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ABSTRACT 
Higher-order layerwise piezoelectric laminate mechanics 

are presented for predicting the low-velocity impact response 
of pristine composite and sandwich composite plates with 
piezoelectric transducers. The present formulation enables 
prediction of the global (temporal variation of impact force, 
deflection, strain and sensory potential) and local through-
thickness (distribution of displacement, stress and strain) 
impact response of plates with piezoelectric layers or patches. 
Its enhanced capabilities include efficiency in terms of 
computational cost, since the system matrices are reduced by 
means of a Guyan scheme or by using the eigenvectors, thus 
leading to a plate-impactor system containing a single or two 
deflection amplitudes per vibration mode, depending on 
consideration of transverse compressibility. The transfer of the 
plate-impactor system to state-space enables investigation of 
the feasibility of real-time active control towards impact force 
reduction by using output feedback control laws. 

INTRODUCTION 
Smart sandwich plates with composite faces and foam 

core, as well as embedded piezoelectric actuators and sensors, 
combine the superior mechanical properties of sandwich 
structures, such as, high flexural stiffness to mass ratio, with 
the capability to monitor the structural response on-site in real-
time and to adapt their response according to selected control 
criteria. At high loading rates, such as in the case of impact 
loading, damage may occur in the form of matrix cracks and 
interfacial delaminations, which in cases of low-velocity impact 
may be invisible. Thus, prediction and monitoring of the global 
dynamic response and the local through-thickness stress field, 
is essential in order to keep both design and function within 
appropriate safety limits. Moreover, the formulation of 
computationally efficient methodologies for predicting the 
plate-impactor structural system’s response is crucial in order 

to develop realistic real-time active control algorithms and 
relevant applications by using the piezoelectric actuators. 

Extensive literature reviews on impact on composite 
structures have been conducted, among others, by Abrate [1], 
Chai and Zhu [2] and Cantwell and Morton [3]. On the basis of 
the kinematic assumptions used to predict the response of the 
impacted structure, the existing models may be divided into 
two main categories: (i) mass-spring models (Shivakumar et al. 
[4]; Olsson [5]) and (ii) full continuum models based on energy 
equilibrium equations. In both categories, one of the key issues 
regarding the accuracy of the predicted impact response is the 
contact law between plate and impactor, which can be Hertzian, 
elasto-plastic without/with plastic indentation [6], or may take 
into account damage effects, such as core crushing [7]. 
Analytical solutions for composite plates subjected to low-
velocity impacts have been developed among others by 
Christoforou and Yigit [8] on the basis of Kirchhoff’s plate 
theory kinematics. Finite element solutions for predicting the 
low-velocity impact response of composite plates have been 
reported among others by Sun and Chen [9], who developed a 
quadratic Lagrange element based on Reissner-Mindlin 
kinematics and an experimentally determined non-linear 
indentation. As far as sandwich plates subjected to low-velocity 
impacts are concerned, higher-order single-layer models have 
been developed among others by Yang and Qiao [10]. Icardi 
and Ferrero [11] reported a refined plate element based on 
global-local 3-D layerwise kinematic assumptions, considered 
material degradation and predicted damage and through-
thickness distributions of transverse displacement and 
interlaminar shear stress. The idea of embedding piezoelectric 
sensors to composite structures in order to detect impact 
location and reconstruct the contact force time-profile was 
reported in the late 90’s by Tracy and Chang [12], and Seydel 
and Chang [13], and has been elaborated for the design of real-
time monitoring networks by Park et al. [14], and Liu and 
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Chattopadhyay [15]. The active control of impact response of 
composite plates by means of piezoelectric layers towards the 
minimization of contact force has been studied by Saravanos 
and Christoforou [16], who developed an analytical solution 
based on first-order shear kinematics for the composite 
laminate and a linear layerwise through-thickness 
approximation of the electric potential. Yet, the local through-
thickness impact response of composite and sandwich 
composite plates with piezoelectric passive/active transducers 
in the case of low-velocity impact has not been studied. 
Moreover, the prediction of the global impact response (impact 
force, deflection at impact point, electric potential at sensors) is 
based on the solution of the full plate-impactor system. This 
approach leads to reduced suitability for real-time control 
applications due to large matrix sizes and thus increased 
computational effort. 

