time t and the vectors of 
the optimal CoM trajectory, [ ]C x yq , Cq , Cq . 

C. Inner Stage 2: Spanning the leg parameter space  

In the second inner stage, with the trajectory of the CoM 
available at discrete time instants, the inverse kinematics are 
solved for alternative leg parameters l1, l20 and k, (see Section 
II, Par. D) for a preferred knee configuration, and the vectors 
of joint variables qjnt,i =[θ1,i θ2,i l2,i ] are found. The knee joints 
are checked not to collide with the ground. For the leg 
posture, and the ground forces exerted on the toe at every 
time instant, optimal diameters din, dout are sought satisfying 
the strength constraints, 

 , /j i fS s   

where σj,i is the stress on the cross-sectional area of every 
tubular segment (j=1, 2) of a leg, and sf is a user defined 
safety factor. By numerically differentiating the vectors of 
joint positions, the first and second order derivatives ,jnt iq , 

,jnt iq are calculated using central difference expressions 
(gradient, del2). By replacing the values of qC, qjnt,i and 
their derivatives in (2), the actuation torques τ are calculated. 
The vectors of torque and angular velocity of every actuated 
joint (j=1, 2) of all legs are subject to actuation constraints, 


, ,max , ,max

, max

max( ) , rms( ) ,

max( )

j i st j i ct
t t

j i
t

   

 

 


 

where rms(.) finds the rms value over time. If constraints 
(34), (35) are satisfied then the gait related parameters ẋ(0), 
y(0), T, afx, and leg parameters l1, l20, k, din, dout are saved. 

The outer stage chooses the optimal set of gait and leg-
related parameters as the one for which the quadruped robot 
can run stably in maximum forward velocity ẋ(0), respecting 
the constraints. 

IV. METHOD APPLICATION RESULTS  

The developed method was applied for the bounding and 
the trotting gaits, both for the knee backward (KB) and the 
knee forward (KF) configurations. The robot parameters were 
taken similar to those of the quadruped robot Laelaps of 
NTUA [21], see Table I. The times of touchdown and take-
off for each leg for the bounding and the trotting gaits were 
taken as shown in Fig. 1 (a), (b), as a percentage of the stride 
period, assuming running with a constant leg duty factor 
DF=0.5. In future versions of the developed method, the DF 
will be included in the parameters to be optimized, but for the 
results presented here, it is kept constant. Initial conditions 
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not optimized are user defined, taken as x(0)=1 m, (0)y =0 
m/s, θ(0)=0 rad. The initial pitching rate of the trotting gait is 
set to (0) =0 rad/s and that of the bounding gait to 

 max(0) 2 /bound     

where θmax=10π/180 rad is the maximum accepted pitch 
angle. Parameters l1, l20 were sought using a third one, ε,  

 1 max 20 max 1[0.1, 0.1],l l l l l      

where [1,1.1]   and lmax is the maximum hip to toe distance 
for any leg during one stride, 

 2 2

max , , , ,
,

max ( ) ( )t i h i t i h i
i t

l x x y y     

The lower and upper bounds (lb, ub) for the remaining 
parameters were set as shown in Table II, so that in 
maximum velocity, optimal solutions would not be truncated 
by them. The weights (w1, w2) of (33) were taken equal to 
(10, 1) to ensure the first two terms have the same magnitude. 
The third weight was selected to be w3=1 to achieve torque 
reduction without jeopardizing stability. 

TABLE I.  VALUES OF ROBOT PARAMETERS. 

Parameter  Value Parameter Value 

m (kg) 42.0 S (MPa) 200.00 
d (m) 0.30 sf 3.00 

I (kg·m2) 3.58 n 53.00 

μ 0.65 Ir (kg m210-5) 5.42 

g (m/s2) 9.81 τst,max (Nm) 45.00 

btr (m) 0.05 τct,max (Nm) 14.96 

ρ (kg/m3102) 14.66 
max

  (rad/s) 11.21 

TABLE II.  UPPER AND LOWER BOUNDS OF PARAMETER SPACE. 

Parameters & 

Initial Condition 

Bounding Trotting 

LB UB LB UB 

y(0) (m) 0.45 0.85 0.55 1.30 

k (N/m) 1250 5000 1250 7500 

T (s) 0.20 0.60 0.35 0.75 

afx 0 0.6 0.1 0.7 

di, (mm) 20 28 20 28 

do (mm) 22 30 22 30 

For trotting with increasing horizontal velocity, the 
combinations of parameters for which constraints (34), (35) 
were valid decreased until convergence at maximum speed, 
see Fig. 5. The trajectories of the centroidal model at 
maximum forward velocity are also presented (Fig. 6) as 
proof of concept that (33) yields a periodical stride. Similar 
results were also encountered for bounding. For the trotting 
gait, the maximum velocity reached was 2.900 m/s for the 
KB configuration, and 2.940 m/s for the KF configuration. 
For the bounding gait, the maximum forward velocity was 
0.479 m/s for the KB configuration, and 0.540 m/s for the KF 
configuration. For both gaits, the KF configuration had only a 
slight advantage over the KB configuration. The trotting gait 
was shown to be much faster than the bounding gait. 
Probably this is due to the excessive pitching of the latter, 
which leads the legs to support the robot weight during stance 
phase in an unfavorable crouched posture, resulting in greater 
torque requirement for lower forward velocity. The 
parameters for which these maximum velocities were 
achieved are displayed in Table III. The corresponding leg 
architectures are depicted in Fig. 7. The insufficiency of 
actuating torques for the bounding gait led to small leg 

