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An optimal design approach for tracking problems and its
assessment against classical controllers

N. J. KRIKELISt and E. G. PAPADOPOULOSY

A class of linear regulator problems, referred to as tracking problems, impose the
requirements of zero steady state error, elimination of disturbance effects and
immunity to system parameter changes. A controller design approach for this
problem, using linear optimal control theory, is presented, and its advantages are
outlined by comparison with previous modern and classical approaches.

1. Introduction

In practical control systems design, it is frequently required to keep a
controlled variable at a constant value, over a long period of time, in the
presence of disturbances or loads. Of course, this constant value—the set
point—may change from time to time (tracking problem).

In the present study we are concerned with a class of control problems,
neglected theoretically and useful practically, in which the control system
should satisfy the following conditions :

(a) the steady state error of a desired reference input should be zero ;

(b) the effect of constant but unknown disturbances should be completely
removed from the steady state output; and

(c) the output should not be susceptible to system parameter changes,
while conditions (a) and (b) continue to be valid.

In general, there are two basic approaches to the controller design for the
regulator problem. One is to follow the classical design methods, the other to
apply the optimal linear regulator theory. The object of this study is to
propose a design approach to the aforementioned problem and give a perform-
ance assessment of optimal controllers as well as classical pseudo derivative
feedback (PDF) and PID controllers.

Firstly, the structure of the PDF controller is considered, and then some
of the issues concerning the effectiveness of the optimal controllers are
discussed. Secondly, the optimal controller for the regulator problem is
derived, using the ‘ error ’ coordinates system representation. An assessment
of performance and a comparison between the PDF and optimal regulator is
obtained for a simple system. Subsequently, a new design procedure is
developed and a performance comparison of the relevant controllers is
presented. Finally, some interesting aspects for controlling higher order
systems are briefly discussed.
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2. The PDF controller

Phelan (1977) has discussed different control schemes, and ultimately
suggested that the PDF controller constitutes an optimum scheme for all
types of plants.

b G (S)

Figure 1. Block diagram of PDF controller for a nth-order plant.

Figure 1 depicts the block diagram of an nth-order plant with PDF control.
It is seen that, PDF control is realized by feeding back the output y and its
derivatives up to (n—1) order, as well as by introducing integral control
action.

For an nth-order plant with the following transfer function

1

G(s) = n n—1
8 +an_13 +...+a1.s+ao

(1)
the resulting operational equation, relating the output y to the input r and
the load L is given by

. K{
T (Kt ap e+ (K ae i K,

y

. S
+ L
s (K +a, 3)s"+ ...+ (Kg, +ag)s+ K;

(2)

It is clear from eqn. (2), that, by adjusting the parameters K ; (j=1, ..., n)
and K, it is possible to place the poles of the controlled system at any desired
point. This fact is also a characteristic of the state feedback optimal controller.

The properties and some serious limitations of the PDF control scheme
will be discussed in §§ 5 and 6.

3. Approaches to the optimal regulator design
Consider the nmth-order, single-input-single-output linear time invariant
system
x=Ax+bu (3 a)

y=c¢cTx (3 b)
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Let the optimal control law be the one that minimizes a quadratic per-
formance index of the form

J= F (xTQx + u2) dt (4)
0

For the case of a non-zero set point, it can be shown (Kwakernaak and
Sivan 1972) that the optimal control law is

u(x)= — KTx+ G,~1(0)r (5)

where K7 is the feedback coefficient vector and G,(0) the closed-loop transfer
function at s=0. '

A drawback of the control law (5) is, that it drives the steady state error
e, to zero, only in the case of constant and accurately known system para-
meters. Moreover, this control law cannot eliminate the influence of disturb-
ances or loads from the output variable. Thus, the optimal controller given
by eqn. (5) does not fulfil the requirements stated earlier, and therefore cannot
yield an acceptable design solution to the regulator problem.

A possible method of approach to this problem, proposed by Johnson
(1968, 1970), is as follows : for t—oo, the state x—x,,, the output y—r and
from eqn. (5) the control input tends to a constant, whose value is not known
a priort, i.e.

: lim u(t)=c (6)

t—

so he introduces the equivalent relation

—a0

lim %(t) =0 (7)

The last condition is introduced into an alternate formulation of the optimal
control problem, by penalizing 1%, instead of «, in the cost functional. This
approach will not be considered further, first, because it is applicable only to
systems in a phase variable representation, with y=2x,, having no open loop
zeros, and second, since for high order systems, the approach yields impractical
controllers, involving high order derivatives.