The objective of the present work is to describe an impact 
mechanics methodology capable of a computationally efficient 
prediction of the global and local through-thickness response of 
pristine composite and sandwich composite plates with 
piezoelectric actuators and sensors. Moreover, a preliminary 
study on active control of the force developed during impact of 
a medium mass impactor on a composite plate is presented.  

THEORETICAL FORMULATION 
The following paragraphs present the integrated impact 

mechanics methodology, starting at the general piezoelectric or 
composite ply level and arriving to the coupled plate-impactor 
structural system in state-space. 

Basic Physical Assumptions 
The methodology is based on the following physical 

assumptions: 
 The impact energy is sufficiently low, such as no 

material damage is induced by the impact event. 
 The impact is elastic, thus there is no loss of energy in 

the form of heat. 
 The laminate plies are perfectly bonded together 

throughout the impact event and subsequent vibration. 
Generally, impacts may be categorized to low- and high-

velocity ones on the basis of the overall structural response [2]. 
In the present formulation it is assumed that the impact 
duration is significantly longer than the travel time of the 
waves to the boundary, and is enough for the plate to respond 
[1]. A practical low-velocity threshold has been provided by 
Cantwell and Morton [3] on the basis of available experimental 
techniques, as being 10 m/s. The impact velocities studied in 
the current work are up to 3 m/s. 

Governing Material Equations 
In general, the laminate layers including the piezoelectric 

or composite and foam plies are assumed to exhibit linear 
piezoelectric behaviour. In the following formulation, 
displacements and electric potential and all other variables 
arising from these (strains, stresses, etc.) are time-dependent. 

The ply constitutive equations in the natural coordinate system 
Oxyz (Fig. 1) have the form: 

 TE
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where i, j=1,…,6 and m=1,…,3; σi and Sj are the mechanical 
stress and engineering strain, respectively, in vectorial notation; 
Em is the electric field vector; Dm is the electric displacement 
vector; Cij is the elastic stiffness tensor; emj is the piezoelectric 
tensor arising from the piezoelectric charge tensor and the 
stiffness tensor; and εmm is the electric permittivity tensor of the 
material. Superscripts E and S indicate a constant electric field, 
and strain conditions, respectively. The above equations may 
encompass the behaviour of both an off-axis homogenized 
fibrous piezoelectric ply and a passive composite ply (emj=0). 
The electric field vector Em is the gradient of the electric 
potential φ along the natural coordinate system vectors x,y,z: 

m m /  E x  (2) 

In the current work, through-thickness polarized piezoelectric 
transducers are considered. 

Through-Thickness Plate Kinematics 
A typical composite or sandwich composite laminate with 

piezoelectric transducers is subdivided into n discrete layers as 
shown schematically in Fig. 1. 

 
(a) 

 
(b) 

Fig. 1: Typical sandwich piezoelectric composite laminate 
configuration analyzed with n-discrete layers. (a) Discrete layers. (b) 
Assumed displacement and electric potential distribution in each layer. 
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In the case of composite plates, the displacement field 
assumed through the thickness of the laminate is based on a 2-
D higher-order layerwise formulation (HLPT 2-D), which 
approximates in-plane displacements and electric potential by 
piecewise linear, parabolic and cubic functions of the discrete 
layer thickness, while maintaining displacement continuity 
across discrete layer boundaries [17]. For the sandwich 
structures, the core compressibility effects are taken into 
account by applying a similar through-thickness approximation 
on the transverse displacement (HLPT 3-D). In this context, the 
kinematic assumptions take the form: 

Both Composite and Sandwich Plates 
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Composites Plates (HLPT 2-D) 

k 0
k(x, y, ) w (x, y) w  (4) 