segments, see Fig. 7 (a). In the case of the trotting gait, an 
interesting tall leg architecture resulted, with a short upper 
and a long lower segment with a soft spring, Fig. 7(b). Long 
legs enhance running velocity by increasing the stride length. 
With these legs, during stance most of the leg deflection is 
undertaken by the passive element, allowing the robot to 
withstand ground forces in a near singular configuration. 
During flight phase, the hip motor acts on the entire leg (of 
length l1+l20) whereas the knee motor acts on the segment 
with length l20. The optimal l1 derived from the proposed 
method is significantly smaller than l20, so that the load of the 
swinging task is in a way distributed to both leg motors. 
Nevertheless, a long leg approach leads to a top-heavy robot, 
perhaps vulnerable to instabilities due to external 
perturbations, a factor that is not taken into account by the 
current version of the method. Intrigued by the 
opportunities/risks trade-off a long leg of this architecture 
could offer for the trotting gait, we decided to further 
evaluate the leg with a simulation independent to the method. 

TABLE III.  OPTIMAL PARAMETERS IN MAXIMUM VELOCITIES. 

Gait/ 

Config. 

y(0) 
(m) 

T 
(s) 

afx  l1 

(m) 

l20 

(m) 

k 
(N/m) 

din 
(mm) 

dout 
(mm) 

Bound/KB 0.55 0.30 0.1 0.36 0.23 3750 26 28 
Bound/KF 0.50 0.30 0.1 0.30 0.24 3750 26 28 
Trot/KB 1.20 0.60 0.4 0.20 1.10 2500 23 25 
Trot/KF 1.25 0.60 0.4 0.20 1.16 2500 23 25 
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Figure 5. Evolution of parameters with forward trotting velocity for the knee 

backward (KB) and the knee forward (KF) configurations. 
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Figure 6. CoM trajectories for optimal parameters in trotting. 
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Figure 7.  Optimal legs for the (a) bounding and the (b) trotting gait. 
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V. VALIDATION OF METHOD RESULTS  

To validate methods such as the developed one, 
evaluation tests are required to show that the planned tasks 
can be practically performed by the optimized designs, and 
that the assumptions made in all stages are reasonable. The 
simulation environment and the controller presented in [20] 
were used here to simulate a realistic trotting scenario 
including acceleration from stance to the highest forward 
velocity predicted by the method (2.94 m/s) for a 2D 
quadruped with two-segment knee-forward compliant legs. 
The model parameters were those of the robot Laelaps, see 
Table I, and the leg design and gait parameters were set to the 
optimal values given in Table III. Energy losses at all joints 
and a compliant ground model were included, and actuation 
constraints were taken into account – the joint torques and 
speed limits were set to 45 Nm and 11.21 rad/s respectively. 
The results are depicted in Fig. 8. 

 

 
Figure 8. Simulation results from a trotting experiment, showing from top to 

bottom: the body’s forward velocity from stance to maximum speed, and 

the torques and speeds at HR joints. The stance phase of each leg is denoted 

with gray backround color. 

The results show that the robot is capable of accelerating 
to the predicted forward velocity by gradually increasing the 
stride length towards the maximum permitted value, see Fig. 
8, providing a first validation of the method. Yet, a couple of 
points concerning the torque-speed limits must be addressed. 
In Fig. 8 we observe that the maximum hip angular velocity 
exceeded the limit of 11.21 rad/s when running faster than 
2m/s. This was due to leg motion at flight phases – white 
areas in Fig. 8; the toes were lifted higher than needed in 
every stride to increase the robustness of the gait, and this 
induced the high joint speeds. This mismatch is considered 
insignificant, since control modifications can be applied to 
achieve less clearance from the ground, and thus acceptable 
joint velocities. Secondly, we note that the body runs at lower 
height for stability reasons, meaning that the knees were 
more crouched than the method suggested, thus requiring 
higher than the predicted torques. It is evident that in this 
case also, modifications in the controller can yield results 
closer to those predicted by the method, with lower rms 
torques than those shown in Fig. 8. However, an overall 
increase in torque requirements should be expected due to 
energy losses at the joints, collisions with the ground, and 
also the accelerating nature of the task; these features were 
not considered in the method. 

VI. CONCLUSION 

In this paper a method was proposed for designing legs 
for running quadrupeds. Employing centroidal dynamics for 
CoM trajectory optimization, and quadruped dynamics and 
kinematics for actuation requirements estimation, optimal 
gait and leg design parameters were found for running in 
maximum speed with various gaits (bound, trot) and joint 
configurations (knee backward, knee forward). The long leg 
architecture that led to the overall maximum forward speed 
for the trotting gait was subjected to further evaluation using 
an independent robot simulation. The results showed good 
match of the performance predicted by the method to that 
provided by the independent simulation, demonstrating the 
validity of the developed method. 
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