Perhaps, the most interesting offspring emanating from this approach is
the need of an integrator in the forward path to keep the steady state error to
zero. This, for a first order system, yields the well known PI controller
(Johnson 1968, 1970, Athans 1971).

Another approach is to formulate the problem in ‘ error * coordinate form
and then introduce an integrator in the forward path. It is summarized
below.

4. Optimal integral control using error coordinates

A different formulation of the optimal regulator problem is based on the
error coordinates representation (Hedrick 1978). For an nth-order single-
input-single-output system, a new state vector % is formed, containing the
error e=y—r and an (n— 1)th-order vector x, such that

x,=Tx (8)
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where T, is an (n—1)x7n matrix. Letting y=cTx, the new state equation
becomes k=[c! T,7)T = T,% (9)
£=Tyx—[1 0 ... 0] (10)

The matrix 7', must be chosen so that T, is non-singular.
Supposing that the system is subjected to a load L, eqn. (3 @) becomes

x=Ax+bu+L (11)

By combining eqn. (11) with (9) and (10) yields
$=Ax+bu+L (12)
where A=T, AT, (13 a)
b=T,b (13 b)
L=T,L+T,AT,-Y[1 0 ... O} (13 ¢)

To achieve zero steady state error, e, =0, an integrator is introduced,
whose action is taken into account by the equation

~

g=e=Yy—r (14)

The following augmented state vector can now be constructed

X
[
q

and the augmented system equation is
§=AE+bu+ L (16)

where 4, b and L are easily found.
The control law for this problem is in the form

14
u=-Ke—K,x,~K; [ edt (17)
0

'

The approach is illustrated by the following example, which will be retained
for comparison in the following sections.
Consider the linear plant 1

E=—-u (18 a)
a

y=x (18 b)

Here, n=1, T,=0, T,=1, X=¢;=e=y—r. Defining §=e,, eqn. (18a)
becomes

Let the cost functional to be minimized

- <]
J= | (pe,®+qes®+u?) dt (20)
0
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The solution of the associated Riccati equation gives the feedback co-
efficients A; and A, for the optimal control law

¢
u=Ke,+Kpe,=K,e,+ K, | edt (21 a)

where 0
K,=(2av/q+p)'? (21 b)
K,=vq (21 ¢)

The control law (21 a) reflects the design of a PI controller with optimal
parameter values.

5. PDF compared with optimal control
The closed loop operational equation, for the plant of eqn. (18), subjected
to a load, L, with PDF control is

K, 8
= r+ L
as®+ K, s+ K, as*+K;s+K;

Y (22)

On the other hand, the optimal control law of eqn. (21 a) leads to the follow-
ing operational equation

_ Ks+K, rt 8
" as?+Kis+K, as*+Ks+K,

(23)

Equations (22) and (23) are identical except for a closed loop zero introduced
by law (21 a). The influence of this zero will be investigated according to
certain classical performance criteria.

The closed loop system is of second-order, therefore, as is well known,
the overshoot M,%, and the product w,t, (natural frequency times the first
peak time) are functions of the damping ratio {. Figures 2 and 3 depict
these relations for the cases of PDF and optimal control.

— chcxnaa of’ scale
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Figure 2. Per cent overshoot M, of system (18) with PDF and optimal control.
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Figure 3. The quantity w,tf, as a function of  for system (18) with PDI and optimal
control.

It is clear, that the optimal controller induces a faster response with larger
overshoots. Of course, the results of Figs. 2 and 3 provide a partial picture
of the effects of the two controllers. However, they deem to be useful, since
they relate performance characteristics, (as M, and ¢,), to closed-loop pole
location (implicitly via w, and {).

The performances of the two systems are now compared for various design
constraints. The numerical values adopted are a=3 and r=10.

Case 1. Equal u,.[r and { (L=0)

Here, the maximum value of the control » and the damping ratio { are
the same for the two systems. Let u,,.=5 and {=0-707.

Through simulation, the resulting PDF parameter values to meet the
above conditions are

K, =1548, K;=0-399
or
w, = (K;a)2=0-365, (=K, [2(aK;)"2=0-707

For the optimal control of eqns. (21)-(23), since {=0-707 p has to be zero.
Then, by simulation it is found

g=0-00174, p=0
or
w,=(v/(q)[a)*=0-118, [=(2a+/(g)+ p)"/?/(4a+/q)"/*=0-707
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The response to a step input =10 is shown in Fig. 4. It is clear that,
PDF gives a faster response with smaller .}, and therefore, for the criterion
used it is considered superior to the optimal controller.

- Optimal
e PDF

20 30 40 %0
tisec

Figure 4. The responses y(t) for the case of equal u,,,,,/r and {.