Sandwich Plates (HLPT 3-D) 
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where u and v are the in-plane displacements, w is the 
transverse displacement, superscripts k=1,…,n denote discrete 
layer and midsurface, and ζk is the local thickness coordinate of 
layer k defined such that ζk=0 at the middle of the discrete 
layer, ζk=1 and ζk=-1 at the top and the bottom, of the discrete 
layer k, respectively.  are linear and  are 
quadratic, cubic interpolation functions, respectively, through 
the thickness of the layer. Uk, Vk, Wk, Uk+1, Vk+1, Wk+1 and 

k k
1 2,  k k

3 4, 

k
z , 

are displacements and electric potential at the bottom and 
top of the discrete layer k, effectively describing extension and 
rotation, and electric potential at the terminals, respectively, of 
the layer, and w0 is the transverse displacement at the midplane. 
The terms , , , , , , ,  are amplitudes 
of quadratic ( ) and cubic ( ) variations of displacements 
(subscript x, y and z) and electric potential (subscript φ) 
through the thickness of the discrete layer. The contributions of 
these higher-order variations to the in-plane displacement and 
electric potential distribution through the thickness of the 
discrete layer vanish at its top and bottom interfaces. 
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Laminate Energy 
The stiffness and mass matrices of the sandwich composite 

plate are derived on the basis of Hamilton’s principle: 

 (6) 

where A0 denotes the midplane (Fig. 1(a)), u is the vector of 
all degrees of freedom of the laminate arising from the 
kinematic assumptions (3)-(5),   are the tractions at the 
boundary surface Γ, δHL and δKL are the variations of the 
electromechanical and kinetic energy of the laminate per unit 
area, expressed as:  
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where k denotes discrete layer, i=1,…,6 and j=1,2,3, and 
kk

i ,S u  are mechanical strain and displacement vectors. 
Combination of equations (6)-(8) with the strain-displacement 
relations, the electric field equation (2) and the constitutive 
equation (1) yields the laminate stiffness, piezoelectric and 
electric permittivity matrices. In the case of the HLPT 2-D, 
interlaminar shear stress compatibility is imposed through the 
thickness of the laminate [17], leading to elimination of 2n+2, 
higher-order elastic variables. In the case of the HLPT 3-D the 
out of plane stress compatibility is weakly maintained through 
the equations of motion (6).  

In-Plane Approximation of Elastic-Electric Variables 
Before proceeding with integration along the plate’s 

midsurface, as dictated by equation (6), an in-plane 
approximation of displacements and electric potential of the 
laminate should be implemented. In the case of a Ritz-type 
analytical solution, the first order electromechanical variables 
are approximated by Fourier series expansions, which are 
expressed in a general form as, 
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where m, n denote modes along x and y, respectively, and Xij 
are approximation functions of each variable indicated by 
superscript, which are derived by satisfying the arbitrary 
boundary conditions. The higher-order terms of displacement 
and electric potential are approximated accordingly on the basis 
of the first-order variable they refer to. The impact load is 
assumed to act transversely at the impact point and is 
approximated using the approximation functions of the 
transverse displacement. The general form of the above 
approximations includes Navier-type solutions applicable for 
cross-ply simply-supported plates. 

In the case of finite element approximations, the transverse 
displacement is approximated by implementing either C1-
continuous Hermitian shape functions, as mandated by the 
explicit imposition of interlaminar shear stress compatibility in 
HLPT-2D, or C0-continuous linear Lagrange shape functions in 
HLPT-3D. The in-plane elastic variables and the electric 
potential terms are approximated using linear Lagrange shape 
functions. The finite element solution yields the plate modal 
matrices, which are reduced and fed into the plate structural 
subsystem, as explicitly described in the following sections. 

Plate Modal Matrices 
Substituting the expressions for laminate 

electromechanical and kinetic energy (7) and (8) into the 
governing equations of motion (6) and taking into account the 
strain-displacement relations and the in-plane approximations 
of displacements and electric potential (9), the plate structural 
subsystem in discrete form is built for each mode pair mn: 
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where superscripts P and A denote passive (sensory) and active 
piezoelectric layers, and 
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where k=1,…,n and l=1,…,n-1 are the plate modal elastic and 
electric variable vectors in the case of the HLPT 2-D. Similar 
vectors are derived in the case of the HLPT 3-D, which 
additionally contain linear and higher-order terms of transverse 
displacement, as well as, in-plane higher-order terms 
eliminated in HLPT 2-D. The vector q contains the externally 
applied loads per unit area, while D is the vector of externally 

