
 
 

 

  

Abstract—The determination of a rigid-body position and 
orientation from the position of a number of its points is one of 
the fundamental problems in kinematics. This problem arises 
in robotics, biomechanics, automatic guided vehicles, real-time 
control of space structures, etc. Under ideal conditions, it is 
possible to apply classical methods to find a body’s position and 
orientation. However, in the presence of noise, these methods 
yield results that are unreliable and inconsistent. Two existing 
and a new method for determining position and orientation 
from noisy point coordinate data are presented. The theoretical 
analysis of the methods combined with an extensive simulation 
process led to conclusions about their behavior in different 
situations. The proposed method yields better orientation 
estimates than the other two methods, yielding reliable results 
both for absolute and relative position measurements and for 
low and high noise levels. 
 

Index terms–Body coordinates from point coordinates, rigid 
body motion, rigid body pose estimation. 

I. INTRODUCTION 

n kinematics, the study of rigid body motion generally 
includes three main aspects, the analysis of displacement, 

velocity and acceleration. This is a fundamental problem in 
classical mechanics, which makes a comeback due to the 
current technological advances. Indeed, sensor systems such 
as the GPS, motion capture systems, or overhead cameras 
can supply the coordinates of a number of points that belong 
to the same body. The challenge is then to process the 
stream of imprecise coordinates data to determine the 
position, the orientation and possibly other kinematic 
variables of a moving rigid body as accurately as possible. 

Literature on the theory of spatial transformations and 
displacements, as well as on determining the object position 
from three or four points, is available in references [1], [2], 
and [3]. Complications arise when the coordinate data are 
redundant and imprecise. To overcome this problem, in [4] a 
procedure based on the Singular Value Decomposition 
(SVD) is proposed, which requires the coordinates of three 
or more non-collinear points and provides a least-squares 
estimation of rigid body transformation parameters. Other 
approaches take advantage of modern matrix-oriented 
software that facilitate SVD, such as Matlab. Two new 
methods for obtaining object position from imprecise and 
excess point coordinate data have been presented by Gupta 
and Chutakanonta and [5]. The first method is called SVD/ 
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QR Decomposition Method because it uses a stable SVD 
decomposition, followed by a QR-decomposition. The 
second method is similarly called SVD/ QS Decomposition. 
An extension of this method for estimating object velocity 
and acceleration states from given point position, velocity 
and acceleration data is presented in [6]. 

A different approach to the problem is presented in [7], 
where representation issues of rigid body transformations are 
considered to be dependent on the geometric properties of 
reflected correspondence vectors into a single coordinate 
frame. The novel representation of rigid body 
transformations is based on the constraints about distance, 
angle and projection measurements. 

Later, in [8] a vector method for measuring rigid body 
motion from marker coordinates was presented, including 
both finite and infinitesimal displacement analysis. This 
method takes advantage of the linearity of infinitesimal 
displacement analysis to formulate the equations of finite 
displacement as a generalization of Rodrigues’ formula 
when more than three points are used. The approach 
provides simple, linear, closed form formulas to compute 
both velocities and finite displacements of a rigid body. 

In this paper, three methods for determining rigid body 
position and orientation from imprecise points coordinate 
data are implemented and evaluated. The first is an 
application of theoretical kinematics, where a body-fixed 
coordinate system is defined and used to track rigid body 
motion. The second method was proposed by Vertechy and 
Castelli in [9] and is a sophisticated variant of the first, basic 
method. The third method proposed in this paper is a novel 
method that addresses the kinematic problem of locating a 
body without defining a body-fixed coordinate system. It is 
shown that this method is computationally efficient and 
yields better orientation estimates than the other two. 

II. RIGID BODY KINEMATICS 

Let  A  and  P  be two points of a rigid body  B , the former 
being a particular reference point, whereas the latter is an 
arbitrary point of  B , as depicted in Fig. 1. The position 
vector of point  A  in the original configuration is  a , and the 
position vector of the same point in the displaced 
configuration, denoted as  A ' , is  a' . Similarly, the position 
vector of point P in the original configuration is  p , while in 
the displaced configuration   B ' , this point is   P ' , its position 
vector being  p' . Furthermore,  p'  is to be determined, while 

 a ,  a' , and  p  are given, along with the rotation matrix  R . 
Then, the following holds, [10]: 
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p' = a'+ R p − a( )  (1) 
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Fig. 1. General rigid body displacement (translation and rotation). 