Case 2. Equal uy,./r and M, (L=0)

Let %pay/r=05 and M,=43%. Using the results of Fig. 2 and by
simulation, one can determine the various parameter values. The results are
summarized in the Table. Figure 5 shows that PDF control gives a faster
response (t, ppp=4-4s and ¢, opp=12-3 8).

optimal

P DF

t(sec)

Figure 5. The responses y(t) for the case of equal u,./r and M,

Case 3. Equal M, t,
Here, ¢, is the rise time required for the response to go from y=0-1r to
y=09r. Lett,=1sand M,=43%. Results for this case are contained in
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the Table. Figure 6 shows that PDF gives a smaller settling time. More-
over, PDF reaches a maximum control signal of w,,/r=2-5, whereas the

optimal controller reaches u,,,

[r=4-6.

10 f\--------t

- — = - Optimal

PDF

30

t(sec)

Figure 6. The responses y(t) for the case of equal M, and ¢,.

Case 4
Here the parameters are chosen to have exactly the same response to a
step load L=10 while r=0. For example, by choosing K, =K, =2-72 and

e - - -
- - -

optimal

PDF

15

Figure 7.

10

t (sec)

The responses y(t) for the case of equal feedback coefficients.
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K,=K,=0-616, one can obtain all the system parameters. With the con-
troller gains chosen equal, the system is tested for a step reference input
r=10, with L=0. The two responses of Fig. 7 indicate that the optimal
controller gives a faster response but undergoes a larger overshoot. In
addition, u,,,/r =27 for the optimal and u,,,,/r=0-5 for the PDF.

(‘ases 1-4 are summarized in the Table. The PDF control is considered
to be superior.

From a control input point of view, the two expressions are

t
uPDF=KdIy+Ki 05 e dt

¢
uOPT=Kle+K2 (’; edt

Supposing that at t=0, y=0, it is clear that at {=0, uppr=0 and Uogpr = AT
This means, that the control input up,p varies between 0 and u,, whereas
uopr varies between K,r and u,. Thus, PDF uses the control power more
efficiently than the optimal controller (Fig. 8).

u optimal

Uss \_;é

o
t

Figure 8. The control inputs upp(t) and uopr(f) for comparable characteristics.

6. Development of a new controller

The results of the previous section appear to confirm, that PDF control
possesses attractive features, so that one is led to the natural question, as to
whether it is possible to apply PDF control to every system.

The implementation of the PDF control scheme has two serious limita-
tions. Firstly, with today’s technology, the generation of high order signal
derivatives is avoided, because of detrimental noise effects. Secondly, PDF
control cannot be used effectively in systems that have more than one open
loop zeros. This is due to the fact that, in a system with k zeros, only
(n+1)—k—1 derivatives, constitute an admissible set of state variables
(Brockett 1965). These derivatives, along with the output y and the integral
of the error are fed back. So, to be able to place the (n+ 1) poles of the
control system, k£ has to be no greater than 1.

In spite of the fact that PDF is not widely applicable, it demonstrates very
good performance characteristics when utilized with certain low order plants.
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In § 5, the optimal control law was seen to introduce a closed-loop zero,
that caused a performance degradation. It can be shown that this feature is
inherent to this law. What is needed is an optimal control law, which does
not add closed-loop zeros. In summary. the control law sought must obey
the following rules :

(a) it is applicable to every system ;
(b) it contains integral action ; and
(¢) it does not introduce closed loop zeros.

The key to the successful design is the proper selection of the cost func-
tional. The optimal cost must be finite in order to be optimal. Therefore,
each penalized term must go to zero when time tends to infinity. The vector
x —x,, and the variable u —u,, possess this property. However, the magnitude
of u,, required to make e,=0 is not known. Suppose now, an integrator is
introduced, whose input is the error e. The output of this integrator is
bounded (stable system), and as time tends to infinity, the output tends to a
constant value. The following problem formulation actually uses this output
to produce wug,.