applied charges. In the absence of external charge sources, the 
structural subsystem is condensed as, 
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Reduction of Plate Modal Matrices 
As indicated by Eqs. (11) and (12), the size of the mass 

and stiffness matrices of the plate depend on the through-
thickness discretization. For a plate discretized through-
thickness by n discrete layers, Eq. (11) yields 4n+1 or 9n+3 
independent elastic variables in the case of an HLPT 2-D or 
HLPT 3-D Ritz-type analytical solution, respectively. These 
elastic variables determine the size of the mass and stiffness 
matrix in equation (12). Considering that for predicting the 
dynamic response of a plate subjected to a point impact the 
plate-impactor system should be solved for a large amount of 
mode pairs at each time step, the layerwise through-thickness 
discretization would lead to mass and stiffness matrices of large 
size and respective computational cost. In order to reduce this 
cost and enable implementation of the methodology to real-
time control applications, while retaining the information 
regarding the through-thickness response, appropriate 
reduction techniques should be applied on the plate subsystem. 

Two types of reduction are implemented in the current 
formulation: (i) A Guyan reduction scheme in the case of Ritz-
type Navier solutions and (ii) reduction by means of the modal 
vectors in the case of other boundary conditions and finite 
element approximations. The idea behind both reduction 
techniques is to select a primary (independent) elastic variable 
and express it as a function of the reduced (dependent) ones. 
Since the impact force is assumed to act purely in the z-
direction (Fig. 1(a)) and thus bending vibration modes are 
primarily excited, the transverse displacement was selected as 
the independent variable in both reduction schemes. 

In the case of the Guyan reduction applied to the HLPT 2-
D Navier solution, the modal vector is related to the transverse 
displacement as, 
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where Tmn is the modal transformation vector, which arises 
from consideration of a static load case for independent 
(superscript i) and dependent (superscript d) elastic variables: 
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In this context, the plate stiffness matrix for each mode pair mn 
is reduced as: 

r T
cuK Kmn mn mnmn

   T T  (17) 

The plate mass matrix is reduced in a similar manner. The 
plate matrices reduction procedure yields per mode pair mn a 
single term for stiffness and mass, respectively. In the HLPT 3-
D Navier solution, the reduction technique is implemented in a 
similar manner by selecting the top and bottom plate face 
transverse displacement as independent variables, thus yielding 
per mode pair mn two terms for stiffness and mass, 
respectively, whereas the rest 9n+1 dependent variables are 
expressed as a function of top and bottom transverse 
displacement. A detailed description of the implementation of 
Guyan reduction technique can be found in [19]. 

In the cases of other boundary conditions than simple-
supports and non cross-ply laminations, the finite element 
solution is implemented and the reduced modal matrices are 
derived by multiplication of the plate structural matrices with 
the modal vectors as, 
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The piezoelectric matrices appearing in equations (12)-(14) are 
reduced in a similar manner. 

Both reduction techniques lead to the formulation of the 
reduced subsystem of the plate, which has the following form: 

r 0 r 0 wM w K w q (t)mn mn mn mn mn   (19) 

Plate-Impactor Contact Force 
In the present methodology, impactors with hemi-spherical 

tip are assumed. Linear contact laws are implemented in order 
to retain low computational cost and facilitate implementation 
to real-time control applications. In the case of composite 
plates, the linear elasto-plastic contact law proposed by Yigit 
and Christoforou [8] is considered. During impact at a point 
(x0,y0), the contact force Fi is assumed to vary linearly with the 
local indentation, which is defined as the relative distance 
between the impactor position and the face deflection, which in 
HLPT 2-D is assumed to be constant through-thickness on the 
basis of the kinematic assumptions (4): 
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where wi is the vertical distance of the impactor (modelled as a 
point mass) from the plate’s surface position just before impact 
(Fig. 2) and ky is the contact stiffness, which depends on 
impactor radius and elastic properties of impactor and plate 
material [6]. On the basis of eq. (20), the simulation of a low-
energy impact of a steel sphere on a composite plate includes 
two distinct impact states: (i) aggregation – plate and impactor 
motion are coupled and (ii) disaggregation – plate and impactor 
move independently. The trigger for switching between these 
two distinct states is the relative distance between impactor 
position and plate midsurface. 

