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Abstract

This paper presents a novel approach to compute the
rank-deficiency locus of non-square Jacobian matrices.
This algorithm is based on the computation of the sin-
gular vectors associated to zero singular values of the
Jacobian. Examples are provided to illustrate the ap-
plication of the algorithm. Results are shown for a
four degree-of-freedom and a seven degree-of-freedom
manipulator.

1 Introduction

Kinematically redundant manipulators are generally
defined as manipulators with more joint degrees-of-
freedom than the minimum required to define the
pose of their end-effector. This implies that each end-
effector pose can be reached using an infinity of ma-
nipulator postures. This property is very useful for
operations in cluttered environments and has led to
the rapid proliferation of redundant manipulators in
many areas of application.

For example, in space applications, kinematically
redundant manipulators are currently used in rou-
tine operations or slated for launch in the short to
medium term. The Canadian Space Station Remote
Manipulator System (SSRMS) and Special Purpose
Dextrous Manipulator (SPDM), the European Ro-
botic Arm (ERA), the Italian SPIDER Arm and the
Ranger Teleoperation Shuttle Experiment are exam-
ples of kinematically redundant space manipulators.

The resolution of kinematic redundancy for manip-
ulators operating in cluttered environments has tradi-
tionally used Jacobian augmentation techniques such
as originally proposed by Oh, Orin and Bach [1] and by
Bailleul [2]. Constraints are typically added to avoid
obstacles or to dictate the posture of the manipulator

[3] [4] [5]. Today, the inverse kinematics algorithms of
most space-based manipulators use Jacobian augmen-
tation methods to some extent to resolve kinematic
redundancy [6] [7].

The constrained kinematic equation of the manip-
ulator takes the following form:

[
vt

vc

]
=

[
Jt(q)
Jc(q)

]
q̇ (1)

where vt is the set of translational and angular ve-
locities associated with the task coordinates, vc is the
set of translational and angular velocities associated
with the constraint coordinates and q̇ is the set of joint
rates. The concatenation of the task Jacobian ma-
trix, Jt(q), and the constraint Jacobian matrix, Jc(q)
forms the augmented Jacobian.

A major limitation of augmented Jacobians is the
fact that the constraint equations used to augment
the task Jacobian can introduce algorithmic rank-
deficiencies [8].

The rank-deficiency locus S of a Jacobian matrix
J(q) is defined as the set of all joint values q∗ such
that J(q∗) does not have full rank. Analysing the
rank-deficiency locus of a given augmented Jacobian
and comparing it to that of the task Jacobian, it is
possible to determine whether this augmented Jaco-
bian induces algorithmic rank-deficiencies. It is there-
fore possible to use these analyses to generate sets of
task and constraint coordinate pairs that will ensure
an appropriate coverage of the configuration space, Q,
of the manipulator.

This paper presents a novel algorithm to compute,
in symbolic form, the rank-deficiency locus of rectan-
gular Jacobian matrices based on the zero-singular
vectors of the Jacobian matrix. The main advantage
of computing rank-deficiency loci symbolically is that
this provides a global solution over all of Q. Further-
more, the rank-deficiency loci solutions thus computed

Proceedings of the 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems
Maui, Hawaii, USA, Oct. 29 - Nov. 03, 2001

0-7803-6612-3/01/$10.00    2001 IEEE 324



can easily be used for further analyses of the manipu-
lator’s kinematics.

Local methods, although less computer-intensive
per test, require that the testing be performed every-
where in the configuration space. In practice, such a
thing is impossible and the testing would have to be
limited to a grid of points in Q. However, the number
of points in this test grid increases exponentially with
the number of degrees-of-freedom of the manipulator
and it is difficult to guarantee that any grid fineness
will ever be sufficient to ensure that no singular con-
figurations have been missed.