 
Therefore, knowing the position of a single body point 

and the body orientation, we can determine the position of 
any body point. The problem we are interested in this paper 
is how to best solve the inverse problem, i.e. given a number 
of rigid body point coordinates, find the coordinates of a 
reference point and the body orientation. This problem is 
examined next using a planar example. 

We assume that a rigid body in the form of a circular disk 
of radius r, is moving on a plane, see Fig. 2. To determine its 
motion parameters, position measurements of a number of 
its points are obtained. With no loss of generality, three non 
collinear points,   P1 ,  P2 and   P3 , displaced by 120  at distance 
r from the reference point C, are selected, see Fig. 2. 

P 1 (x 1 , y 1 ) P 2 (x 2 , y 2 )

P 3 (x 3 , y 3 )

r

x

y

C

Rigid Body

 

Fig. 2. Rigid body at a plane and three measured points. 

 

Let    xi , yi  denote the measured values of the actual   xi , yi  
coordinates of point  Pi  (i = 1,2,3), as given by a position 
sensor. If the rigid body rotates around C by an angle ϕ , 
then, the following equations can be deduced: 

 
   
xi = xi + nxi

= xC + r ⋅cos θ i( ) + nxi
(i = 1,2,3)  (2) 

 
   
yi = yi + nyi

= yC + r ⋅sin θ i( ) + nyi
(i = 1,2,3)  (3) 

where 
 
nxi

 and 
 
nyi

 is noise corrupting the measurements and,  

 
  
θi = ϕ + (i −1)2π

3
(i = 1,2,3)  (4) 

In this case, the problem is to find the angle of rotation ϕ  
and the coordinates of C, knowing the six measured 
coordinates of the three points, and their location on the 
body, described by the radius r. It is easy to see that here we 
have an over-determined system of six equations with three 
unknowns. Therefore, the solution methodology must 
manage the data redundancy effectively. 

III. VECTOR METHODS 

In this paper, vector methods that process imprecise body 
point position measurements to compute rigid body 
kinematic parameters are considered or developed. 

A. Basic Method 
The Basic Method (BM) is an application of fundamental 
kinematic theory. A body-fixed coordinate frame   S1 :  

  {l,m,n}  is defined and tracks the rigid body motion, see 
Fig. 3. By tracking the angles of this frame, the orientation 
of the rigid body with respect to the coordinate system  So  is 
computed. Note that in the BM, the origin of   S1  is placed at 
some measured point  Pi , see Fig. 3(b). 
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(b)  

Fig. 3. Rigid body with reference point C and a body-fixed frame   S1
. (a) 

Frame at C, (b) Frame at  Pi
. 

 
The position vector  c  of the reference point is expressed 

as a weighed sum of vectors   pi  of a number of body points: 

 
   
c = wipi

i=1

n

∑  (5) 

The coefficients  wi  must satisfy, 

 
  

wi
i=1

n

∑ = 1 (6) 

and are unique for a given rigid body geometry. For the 
planar example presented earlier, n = 3 and   wi = 1/ 3 . 

The body attitude can be determined by the rotation 
matrix  R , as described by the unit vectors in (7), or the 

 x−y−z  Euler angles ϕ , θ  and ψ  in (8), 

 
  
R = l m n⎡⎣ ⎤⎦  (7) 

   
R =

cθcψ −cϕsψ + sϕsθcψ sϕsψ + cϕ sθ cψ
cθsψ cϕcψ + sϕsθsψ −sϕcψ + cϕsθsψ
−sθ sϕcθ cϕcθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (8) 

Using measurements from three points, the vectors l , m  
and n can be computed by (9)-(11), as  

 

    
l =

p1 - p2

p1 - p2

= lx ly lz
⎡
⎣⎢

⎤
⎦⎥

T

 (9) 

 

    

m =
p2 − p3( )− l ⋅ p2 − p3( ) ⋅ l⎡⎣ ⎤⎦
p2 − p3( )− l ⋅ p2 − p3( ) ⋅ l⎡⎣ ⎤⎦

= mx ,my ,mz
⎡⎣ ⎤⎦

T
 (10) 

  n = l ×m  (11) 