 
Fig. 2: Schematic representation of the linearized contact model [8] 
implemented during impact on a composite plate. 

In the case of sandwich composite plates, linearized 
contact laws in the form of equation (20) are adopted, with 
transverse displacement of the impacted face instead of 
midplane displacement w0. 

Plate-Impactor Structural System 
The plate-impactor structural system is formulated by 

combining the plate subsystem (19) with the contact force 
equation (20), the governing equation of motion of the 
impactor, 

i i i 0 0m w (t) F (x , y , t)   (21) 

and the expression of transverse modal load per unit area qmn 
by means of Fourier series terms, which in the case of simple 
supports is, 
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Thus, the coupled plate-impactor system is formulated in time 
domain as, 
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The above system is finally transferred to state-space in order 
to facilitate real-time control applications: 
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where [A], [B], [C] are the system, input and output matrix, 
respectively and  
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 T0 0
mn i mn i= w , w , w , wx  


 (25) 

is the vector of state variables. Depending on the case study, 
the output variables vector y


 may include sensory electric 

potentials, mechanical displacements, strains and stresses or 
related time derivatives, such as the electric current density 
reported in the active control case in the Results section. 

RESULTS AND DISCUSSION 
In the following paragraphs predictions of the current 

impact mechanics methodology are compared with Ritz-type 
analytical solutions for composite plates without/with 
piezoelectric layers, and the effect of impactor mass on the 
response is quantified. The global response of composite plates 
with piezoelectric sensory patches is studied for the case of 
eccentric impact. The local through-thickness impact response 
of sandwich composite plates with faces including piezoelectric 
layers is investigated. Finally, preliminary studies are 
conducted for actively controlling impact force in composite 
plates with piezoceramic layers. The electromechanical 
properties of the materials considered are listed in Table 1. 

Table 1: Electromechanical Properties of Materials Considered 

Material Properties Graphite/Epoxy Foam PIC 181 
Mass Properties 

ρ (kg/m3) 1578 45 7800 
Elastic Properties 

E11 (GPa) 120 0.035 84.7 
E22 (GPa) 7.9 0.035 84.7 
E33 (GPa) 7.9 0.035 70.4 
G23 (GPa) 5.5 0.012 27.1 
G13 (GPa) 5.5 0.012 27.1 
G12 (GPa) 5.5 0.012 31.9 

ν12 0.30 0.40 0.33 
ν13 0.30 0.40 0.43 
ν23 0.30 0.40 0.43 

Piezoelectric Properties 
d31 (10-12 m/V) - - -120 
d32 (10-12 m/V) - - -120 
d33 (10-12 m/V) - - 265 
d15 (10-12 m/V) - - 475 
d24 (10-12 m/V) - - 475 

Dielectric Properties 
ε11 (10-12 Farad/m) 31 - 13280 
ε22 (10-12 Farad/m) 27 - 13280 
ε33 (10-12 Farad/m) 27 - 10620 

 

Composite Plate with Piezoelectric Transducers 
A [(0/90)2/0]S Graphite/Epoxy square composite plate was 

studied as a benchmark case and the effects of boundary 
conditions, impactor mass and initial velocity were 
investigated. The plate had edge length of a=0.2 m and 
thickness aspect ratio of a/h=74, whereas each composite ply 
had a thickness of 0.135 mm. The present HLPT 2-D 

formulation is validated with an analytical solution based on 
first-order shear laminate theory kinematics [16].  

