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On the Nature of Control Algorithms for
Free-Floating Space Manipulators

Evangelos Papadopoulos, Member, IEEE, and Steven Dubowsky, Member, IEEE

Abstract—This paper strongly suggests that nearly any con-
trol algorithm that can be used for fixed-based manipulators
also can be employed in the control of free-floating space
manipulator systems, with the additional conditions of estimat-
ing or measuring a spacecraft’s orientation and of avoiding
dynamic singularities. This result is based on the structural
similarities between the kinematic and dynamic equations of a
free-floating space system and the same equations for the same
manipulator but with a fixed base. Barycenters are used to
formulate the kinematic and dynamic equations of free-floating
space manipulators. A control algorithm for a space manipula-
tor system is designed to demonstrate the value of the analysis.
The results obtained should encourage the development of a
wide variety of control algorithms for free-floating space manip-
ulator systems.

I. INTRODUCTION

HE planning and control of the robotic manipulators

expected to play important roles in future space mis-
sions, such as the Flight Telerobotic Servicer shown in Fig.
1, pose additional problems beyond those found in fixed-based
manipulators due to the dynamic coupling between space
manipulators and their spacecraft. A number of control tech-
niques for such systems have been proposed. These schemes
can be classified into three categories. In the first, reaction
jets control spacecraft position and attitude, compensating for
any manipulator dynamic forces exerted on the spacecraft.
Control laws for earth-bound manipulators can be used in this
case, but their utility will be limited if the manipulator
motions can saturate the reaction jet system. Reaction jets
also may consume relatively large amounts of attitude control
fuel, limiting the useful life of the system [1], [2]. In the
second category, reaction wheels or jets control a spacecraft’s
attitude but not its translation [3], [4]. The control of these
systems is somewhat more complicated than for the first
category, although a technique called the virtual manipulator
(VM) method can be used to simplify the problem [4]-[6]. In
the third category, free-floating systems have been proposed
in order to conserve fuel or electrical power [5]-{9]. These
permit the manipulator’s spacecraft to move freely in re-
sponse to the manipulator motions. Since the spacecraft’s
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Fig. 1. The Flight Telerobotic Servicer (FTS).

attitude control system does not operate during this mode of
space manipulation, this mode becomes feasible when no
external forces and torques act on the system and when its
total momentum is negligible. In practice, momentum dump
maneuvers are employed to remove any momentum that may
accumulate [12]. Free-floating manipulators also can be mod-
eled using the VM approach [5], [6]. Past control algorithms
for free-floating systems have been proposed and their valid-
ity demonstrated on a case by case basis, [7]-[10]. Algo-
rithms for such systems that ignore the kinematics or dynam-
ics of the spacecraft in their formulation have been found to
have problems [9], [10]. These problems may be attributed to
dynamic singularities that are not found in earthbound ma-
nipulators [11}, [12].

This paper takes a more fundamental approach to the
question: ‘‘What control algorithms can be applied to the
motion control of free-floating space manipulators?”’ The
results obtained show that nearly any algorithm that can be
applied to conventional fixed-based manipulators can be di-
rectly applied to free-floating manipulators, with a few weak
additional conditions. These include the measurement or
estimation of a spacecraft’s orientation and the avoidance of
dynamic singularities. These results should encourage the
development of a wide range of control algorithms for free-
floating space manipulator systems.

II. DyNaMIC MODELING OF FREE-FLOATING SYSTEMS

This section develops the dynamic equations of a rigid
free-floating space manipulator system, see Fig. 2, using a
Lagrangian approach. The body O in Fig. 2 represents the
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A spatial free-floating space manipulator system.

spacecraft; the bodies k(k = 1,..., N) represent the N-
manipulator links. The manipulator joint angles and veloci-
ties are represented by the N X 1 column vectors q and q.
The spacecraft’s attitude control system is turned off when
the system is operating in a free-floating mode and hence the
spacecraft can translate and rotate in response to manipulator
movements.