For the planar problem, where the rigid body rotates 
around the z  axis, the position of point C and angle of 
rotation are given by (12) and (13), respectively: 

 

    
c =

p1 + p2 + p3( )
3

= x1 + x2 + x3

3
,

y1 + y2 + y3

3
,0

⎛

⎝
⎜

⎞

⎠
⎟  (12) 

 ( )atan2 ,x y y xm l m lϕ = − +  (13) 

B. Vertechy-Castelli Method 
The method proposed by Vertechy and Castelli (VCM) is 
presented in [9]. The VCM estimates the pose of a rigid 
body using the locations of three of its points measured by 
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noisy sensors. The position vector is determined by means of 
(5), where n is three and the  wi  (i=1,..,n) are equal to 1/3. 

Regarding the orientation, the origin of the body 
coordinate system pS  is point C , rather than 3P , as in the 
BM. The orientation problem is set up as a minimization 
one. From a physical point of view, this minimization 
corresponds to the solution of the planar static equilibrium 
problem of a triangle hinged in G  and whose vertices iP  are 
connected to measured points iP  by means of linear springs 
of constant stiffness, see Fig. 4(b). 

       
 (a) (b) 

Fig. 4. (a) Measured  (Pi )  and nominal (P
i
)  points, (b) Optimal location of 

reference system bS , [9]. 

 
In this method, the rotation matrix is given by (7) with l , 

m  and n  defined using unit vectors   ib and   jb , see Fig. 4(b), 

 

    
ib =

(p11 − c)
(p11 − c)

 (14) 

 

    

jb =
(p2 − c)− ib (p2 − c) ⋅ ib( )
(p2 − c)− ib (p2 − c) ⋅ ib( )  (15) 

Then, the coefficients a  and b  are computed as, 

 
   
a = 2 L2 q2,1s2 − q2,2c2( ) + L3 q3,1s3 − q3,2c3( )⎡

⎣
⎤
⎦  (16) 

 
   
b = 2 L1q1,1 + L2 q2,1c2 + q2,2s2( ) + L3 q3,1c3 + q3,2s3( )⎡

⎣
⎤
⎦  (17) 

where   si = sin(βi ) ,   ci = cos(βi ) , and 

 

    

Li = pi − c   i = 1,2,3

qi,1 = pi − c( ) ⋅ ib

qi,2 = pi − c( ) ⋅ jb

 (18) 

and iβ  is the angle between vectors 
   

pi−c( )  and 
   

p1−c( ) . 
The orientation problem solution is then given by (19)-(22): 

 
  
γ̂ = − tan−1 a

b
⎛
⎝

⎞
⎠  (19) 

where  γ̂  is the angle between 
  
i p  and   ib , shown in Fig. 

4(b). Finally, vectors l , m  and n  are given by (20)-(22): 

 
   
l = ib cos γ̂( ) + jb sin γ̂( )  (20) 

 
   
m = jb cos γ̂( )− ib sin γ̂( )  (21) 

  n = l ×m  (22) 

For the planar problem, the position of point C is given 
again by (12), while the angle of rotation by (13), where 

xl , yl , xm  and ym  are defined by (20) and (21). 

IV. PROPOSED NEW METHOD 

A. New Method for 3D Problems 
In the two previous methods, a body-fixed coordinate frame 
was defined. Sensory systems introduce measurement noise, 
apart from the intrinsic computational noise. Consequently, 
the definition of a body coordinate system is imprecise and 
amplifies the process imprecision. Thus, a key factor for an 
accurate and effective solution should be by-passing the 
determination of a body-fixed coordinate frame. 

The proposed New Method for 3D problems (NM-3D) 
requires measuring the coordinates of four points, which are 
the vertices of a tetrahedron, see Fig. 5. The NM suggests 
finding the orientation matrix by determining the three 
normal vectors at three sides of the tetrahedron formed. 

In more detail, let n1 denote the vector normal to side 
P2P3P4. Then, n1 is given by, 

 

   

n1 =
p3 − p4( )× p2 − p3( )
p3 − p4( )× p2 − p3( )  (23) 

Similarly, n2 and n3 , are given by, 

 

   

n2 =
p4 − p3( )× p1 − p4( )
p4 − p3( )× p1 − p4( )  (24) 

 

   

n3 =
p1 − p44( )× p2 − p1( )
p1 − p44( )× p2 − p1( )  (25) 

If the tetrahedron rotates and ni and in ' (i=1,2,3) are the 
normal vectors before and after the rotation respectively, 
then (26) applies for every ni. 