As a first validation, the plate was impacted upwards at the 
centre by a steel sphere having a mass of mi=8.537 g and an 
initial velocity at contact vi=3.0 m/s. The contact stiffness had a 
value of ky=6.65e6 N/m [8], as arising from yield strength of a 
typical Graphite/Epoxy composite material. A single discrete 
layer was used to model the plate through-thickness and 11x11 
bending modes were taken into account for both laminate 
theories. Fig. 3 shows predicted global impact response for 
simply-supported (S-S) and clamped-clamped (C-C) boundary 
conditions. In the former case the plate modal matrices have 
been derived by a Ritz-type solution, whereas in the latter case 
by a finite element in-plane approximation. Excellent 
agreement is observed between predictions of the current 
methodology and [16], whereas the plate yields a slightly more 
compliant response than in [16] due to accurate capturing of 
interlaminar shear effects. 
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Fig. 3: Validation of current methodology predictions for the case of a 
small mass impact on a [(0/90)2/0]S Gr/Ep plate for two sets of 
boundary conditions: (a) impact force, (b) plate displacement and 
impactor position. 

However, in the developed method the size of the reduced 
plate-impactor system was 74x74, whereas the full system, 
such as in the case of the FSPT, would have a size of 362x362 
for equal modes in state space. The required computational 
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time on a dual core processor (3.06 GHz, 6 MB) for the 
reduced plate impactor system was 1.5% of that of the full 
system. In the case of finite element approximations, the 
system size would depend on the mesh discretization, however 
it is expected to be far beyond the matrix size in the current 
method. Overall, the developed method could efficiently 
capture the wave-controlled impact response of the composite 
plate (local response occurring prior to reflection of waves 
from the boundaries, as described in [5]), as well as, the impact 
chattering observed after t=0.328 ms.  

As a second validation, 0.2 mm thick piezoceramic (pzt-4 
from Morgan-Matroc Inc. [16]) layers were considered at top 
and bottom of the simply-supported composite laminate. The 
plate was modelled using 3 discrete layers through the 
thickness. A contact stiffness ky=1.234e7 N/m [16] was 
implemented. The plate was assumed to be hit upwards at the 
centre by a spherical impactor of relatively large mass mi=5.0 
kg with initial velocity vi=1.0 m/sec. Fig. 4(a) shows predicted 
temporal variation of the impact force using HLPT 2-D, which 
is in very good agreement with predictions of [16].  
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Fig. 4: Validation of current methodology predictions for the case of a 
5.0 kg mass impact on a [pzt-4/(0/90)2/0]S plate: (a) impact force, (b) 
energy equilibrium during impact event. 

Due to the large mass of the impactor a “quasi-static” impact 
response is observed (term defined in [8]), meaning that the 
response is dominated by the inertia of the impactor, while the 
plate’s vibration is negligible. The validity of the latter 
comment is illustrated in Fig. 4(b), where the energy 
equilibrium during impact is shown. As far as computational 
effort is concerned, the developed method leads to a plate-
impactor system of size 74x74 in state space, as in the previous 
case study, and to similar computational gain, whereas the 
solution of a full system of size 938x938 would have been 
required in the case of no reduction.  

The attachment of piezoelectric patches on the plate faces 
is a more practical configuration towards realistic applications. 
Moreover, impact does generally not occur at the centre of the 
plate. Thus, the impact response of the simply-supported plate 
was additionally studied for an impact of a spherical impactor 
of mass mi= 0.1 kg and initial velocity vi=1 m/s at point 
x0(a/8,a/8) in the case that four piezoceramic patches with 
dimension 10x10x0.25 mm are symmetrically attached on each 
plate face (Fig. 5). 

 

Fig. 5: Simply-supported composite plate with piezoelectric patches. 
Applied boundary conditions are reported at the plate edges. 

The inclusion of the patches does practically not affect the 
plate’s dynamic response in terms of modal frequencies, 
stiffness and mass, thus they were not modelled and the electric 
potential (sensory signal) was predicted at the central point of 
the patch without being averaged, by means of the mechanical 
strains and the second constitutive equation (1). Predicted 
transverse displacement at the impact point and in the centre of 
the patches are presented in Fig. 6(a). It is interesting that 
during aggregation between plate and impactor the transverse 
displacement near the impact point exceeds the deflection 
predicted at the impact location. As expected, the signal of the 
sensor being nearest to the impact location is initially higher 
than the signals of the other sensors, as shown in Fig. 6(b). 
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Fig. 6: Impact response of an eccentrically hit [(0/90)2/0]S Gr/Ep plate 
with piezoceramic patches: (a) transverse displacement, (b) sensory 
signals at the impacted face patches. 