For simplicity, it will be assumed that the system has a
single manipulator with revolute joints and is in an open-chain
kinematic configuration so that, in a system with an N-
degree-of-freedom (DOF) manipulator, there will be 6 + N
DOF. The method of analysis that follows, as well as its
results, hold equally well if these assumptions are removed.

First, the system kinetic energy is expressed as a function
of the generalized coordinates and their velocities. Under the
assumptions of free-floating operation, i.e., the absence of
external forces and of zero initial momentum, the system
center of mass (CM) remains fixed in inertial space and the
inertial origin, O, can be chosen to be the CM. The system
kinetic energy T can be written as

T=

M=z

(1)

{‘L’k @+ mypy Bk}

| =

It

k=0

where m, is the mass of the kth body I, is its inertia dyadic
with respect to its center of mass, and p, and w, are its
linear and angular inertial velocities, respectively. It can be
shown that 7 can be written in a more compact form as a
function of the N + 1 angular velocities as [11], [12]:

1
T=

(2)

N N
Z Z w; * I_)ij t W,
j=0 i=0

N

where the D, terms are inertia dyadics that are functions of
the mass and inertia distribution of the space manipulator
system, and are given by [11], [12]:

-M{(1} - )1 - rf), i<j

N .
D= L+ kz—:o m{ (Vi * vl = v}, =]
-M{(c} - 1)1 - 117, i>j

In (3), M is the total system mass, 1 is the unit dyadic. The
vectors vy, (i, k=0,...,N), rf and 17 =0,..., N)
are defined by the barycenters [13], [14] of the ith body.
First, the body fixed vector ¢; is defined as referring to the
location of the ith body’s barycenter with respect to the
body’s CM. It can be shown that ¢; is equal to:

i=0,...,N (4

¢;=lp + L‘(l - ”’i+1)’

where p; represents the mass distribution given by

0, i=0
i-1 m.

B = —, i=1,...,N. 5
M (5)
1, i=N+1

It might be noted that the barycenter of the ith body can be
found equivalently by adding a point mass equal to My, to
joint i, and a point mass equal to M(l — g, ) to joint
i + 1, forming an augmented body [13], [14]. The barycen-
ter is then the center of mass of the augmented body (see Fig.
3). Fig. 3 also shows the body-fixed vectors r} and I}
required by (3) and the vector ¢¥, which can be written as

(62)
=g (6b)
(6¢)

¥
¢, = -¢

*
=1,

Finally, the vectors v, in (3) are defined by

i<k
ve=4¢i, k=i. (7)
¥, i>k

Equation (2) is a compact representation of the system’s
Kinetic energy, but it is convenient to work with a scalar
(matrix) form of the equation. To this end, we use the
following notation. Bold lowercase symbols represent column
vectors; bold uppercase symbols represent matrices. Right
superscripts are interpreted as ‘‘with respect to,’” left super-
scripts as ‘‘expressed in frame.”’ A missing left superscript
implies a column vector expressed in the inertial frame. In
addition, we introduce N + 1 reference frames, each one
attached to the CM of each body, with axes parallel to the
body’s principal axes. Hence, the body inertia matrix ex-
pressed in this frame is diagonal.

The system kinetic energy is written in matrix form as
follows. The inertial angular velocity of body j, expressed by
the vector w;, can be written as the sum of the inertial
angular velocity of the spacecraft, w,, and the inertial angu-
lar velocity of body j relative to the spacecraft w(}:

w»:w0+w9 , N.

J

(8)

The angular velocity w(} can be expressed as a function of the
joint angles q. This is accomplished by defining a 3 X 3
transformation matrix ‘A (g)(i = 1,..., N), which is a
function of g, (the ith relative joint angle), and which
transforms a column vector expressed in frame / to a column
vector expressed in frame i — 1. An additional transforma-

Jj=1,...
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tion matrix can be defined as

OTi(Ql» cen qy) =0A1(41) cee i_lAi(‘Ii)v

i=1,...,N. (9
°T, transforms a column vector expressed in frame / to a
column vector in frame 0. Finally, T, is the transformation
matrix from the spacecraft frame to the inertial frame and is a
function of the spacecraft’s attitude, expressed by the Euler
parameters € and n, T, = Ty(e, 5), see [15]. Using these
transformation matrices, the inertial velocity w(} of link J
relative to the spacecraft can be written as