 

   

ni
′ = R ⋅ni ⇒

′n = n1
′ , n2

′ , n3
′⎡

⎣⎢
⎤
⎦⎥3×3

= R ⋅ n1, n2 , n3
⎡
⎣⎢

⎤
⎦⎥3×3

= R ⋅n
 (26) 

And hence, 

   R = n′ ⋅n−1  (27) 

Consequently, for 3D motion, the orientation of the rigid 
body is determined by (8) and (27). 

 

Fig. 5. 3D rigid body motion with four measured points. 

 

B. New Method Variation for 2D Problems 
The proposed method for 2D problems (NM-2D) uses a 
number of coplanar points that define a polygon. Then, the 
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orientation can be found by computing the angle between the 
normal vector on a polygon’ s side before and after the 
rotation, or, equivalently, the angle between the initial and 
the rotated side. Better than this, the rotation angle can be 
obtained as the average of all the calculated angles between 
the original polygon side and the rotated one. 

For example, if three points are tracked forming a triangle, 
see Fig. 6, and iP  and '

iP (i=1,2,3) are points at two 
consecutive time instants, the rotation angle is given by (28), 
as follows, 

P 1
P 2

P 3
P 3

P 2

P 1

 1  2

 3

 1

n 3
n 2

n 1 n 1

n 2

n 3

x

y ' '

'

'

'

'

 

Fig. 6. Two consecutive time instants for the case of three points position 
measurements during a rigid body motion.  

 

 
 
ϕ =

ϕ1 +ϕ2 +ϕ3

3
 (28) 

where 

 

   
ϕ1 = cos−1 ( ′p2 − ′p1) ⋅ (p2 − p1)

′p2 − ′p1 p2 − p1

 (29) 

 

   
ϕ2 = cos−1 ( ′p3 − ′p1) ⋅ (p3 − p1)

′p3 − ′p1 p3 − p1

 (30) 

 

   
ϕ3 = cos−1 ( ′p3 − ′p2 ) ⋅ (p3 − p2 )

′p3 − ′p2 p3 − p2

 (31) 

In summary, if three points are used, the position of point 
C is given again by (12), while the angle of rotation by (28). 

V. THEORETICAL COMPARISON OF METHODS 

It is easy to see that the computational complexity of the 
three methods is the same (computational time increases 
linearly with the number of operations). Therefore, in order 
to reach a verdict for the computational requirements, the 
arithmetic operations should be enumerated. Table 1 
presents in detail the number of operations per method and 
the time requirements of each with respect to time constant 
c  (equal to 1.3998 μs). It is evident that the VCM method 
has substantially more requirements than the BM. The NM 
for 3D problems demands less time than the VCM and more 
than the BM. It is particularly important that its variation for 
2D problems demands almost 63% less time than that of the 
VCM. This attribute is of particular importance, since a large 
number of operations except the large computational delay, 
also introduce increased numerical noise into the process. 

TABLE I 

TIME REQUIREMENTS PER METHOD 

 
Operation 

 
Duration 

Number of Operations 

BM VCM NM-3D NM-2D 

Add/sub, Mul/div 1c 12 54 9 9 
Dot product 5c 1 9 - 3 
Cross product 9c 1 1 3 - 
Vector Norm 5c 2 8 3 6 
3x3 Matrix Mul. 15c - - 1 - 
3x3 Matrix Inv. 42c - - 1 - 
Trigonometric 2c 1 16 - 3 
Root Extraction 2c 2 8 3 6 

Total Time 41c 196c 114c 72c 

VI. SIMULATION RESULTS 

A. Experimental Setup and Parameters 
Extensive simulations took place in order to reach reliable 
conclusions about the behavior of each method in different 
environments. The methods were implemented in code 
executable by Matlab. 

It is assumed that a rigid body performs a complex 
motion, translating and rotating in 2D for 120 s. The 
translation and angular velocity trajectories are depicted in 
Fig. 7(a) and (b), respectively. The maximum translational 
velocity is 7.5 cm/s and the maximum angular velocity is 
0.14 rad/s. In the interval of 120 s, the rigid body travels a 
distance of 6.75 m and performs two rotations around C . 
Fig. 8 depicts the rigid body in its initial and final position, 
as well as the successive positions of points 1P , 2P  and 3P . 