Sandwich Composite Plate with Piezoelectric Layers 
The impact response of a square [PIC 181/0/foam]s 

sandwich composite plate of thickness aspect ratio a/h = 31 was 
studied. The plate consisted of two surface attached 
piezoelectric layers, each having a thickness of 0.2 mm, 
Graphite/Epoxy faces of 2 mm each and a 15 mm PVC foam. 
The plate was impacted upwards at the centre of the bottom 
face by a mass of mi = 0.25 kg having an initial velocity of 1 
m/s. A contact stiffness ky=1.234e7 N/m [16] was assumed. The 
HLPT 3-D formulation was used for predicting the global/local 
impact response of the plate.  

The plate was modelled using five discrete layers through-
thickness, namely one for each material sublaminate, resulting 
to 46 deflection-dependent DOF per mode and a reduced 
structural system of size 258x258 in state-space for 15x15 
modes, whereas solution of a system of size 6146x6146 would 
be required in the case of a full structural system of an 
unreduced corresponding analytical solution. Fig. 7 shows the 
predicted global impact response of the plate. 
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Fig. 7: Global impact response of a sandwich composite plate with 
piezoceramic layers: (a) impact force, (b) transverse displacement, (c) 
electric potential at sensory layers. 

In Fig. 8 the local through-thickness stress response is 
presented, at points of maximum values at the timestep 
corresponding to maximum impact force. The predicted stress 
distributions reveal the benefit of implementing higher-order 
layerwise kinematic assumptions, since piecewise through-
thickness variations up to second order can be efficiently 
captured using a minimum number of discrete layers. The latter 
is a major advantage compared to linear layerwise laminate 
theories, which would require a large number of discrete layers 
and thus degrees of freedom in order to capture such through-
thickness stress profiles. On the other hand, the lack of explicit 
imposition of shear stress compatibility equations in the case of 
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the HLPT 3-D leads to non-zero interlaminar shear stresses at 
the free faces, although they tend to get to zero. 
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Fig. 8: Local through-thickness impact response of a sandwich 
composite plate with piezoceramic layers: (a) in-plane stress, (b) 
interlaminar shear stress. 

Preliminary study on Active Control 
A preliminary feasibility study was conducted regarding 

the active control of the impact response of a 
[(0/90)2/0/(0/90)2/p

P/pA] composite plate towards impact force 
reduction. Two piezoelectric layers were assumed to be 
attached to the bottom face of the composite plate studied 
above. Their interface was grounded and the 0.25 mm thick 
outer layer was configured to act as an actuator, whereas the 
0.125 mm thick inner layer provided the sensory signals. 

The output of the state-space system of equation (24) was 
assumed to be the electric current density (current per unit 
area), meaning that it would be possible to measure the electric 
current flow through practically short-circuited piezoelectric 
terminals of the sensory layer. The plate was impacted at its 
centre by an impactor having a mass of mi=0.5 kg and an initial 
velocity vi=1 m/s, and 3x3 bending vibration modes were taken 
into account. The impact solution was programmed in Simulink 
in order to facilitate realization of active control in a planned 
experimental configuration. A proportional (P) output feedback 

control law with gain kp=10 was implemented, whereas the 
desired output value was zero, meaning that no current should 
flow through the piezoelectric sensor terminals. Fig. 9 
illustrates the passive (open-loop) and active (closed-loop) 
global response. The current impact case yields impact 
chattering and maximum force after the first aggregation 
between plate and impactor. By means of the active control, the 
force is reduced and the motion of plate and impactor becomes 
smoother. It should be noted that the realistic applicability of 
the current control attempt is still under consideration and will 
be proved by means of measurements, planned to be conducted 
in an experimental configuration developed at the CSL Lab 
(Fig. 10). 
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Fig. 9: Active control of impact force in a composite plate with 
piezoceramic layers: (a) impact force, (b) transverse displacement, (c) 
error to desired value of electric current density. 
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