2 Existing methods

Very few symbolic methods have been developed for
the symbolic computation of rank-deficiency loci of
Jacobian matrices and fewer still for rectangular Ja-
cobians. The simplest case is that of square Jacobian
matrices. For such matrices, loss of rank implies that
the matrix becomes singular and that its determinant
is zero. The rank-deficiency locus can be computed as
follows:

Ssq = {q∗ | det(J(q∗)) = 0} (2)

For kinematically redundant manipulators, a few
algorithms exist. The subdeterminant method for
computing rank-deficiency loci takes advantage of the
fact that when a rectangular matrix loses rank, all
square sub-matrices of the same dimension as the
lower dimension of the rectangular matrix also become
singular. The rank-deficiency locus of the rectangular
matrix is the intersection of the singularity loci of the
square submatrices resulting from all possible combi-
nations of columns of J, S =

⋂
i Ssqi. Unfortunately

this method proves unwieldy as the number of square
submatrices increases combinatorially with the num-
ber of degrees of freedom of the manipulator and the
number of redundant degrees of freedom.

To address the limitations of the subdeterminant
method, Nokleby and Podhorodeski have suggested an
alternate approach [9] based on screw theory and the
principle of virtual power. The algorithm is based on
the fact that, at a rank-deficient configuration, there
exists a wrench along which the manipulator cannot
perform work. This algorithm finds this wrench and
the set of joint values leading to the rank-deficient
configuration. This approach is more computationally
efficient than the subdeterminant method but it is lim-
ited to task spaces that can be represented by screws
and to rectangular Jacobians with more columns than
rows.

3 Singular vector algorithm

The singular vector algorithm for determining rank-
deficiency loci of rectangular Jacobian matrices is a
generalisation of the algorithm of Nokleby and Pod-
horodeski [9] but it uses linear algebra instead of screw
algebra. The main advantage of the singular vector al-
gorithm is that it can handle rectangular Jacobians of
any row and column dimension.

From the definition of rank-deficiency, a rectangular
matrix with more columns than rows becomes rank-
deficient when its rows are linearly dependent. The
existence of a rank deficiency then implies that there
exists a set of conditions for which a set of left sin-
gular vectors can be found such that the dot product
of these singular vectors with all columns of the Ja-
cobian matrix is zero. The singular vector algorithm
for computing the rank-deficiency locus of a rectan-
gular Jacobian matrix determines the conditions for
which such singular vectors exist. Note that the same
reasoning can be applied to rectangular matrices with
more rows than columns except that then the columns
become linearly dependent.

The methodology will be explained for the case
when the Jacobian matrix has more columns than
rows n < m. This corresponds to kinematically redun-
dant manipulators: there are more joint variables than
motion equations to be solved. The rank-deficiency
locus then is the set of all values of q∗ such that the
rank of the Jacobian matrix is lower than its number
of rows. The methodology can easily be generalised to
the case when the Jacobian matrix has more rows than
columns, which corresponds to an overdetermined sys-
tem of equations. In this case, the columns of J are
considered instead of its rows and the right singular
vectors are used instead of the left singular vectors.

The first step in the computation of the rank-
deficiency locus of J is to extract n columns out of
J(q) to form Jsq(q). The remaining columns of J(q)
are called the redundant columns and form Jr(q).

Jsq(q) =
[

s1(q) s2(q) . . . sn(q)
]

(3)

Jr(q) =
[

r1(q) r2(q) . . . rm−n(q)
]

(4)

The rank-deficiency (singularity) locus of the
square sub-Jacobian is computed symbolically by
equating its determinant to zero and solving for q:

S = Ssq = {q∗ | det(Jsq(q∗)) = 0} (5)
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The rank-deficiency locus of the square sub-
Jacobian is then refined iteratively by substituting
each condition q∗

i ∈ Ssq and finding the conditions
that can further reduce the rank of Jsq(q∗

i ). This can
be done simply by triangularising the rank-deficient
matrix Jsq(q∗

i ) using Gaussian elimination. The re-
sult of the Gaussian elimination is a triangular matrix
J�(q∗

i ) whose last row is entirely composed of zeroes.
An upper-triangular submatrix, J�sub(q∗

i ), is then
extracted out of J�(q∗

i ) by removing its last row. The
Singular Vector Algorithm is then applied recursively
to J�sub(q∗

i ) to determine conditions that reduce its
rank even more. The recursion stops when J�(q∗

i ) has
only one row left or when J�sub(q∗

i ) cannot be made
rank-deficient. All the conditions for which Jsq(q∗

i )
has reduced rank are recorded in Ssq as additional
solution branches.

For each individual branch of the solution q∗
i ∈ Ssq,

the rank-deficiency conditions are substituted back
in Jsq(q) and the left singular vectors associated to
the zero singular values of the singular square sub-
Jacobian are computed as:

ui
∗(q) =

[
ui1(q) ui2(q) . . . uin(q)

]T (6)

such that

[ui
∗(q)]T Jsq(q∗) =

[
0 0 . . . 0

]
(7)

and

ui
∗(q) · uj

∗(q) = 0 for i �= j (8)

The vectors ui
∗(q) span the nullspace of [Jsq(q∗

i )]T .
They are then arranged in a matrix of singular vectors
as follows:

U∗(q) =
[

u1
∗(q) u2

∗(q) . . . uk
∗(q)

]
(9)

where k corresponds to the number of zero singular
values of the matrix Jsq(q∗

i ). The singularity con-
ditions q∗

i are then substituted in Jr(q) and a new
matrix is generated by multiplying the matrix of sin-
gular vectors, U∗(q), with the redundant columns of
the Jacobian as follows:

J†(q) = [U∗(q)]T Jr(q∗
i ) (10)

The rank-deficiency locus S is refined by repeat-
ing the algorithm recursively to find the conditions
under which J†(q) also loses rank. A tree of solu-
tion branches is thus formed each solution branch of
the singularity locus of Jsq(q) leading to potentially

many sub-branches being rank-deficiency loci of J†(q).
The recursion continues until one of three conditions
is met.

1. The rank-deficiency locus of J†(q) is the empty
set: In this case, the set of solution branches
of rank-deficiency loci being investigated are not
part of the rank-deficiency locus of the overall Ja-
cobian matrix.

2. The number of singular vectors k in U∗(q) is
larger than the number of columns of Jr(q): In
this case, the set of solution branches followed
up to this point is obviously part of the rank-
deficiency locus of the overall Jacobian matrix be-
cause the number of redundant columns is insuf-
ficient to cancel entirely the nullspace of Jsq(q).

3. The last redundant column of the matrix J(q) has
been used in Jsq(q): this means that there are no
more possible refinements of the rank-deficiency
locus S for the particular set of solutions branches
that has been followed.

In each of these cases, the algorithm updates the
rank deficiency locus of J(q) accordingly. If a solution
was found, then the intersection of the set of rank-
deficiency loci {q∗} ∈ Ssq of the terminal branch and
that of all of its parents is added to the rank-deficiency
locus S of the overall Jacobian. Otherwise, the branch
is simply ignored. The algorithm then backtracks in
the solution tree until it encounters a branch of the
rank-deficiency locus that has not yet been investi-
gated.

After all branches of the solution tree have been in-
vestigated, S then contains the entire rank-deficiency
locus of the rectangular Jacobian.

This algorithm is very computationally efficient
since it is applied to matrices of rapidly decreasing di-
mension. It uses only once a square submatrix Jsq(q)
whose dimension is equal to the smallest dimension of
J. The dimension of the matrices at the next recursion
decreases to the dimension of the nullspace of Jsq(q∗).