  
 (a) (b) 
Fig. 7. Body velocity trajectories of (a) translation, and (b) rotation. 

 

Fig. 8. Initial and final position of the rigid body. Also shown are the 

successive positions of the three tracked points. 

 
The input data for all methods is the Cartesian coordinates 

of three non-collinear points of the body. Here, three points 
were used, placed around a circle of diameter 0.30 m. The 
exact values of the coordinates of three points were 
corrupted by adding white noise to simulate the actual 
measurements, as reflected by a relative or absolute position 
sensor. Specifically, let  xact  denote the actual value of the x  
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coordinate. The corresponding measured value   x  for 
absolute position sensor is given by, 

 
   
x = xact + N 0,σ( )  (32) 

i.e. the actual measurement is corrupted by while noise of 
zero mean and with covariance σ . For the relative position 
sensor, the measured value is given by, 

 
   
δ x = δ xact + N 0, δ xact

a
100

⎛
⎝

⎞
⎠  (33) 

i.e. the actual incremental displacements are deteriorated by 
additive white noise with zero mean and covariance equal to 
%a  times the actual value. This model was obtained by 

experiments with sensors used in computer mice. The 
measured y  values were corrupted similarly.  

The output of all methods is the rotation angle of the body 
and the position of a particular body point, namely of point 
C . The error is considered to be the absolute difference 
between the actual and the estimated value. 

B. Results 
In this section, we present simulation results that 
demonstrate the performance of the three methods for 2D 
problems. The results are depicted by a graphical 
representation of errors in position and orientation, as well 
as, by the statistical analysis of the orientation errors. 
Regarding the graphical representation of the position errors, 
only one plot is shown as the method for determining 
position errors is common for all three methods. The tables 
that follow every plot contain the statistical analysis of the 
orientation error per method. 
 

1) Absolute Position Sensor 
Fig. 9 shows the position and orientation errors for the case 
of white noise with mean zero and covariance σ = 0.00417 
cm. It is evident that the VCM performs better than the BM. 
The performance of the NM is by far the best one, as 
evidenced by Fig. 9(b) and Table II. 

  

 (a) (b)  

Fig. 9. 3σ = 0.0125 cm. (a) Position error, (b) Orientation error. 

 
TABLE ΙI 

STATISTICAL ANALYSIS OF ORIENTATION ERROR (3σ=0.0125cm) 

 BM VCM NM 
Mean -0.0311 -0.0141 7.3223*10-4 
Range 0.0577 0.0232 0.0031 

Variance 1.8615*10-5 3.212*10-4 3.8226*10-7 
Standard Deviation 0.0043 0.0179 6.1827*10-4 
Coeff. of Variation -0.1385 -1.2741 0.8444 

 
Fig. 10 shows the position and orientation errors for the 

case of white noise with mean zero and covariance σ = 
0.00833 cm. It is evident that results of VCM are slightly 
better than that of BM. However, the performance of the 
NM is the best one, again as evidenced by Fig. 10(b) and 
Table III. 

  

 (a) (b)  

Fig. 10. 3σ = 0.025 cm. (a) Position error, (b) Orientation error.  

 
TABLE ΙII 

STATISTICAL ANALYSIS OF ORIENTATION ERROR (3σ=0.025cm) 
 

 BM VCM NM 
Mean -0.0924 -0.0668 1.1409*10-4 
Range 0.2027 0.1303 0.0096 

Variance 4.846*10-4 7.8374*10-4 5.9463*10-4 
Standard Deviation 0.022 0.028 0.0024 
Coeff. of Variation -0.2383 -0.419 21.3735 

 

Fig. 11 shows the position and orientation errors for the 
case of white noise with mean zero and covariance σ = 
0.01667 cm. The results of VCM are better than that of BM, 
while the performance of the NM is again by far the best 
one, evidenced by Fig. 11(b) and Table IV. 

  

 (a) (b)  

Fig. 11. 3σ = 0.05 cm. (a) Position error, (b) Orientation error. 