Consider the nth-order system

x=Ax+bu+L (24 a)
y=¢cTx (24 b)
and the performance index
J= I [(x_xxx)TQ(x_xas)+P(u—uss)2] dt (25)
0
Add the equation
Z,,=CTx—r=e (286)

where r signifies the set point. As a first step formulate the augmented
system

x 410 x b 0
........... = DU I R KIS R A (27)
j’n+l ch 0 Thi 0 -1
X
y=[cTi0]| (28)
T+t

From the steady state conditions
Ax, +bu,+L=0 (29 a)
cTx,,—r=0 (29 b)
one obtains the steady state expressions
U= — (€T A7) (r+ T AL (30 a)
x,.=—AYL+buy) (30 b)
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However, the relations (30 a, b) do not specify the final value of the variable
Z,.,. Denoting by h the unknown steady state value (z,.,),, define the
following transformation

x=x'+x, (31 a)
u=ul+uss (31 b)
Tpiy =T pyt+h (31 ¢)

Combining eqns. (27), (29) and (31) yields

X’ 410 x’ b
................... R . TN (32)
z . cTi 0 ', 0

In general, the new component 2, , is included in the modified cost functional

J'= J (T @ [XT | 21T + pu'®) dt (33)
0

The optimal solution to the above LQ problem yields the optimal feedback
control law

ul'_‘u_uss: - KT(x_xss)_Kn-l»l(xn-l-l—h) (34)
But % is a free constant, and for convenience it can be chosen to be
b= —Kn+1—l(Kszs+uss) (35)
Then, eqn. (34) becomes
u=—-KT'x—K, %01 (36)

The above control law drives the output of the integrator, whose input is e,
to the value of eqn. (35), i.e. as time tends to infinity the steady state error
is driven to zero. This control law is shown in Fig. 9.

With the method just described, the integrator produces the required
value u,, and consequently the system is not susceptible to parameter changes.
Also, this control scheme has the ability to eliminate the load effects and to
adjust its output to obtain y,=r. In addition, it can easily be shown that
the law of eqn. (36) does not introduce uncontrollable closed-loop zeros. In
summary, the control law developed satisfies all the conditions posed at the
beginning of this section and in turn all the specifications stated in § 1.

Figure 9. Realization of the control law derived herein.
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Furthermore, if it is assumed that x(0)=0 and z,,,(0)=0, then %(0)=0,
i.e. the control law described will change the control input u gradually, avoid-
ing sudden changes.

In the following section this design method is illustrated via a second-order
system and it is compared to other control methods.

7. Comparison of PDF, PID and optimal control law
In PDF control, the input » can be expressed as

¢
uppr=—Kgy ...~ K, y® V- K, | edt (37)
0
The optimal control law of § 6 is given by
¢
u=-Kgz, .- K,x,-K, , | edt (38)
0

When the system is represented by phase variables and y==,, the two
laws have the same structure. The realization of the PDF law requires two
sensors and some electronic hardware, whereas the optimal control law
requires n+ 1 sensors. Ideally, each law can place the closed-loop poles to
arbitrary positions.

However, the PDF controller is not effective for high order systems and
also the selection of the feedback coefficients has to be made primarily by
trial and error. On the other hand, in the optimal controller design, the
feedback gains are determined by a straightforward procedure, and for this,
one needs to define the relative importance of the various design goals, e.g.
small error and fast time response. Thus, since the optimal control theory
gives rise to controllers at least as good as the PDF ones, in the example to
follow attention will be focused to the optimal controller developed in § 6.

Suppose the task is to design a controller for a sluggish second-order
system. The option of a PID (three term controller) will be compared with
the optimal controller. Let the transfer function of the plant be

1

Gp(8) = ——
»(¢) 2+a,8+a,

(39)

with a,=5 and a,=6. By using the well known Ziegler-Nichols (1942)
procedures, the resulting control input for a PID controller is

t
Upyp(t) = — 81-8¢ — 4-0§ — 409-0 oj e dt (40)

Using the Cohen-Coon method, from Shih and Chen (1974), the resulting
control input for a PID controller is found to be very close to that of eqn.
(40).

To derive the optimal controller, rewrite the system equations

T =1, (41 a)
Ty= — ATy — AT, + U (41 b)

Ty=I,—r=y—r=¢ (41 ¢)
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and the cost functional

J =

O'..s

p(‘xl - xl,ss)z +P(1'2 - x2,ss)2 + (I(xa - ?l's,ss)2 + (u - uss)z dt (42)

For a given set of weighting coefficients p, p, g, the optimal feedback
gains can be computed by solving the algebraic Riccati equation. A usual
way to define p, p, q is as follows

P = (Uiux/€imax)? (43 a)
P=(%max/Ymax)® (43 b)
q= (U oy § € dt)? (43 ¢)
where, w,,,, corresponds to a maximum desirable input u. Assuming that

r=10, it is found from eqn. (30 a) that u=6r=60. Therefore. one may
choose u,,,=100. Since the minimization of the error e and its integral are
of primary interest, one may choose small maximum values, eg. e =1
fedt,..=1. Since a fast response is desired, the derivative y should have
a large value, e.g. pick §,,,, =10. These selections yield

’

p=10000 p=100 ¢=10000 (44)

The resulting optimal control law of § 6 is
¢t
u(x)= —45-6y —9-75— 100 | e dt (45)
0

It is clear that, the last design procedure not only specifies directly the feed-
back coefficients, but suggests also the way to improve system performance.
For example, to achieve a faster response, §,,,. and u,,,. should be increased
while e, and fedt,, . should be decreased.