Furthermore, the algebraic complexity of the de-
terminant equation of Jsq can be minimised amongst
all possible combinations of columns of J at the cost
of computing the determinant equations of all square
submatrices of J. The cost of this operation is com-
binatorial in the number of columns and rows of J
but it only involves additions, multiplications and al-
gebraic simplifications. In most cases, this step is well
worth the computational expense since it takes less
time to perform than attempting to solve the deter-
minant equation of an arbitrarily selected Jsq .
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Since it computes rank-deficiency loci in symbolic
form, there will undoubtedly be a limit to the com-
plexity of the kinematic equations beyond which the
computation of the rank-deficiency locus will not be
practically feasible. However, different techniques can
be used to simplify the computation of the rank-
deficiency locus of the Jacobian and thus push this
limit. For example, Waldron [10] has shown that the
selection of an appropriate reference frame to express
the kinematic equations can greatly simplify the cost
of computing the Jacobian.

4 Sample cases

The singular vector algorithm was implemented us-
ing the Maple symbolic computation package. The
following examples illustrate the application of the al-
gorithm to simple, yet non-trivial, sample cases. Both
examples use only revolute joints but the algorithm
can handle any joint type as long as the kinematic
equations can be expressed in differential form as in
Equation (1).

4.1 4R spherical-shoulder manipulator

Let us first consider the case of a 4R spherical shoulder
manipulator with four revolute joints arranged in a
cluster of three joints at the shoulder in a roll-yaw-
pitch configuration followed by an elbow pitch joint
as shown on Figure 1. The two links are of identical
length L.
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Figure 1: 4R spherical-shoulder manipulator.

Presuming that the task coordinates of this ma-
nipulator describe the Cartesian position of its end-
effector, then its task Jacobian is as follows:

JT =


 Ls2s4 0 Ls4 0

J21 J22 0 0
−Ls2c4 0 −L(c4 + 1) −L


 (11)

where J21 = Lc2(s3 + s34), J22 = −L(c3 + c34),
ci = cos(qi), si = sin(qi), cij = cos(qi + qj) and
sij = sin(qi + qj). Note that to reduce the cost of
computing the Jacobian, it is expressed in a reference
frame attached to the third joint.

Selecting the last three columns of JT to build, Jsq,
we obtain a matrix whose determinant equation is:

L3s4(c3 − s3s4 − c3c4) = 0 (12)

and whose rank-deficiency locus is:

Ssq =
{

q4 = 0, π
q4 = π − 2q3

(13)

Substituting q4 = 0 into Jsq(q) and performing
Gaussian elimination, we obtain:

J�(q) =


 −2L cos(q3) 0 0

0 −2L −L
0 0 0


 (14)

The rectangular matrix J�sub(q) is built by ex-
tracting the first two rows of J�(q). Applying the
Singular Vector algorithm recursively on J�sub(q), it
is found that the condition q3 = ±π

2 further reduces
the rank of Jsq(q). Its rank-deficiency locus is then
updated as:

Ssq =




q4 = 0, π
q4 = π − 2q3

q4 = 0; q3 = ±π
2

(15)

Conducting the same exercise for each branch of
Ssq, it is found that Equation (15) includes all solution
branches that further reduce the rank of Jsq(q).

Next, for each solution branch in Ssq, the singu-
lar vectors associated to the zero singular values of
Jsq(q∗) are found. Let us select the branch q4 =
π − 2q3 and substitute back into Jsq(q). We obtain
the following matrix:

Jsq(q∗) =


 0 2L sin(q3) cos(q3) 0

0 0 0
0 −2L sin2(q3) −L


 (16)

whose zero left singular vector is u =
[

0 1 0
]T .