J )
W=Ty > °T/u, g, =T Fq, j=1,..

i=1

. N (10)

where ‘u; is the unit column vector in frame i parallel to the
axis of revolution through joint /, and OFj isa 3 x N matrix,
function of the joint angles q only and given by

Q .
OFj(q) = [ T]'ul,OTzzuz,...,OTjJuj,O],
j=1,...,N (11)

where 0 is a 3 X (N — j) zero element matrix. It is easy to

show that the inertia matrices D,; that correspond to the

inertia dyadics given by (3) can be expressed with respect to
the spacecraft frame of reference as

0 ..

D, =T,D,TJ, i, j=1,...,N. (12)

OD,- ; is formed according to (3) with all vectors expressed in

the base frame and is a function of the configuration q only.

Also, due to (3), °D;; =°D]. For convenience, define
N

OD = Z ODj
Jj=0

°©
=}
[

N
;=Y °D,; j=0,...,N
i=0

(13a)

(=
=}
[

N o N N o o 0
0 [\] —_ T
a jZ=1 D;’F, D, = jz=] I_z=1 F/ "D, 'F,
(13b)

where all the above are functions of q only. The terms in
(13b) depend on the manipulator mass and inertia properties,
whereas the terms in (13a), in addition, depend on the
spacecraft inertia.

Using (8)-(13), the matrix form of (2) can be written as
10 TONO 10 T0 ]
T=Ew0 D w0+5w0 D.q

+ %qTOqu Yw, + %qT"quq (14)
where %w,, is the spacecraft angular velocity expressed in its
frame. Note that 7T is a function of Owo, q, and q only. This
observation suggests that if w, can be expressed as a
function of q and q, then the spacecraft attitude coordinates
are ignorable, that is they do not appear in the expression for
T, see [16]. It turns out that this can be done under the
assumptions of free-floating operation, i.e., the absence of
external forces and torques and of zero initial momentum.

Indeed, the system angular momentum h,, can be written
as [11}, [12]:

N N
- op ©
hey = T, Z > D w,
j=0 i=0

= T,("D%y;, +°D,4q). (15)
In the absence of external torques, the system angular
momenturn is constant. We further assume that during
free-floating operation, the system momentum is zero. If
momentum accumulates, the system may be able to continue
operating for a limited period of time. In practice, the
spacecraft’s attitude control system would be turned on and
perform a momentum dump maneuver in order to eliminate
any accumulated momentum [12]. Note that the first two
terms in (14) vanish if the system angular momentum is zero.
By setting hy, = 0 in (15), the spacecraft angular velocity
%w, is written as a function of the joint rates §:
wy = —°D'°D,q.

(16)

Note that inversion of °D is always possible because it is a
symmetric positive definite matrix that represents the inertia
of the free-floating system about its CM. Substituting °w,, in
(9) and after some algebraic manipulation, 7 results in

T=3;4a"H*(q)q

where H*(q) is the system inertia matrix, given by

(17)

(18)

Again, the fact that °D,; =°DJ was used. The above equa-
tions are important because they show how to construct the
system inertia matrix H*. The steps needed to accomplish
this task are first, compute all the ®v,, vectors according to
(4)-(7) and (9). Second, compute the 0D,- J inertia matrices,
according to (3), using the ®v,, in the place of the v,,.
Third, find the OF,» matrices according to (11) and, finally,
find the inertia matrix H*.

It is easy to show that the system inertia matrix H* is an
N X N positive definite symmetric inertia matrix that de-
pends on q and the system properties. All elements of H* are
functions of the manipulator joint angles g(i =1,..., N)
only, since the total system inertia with respect to its CM,

H*(q) =D, -°D7°D'°D,.
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°D, and °D; are functions of only the g;’s and not of the
spacecraft attitude. Hence, the system inertia matrix H* has
the same structural properties as the inertia matrices that
correspond to fixed-based manipulators.