 
TABLE IV 

STATISTICAL ANALYSIS OF ORIENTATION ERROR (3σ=0.05cm) 

 BM VCM NM 
Mean -0.4387 -0.3137 -0.0304 
Range 0.9687 0.6697 0.0596 

Variance 0.0287 0.0219 2.2332*10-5 
Standard Deviation 0.1695 0.1479 0.0047 
Coeff. of Variation -0.3864 -0.4714 -0.155 

 
2) Relative Position Sensor 
Here, the measurements are taken by a relative position 
sensor, i.e. only incremental displacements are available, as 
opposed to absolute positions. Fig. 12 shows the position 
and orientation errors for the case of white noise with mean 
zero and a = 1%. For this extremely low noise level the BM 
performs better than both the VCM and the NM, see also 
Table V. 
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 (a) (b)  

Fig. 12. Noise 1%. (a) Position error, (b) Orientation error.  

 
TABLE V 

STATISTICAL ANALYSIS OF ORIENTATION ERROR (noise a=1%) 

 BM VCM NM 
Mean 6.002*10-5 0.0013 0.0038 
Range 0.0095 0.0274 0.0118 

Variance 4.5484*10-6 5.2488*10-5 1.4142*10-5 
Standard Deviation 0.0021 0.0072 0.0038 
Coeff. of Variation 35.533 5.7315 0.9854 

 

Fig. 13 shows the position and orientation errors for the 
case of white noise with mean zero and a = 5%. With this 
noise level, the BM performs better than the VCM and 
slightly better than the NM, see Fig. 13(b) and Table VI. 

  

 (a) (b)  

Fig. 13. Noise 5%. (a) Position error, (b) Orientation error. 

 
TABLE VI 

STATISTICAL ANALYSIS OF ORIENTATION ERROR (noise a=5%) 

 BM VCM NM 
Mean -0.0124 -0.0158 0.0325 
Range 0.0815 0.2092 0.102 

Variance 5.0453*10-4 0.0026 9.1753*10-4 
Standard Deviation 0.0225 0.0508 0.0303 
Coeff. of Variation -1.8171 -3.2245 0.9317 

 

Fig. 14 shows the position and orientation errors for the 
case of white noise with mean zero and a = 10%. With that 
noise level, BM is almost inapplicable, while results of the 
VCM method are better. However, the NM performs better 
than both, as shown in Fig. 14(b) and Table VII. 

  

 (a) (b) 

Fig. 14. Noise 10%. (a) Position error, (b) Orientation error. 

TABLE VII 
STATISTICAL ANALYSIS OF ORIENTATION ERROR (noise a=10%) 

 

 BM VCM NM 
Mean -0.4186 -0.187 0.0149 
Range 0.7953 0.4184 0.0691 

Variance 0.081 0.0769 3.4958*10-4 
Standard Deviation 0.2847 0.2773 0.0187 
Coeff. of Variation -0.6801 -1.4825 1.2568 

VII. CONCLUSIONS 

The problem of rigid body position determination from 
imprecise position measurements of a number of its points 
was studied. To determine rigid body motion parameters, 
namely position and orientation, three methods for 3D and 
one for 2D problems were presented. Regarding 3D 
problems, the first method is based on theoretical kinematics 
and is referred to as the BM, while the second one was 
proposed by Vertechy and Castelli (VMC). The third method 
is a novel one proposed here and referred to as the NM. The 
NM computes the orientation using a number of normal 
vectors. The fourth method is a variation of the NM for 2D 
problems and is based on a very simple idea, which takes 
advantage of the data redundancy, providing reliable results.  

A planar kinematic problem was studied in which 
imprecise coordinate data for three points were used in 
determining position and orientation. The BM, the VCM, 
and the NM-2D were compared. It was found that when an 
absolute sensor was used, the NM-2D outperforms both 
other methods. With a relative position sensor, the BM gives 
slightly better results when the noise level is lower than 5%, 
and is comparable to the results obtained by the NM-2D. In 
cases where the noise is more than 5%, the BM and the 
VCM are inapplicable, while the NM performs efficiently. 
Therefore, in general the NM, both with the absolute and the 
relative position sensor and for low and high noise level, 
yields reliable results. This is probably due to the fact that 
the arithmetic operations in the NM are less, and only 
absolute differences between noisy measurements are used.  
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