An alternative way to derive the feedback coefficients is to use a pole
placement technique, e.g. Karnopp (1976). For the system of eqn. (39) the
closed loop characteristic equation is

83+ (a1 + Kp)s® + (ag+ K )s+ K3 =0 (46)

Suppose the response of this third-order system should resemble that of a
second-order system with {=0-707 and ¢,,,,=0-8s. This implies w, =5 rad/s,
so the pair of the complex conjugate poles is s; ,= —3:5+ j3-5. The third
pole is placed at —15, to have little impact on the response. Through some
algebra, the feedback law, corresponding to these poles is found to be

2
u(x)= —231-1y — 2415 —375 | e dt (47)
0

This law would have been derived from an optimal control problem having
cost functional weighting coefficients

p=2-11x105, p=362, gq=140625 (48)
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Figure 10. Step responses of plant (39) with control laws : (a) open loop control,
u=60: (b) PID control, eqn. (40) : (c) optimal control, eqn. (45) ; (d) optimal
control, eqn. (47); and (e) optimal control with closed loop zero, u= —
45-6e—9-Ty—100 [ edt.

Figure 10 depicts the time responses of the plant given by eqn. (39), with
different control laws. It is clear that the optimal control laws (c) and (d)
achieve the best responses. On the other hand, the PID law (40) corresponds
to a negative coefficient p= —106, which means that this law could not have
been derived from optimal control theory (see also Shih and Chen 1974).

8. High order systems

As discussed earlier, the PDF scheme cannot be used to control high order
systems. To bypass this limitation, Phelan (1977) suggested two alterna-
tives : either  to redesign the system so that it can more closely be approxi-
mated as a second-order system, or split the controlled system into parts,
such that each part can be treated as an independent second-order (or lower)
system ’.

The first approach attempts to solve the problem by ignoring its nature,
therefore it will not be considered further. The second approach leads to
several subsystems controlled by individual PDF controllers tuned separately.
Consider, for example, the fourth-order system of Fig. 11.

6, 8z ="
lr—L
— I, -\/\/\—z— 1,

Figure 11. A fourth order system.
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Splitting the system into two subsystems and applying Newton’s second
law, one obtains for the second subsystem

The transfer function of the whole system is
ORES I+ 1?;11 1,5 (50)
Thus, the first subsystem is
Uy K (51)

w L+ KL+ 1)/,

The two subsystems (49) and (51) are controlled by separate PDF controllers
as shown in Fig. 12.

It is seen from Fig. 12 (b) that the final system is of sixth-order. Hence,
six controller parameters have to be tuned by trial and error procedures.
The overall control scheme is no longer an output controller, but resembles a
modern state feedback controller.

k

ot lR:z— + u o u2
—] 4
20— P )
Kig * Kazo®
(a)

primary controller secondary controller

resTs ST [t 1
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Figure 12. (a) PDF control of subsystem (51) ; (b) two PDF controllers ¢ in series ’
are used to control complete system (50).
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An alternative way to control the system (50) is by employing the control
law of § 6. Using as state variables the two velocities and the two positions,
the optimal control law, determined in a straightforward manner, leads to a
fifth-order system. This scheme requires an integrator less and two more
sensors. Clearly, this controller is much more flexible, directly tunable and
therefore preferable to use.

9. Conclusions

The object of this paper has been to consider the control problem of
single-input-single-output systems whose performance requires: (a) zero
steady state error ; (b) elimination of load effects from the output; and (c)
immunity to parameter variables while conditions () and (b) are valid.

The achieve these goals, an integration of the error signal was introduced
and the optimal control theory was applied using a reformulated cost func-
tional.

Previous attempts to face this problem, viz. PDF control, are deemed
unsatisfactory. The optimal controller proposed herein overcomes the draw-
backs of previous designs and is shown to be better than PDF and PID
controllers, because : (a) it can be used to control any system ; (b) it assures
stability ; and, (c) the feedback gains are amenable to optimization and can
be determined by straightforward techniques.

The design procedures, based on the optimal control theory, can generate
controllers superior than the classical ones, provided the respective problem
is well formulated. This statement, of course, does not imply that optimal
controllers should be implemented on all occasions, but rather they should be
included in the candidate list of engineering-economic trade-off feasibility
studies.
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