Taking the product of this singular vector with the re-
dundant column of JT (q), we obtain a one by one
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matrix J†(q) =
[

2L cos(q2) sin(q3)
]

whose rank-
deficiency locus is:

Ssq =
{

q3 = 0, π
q2 = ±π

2

(17)

Since the last redundant column of JT (q) has been
processed, the intersection of these rank-deficiency
conditions with their parent solution branch are rank-
deficiency loci of JT (q). The overall rank-deficiency
locus is then updated as:

ST =
{

q4 = π, q3 = 0; π
q2 = ±π

2 ; q4 = π − 2q3
(18)

Similarly, processing each branch of Ssq and remov-
ing rank-deficiency loci that are subsets of others, the
overall rank-deficiency locus of JT (q) is then found to
be:

ST =
{

q4 = 0, π
q2 = ±π

2 ; q4 = π − 2q3
(19)

The first rank-deficiency loci q4 = 0, π correspond
to workspace boundary singularities where the manip-
ulator is either fully stretched or fully folded on itself.
The next set of rank-deficiency loci occur when the
axes of the first and third joints are aligned and the
end-effector is lying on the axis of the second joint.
These configurations are shown on Figure 2

(a) (b)

Figure 2: Singular configurations of a 4R spherical-
shoulder manipulator: (a) q4 = π, (b) q2 =
π
2 and q4 = π − 2q3.

4.2 7R spherical shoulder and wrist
manipulator

As a second example, let us consider adding a spherical
wrist to the tip of the manipulator used in the previous

example (See Figure 3).

Figure 3: 7R spherical-shoulder and wrist manipula-
tor.

Applying the Singular Vector Algorithm to the 6×7
task Jacobian of this manipulator, it has been found
that its rank-deficiency locus is:

ST =




q4 = 0, π
q2 = ±π

2 q6 = ±π
2

q2 = ±π
2 q4 = π − 2q3

q6 = ±π
2 q4 = π − 2q5

(20)

The configurations at which the task Jacobian is
rank-deficient are shown on Figure 4. The config-
urations q4 = 0 and q4 = π are workspace bound-
ary rank-deficiencies where the elbow is either fully
extended or fully folded. Note that since all joints
are assumed to be without offsets, the configuration
at q4 = π is not physically achievable. The rank-
deficiency locus at q2 = ±π

2 and q6 = ±π
2 represents

the case when the axes of five out of seven joints of
the manipulator are parallel. Both the wrist and the
shoulder joint clusters can effect a self-motion as was
already described for the 4R Spherical Shoulder Ma-
nipulator: the self-motion manifold is therefore two-
dimensional. Since the manipulator has only one more
degree-of-freedom than is necessary to completely de-
fine the task coordinates, then the task Jacobian is
necessarily rank-deficient.

The rank-deficiency locus at q2 = ±π
2 and q4 =

π−2q3 represents the case when the shoulder roll and
pitch joints are co-axial and the centre point of the
wrist lies on the axis of the shoulder yaw joint. In
this configuration, the manipulator cannot move its
wrist centre point in a direction perpendicular to the
pitch plane. Finally, the rank-deficiency locus where
q6 = ±π

2 and q4 = π−2q5 is the symmetric equivalent
of the previous one except that, in this case, it is the
centre point of the shoulder joint cluster that is lying
on the axis of the wrist yaw joint.

328



(a) (b)

(c) (d)

Figure 4: Rank-deficient configurations of the task Ja-
cobian of the 7R spherical-shoulder and wrist manipu-
lator: (a) q4 = 0, (b) q6 = π

2 , q4 = π−2q5, (c) q2 = π
2 ,

q4 = π − 2q3, (d) q2 = q6 = π
2 .

5 Conclusion

This paper has introduced the Singular Vector Algo-
rithm to compute symbolically the rank-deficiency lo-
cus of rectangular Jacobian matrices.

This algorithm is computationally very efficient
since it is applied to matrices of rapidly decreasing di-
mension. It uses only once a square submatrix Jsq(q)
whose dimension is equal to the smallest dimension of
the rectangular Jacobian matrix J(q). The dimension
of the matrices at the next recursion decreases to the
dimension of the nullspace of Jsq(q∗). The algorithm
has been used successfully to compute, in symbolic
form, the rank-deficiency locus of manipulators with
respectively 4 and 7 degrees-of-freedom.
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