Equation (17) shows that T is a function of (q, q), the
manipulator joint angles and velocities. The expression for T
given by (17) is identically equal to the system Routhian, see
[16], and is thus the appropriate function to be used in
Lagrange’s equations. In the absence of gravity, the potential
energy of a rigid system is zero, and hence the system’s
dynamic equations are given by

d{aT aT
at 5«; _aq_Q

where Q is the vector of generalized forces. It is easy to see
that in this case Q is equal to the torque vector 7 = [7,
T5y.. > 7y]7. Applying (19) to the kinetic energy given by
(17) results in a set of N dynamic equations of the form

H*(q)i + C*(q,4)q =7

(19)

(20)

where H*(q) is the system inertia matrix defined by (18) and
C*(q, q)q contains the nonlinear Coriolis and centrifugal
terms. Note that in these N equations of motion, the space-
craft attitude or position variables do not enter. This results
from the fact that the system kinetic energy does not depend
on spacecraft attitude nor on its angular or linear velocity
when the initial angular momentum is zero and the system is
free of external forces and torques. The spacecraft’s contribu-
tion to the system’s kinetic energy T enters in through the
inertia matrices °Dy;(i = 0, ..., N), which depend on its
mass m, and inertia I,.

II1. THE NATURE OF CONTROL ALGORITHMS FOR
FREE-FLOATING SYSTEMS

It is well known that generally one needs three basic
elements (or some combination of them) in order to control a
fixed-based manipulator. First, there is an invertible repre-
sentation of manipulator kinematics, which can be in the
form of a closure equation or of a Jacobian. Most control
algorithms use the latter. Second, one needs a set of dynamic
equations that describe the response of manipulator joint
angles to actuator torques or forces. Third, a control algo-
rithm must use sensory information and calculate the required
torques or forces to achieve a desired task.

It is clear that if a free-floating space manipulator and a
fixed-based manipulator have the same dynamic equation and
Jacobian structures, then a control law that can be used for
that fixed-based manipulator is suitable for the space manipu-
lator. By structure we mean that the matrices of the dynamic
equations and the Jacobian of the two manipulators have the
same order and symmetry and depend on the same variables.
Furthermore, the inertia matrices of the two systems have the
same positive definite character. Of course, the numerical
values of the elements of the matrices of the free-floating
space system will have different values. For example, the
elements of the dynamic matrices H* and C*, will be differ-
ent from those of the similar matrices of the fixed-based

manipulator, H and C, since H* and C* depend in part on a
spacecraft’s mass properties. As a result, the same torque
vector 7 will produce different joint accelerations in the two
systems. However, we are interested here in the structure of
the dynamic equations and not in numerical values of the
inertia matrix elements. Also, since the applicability of
fixed-based controllers does not depend on the existence of
gravity, it can be neglected for the purposes of this compari-
son.

We will compare the structures of the dynamic and kine-
matic equations of free-floating manipulators to the ones for
fixed-based manipulators and show that, based on the above
argument, it should be possible to develop a free-floating
space manipulator control algorithm based on nearly any
algorithm used for fixed-based manipulators, provided that
some weak conditions hold. Two types of motion control will
be considered. The first—spacecraft-referenced end-point
motion control—is the form of control in which the manipu-
lator end point is commanded to move to a location fixed to
its own spacecraft, or when a simple joint motion is com-
manded, such as when the manipulator is to be driven at its
stowed position. The second—inertially referenced end-point
motion control—is the form of control where the manipulator
end-point is commanded to move with respect to inertial
space.

A. Spacecraft-Referenced End-Point Motion Control

The comparison between this form of control for a free-
fioating manipulator and a fixed-based manipulator is rather
straightforward. Equation (20) showed that the minimum
number of equations describing the dynamics of the N + 6
DOF space system is N for an N-DOF manipulator, the
same as for a fixed-based N-DOF manipulator. As discussed
above, the space system inertia matrix H* depends only on
the manipulator’s joint variables q and is a symmetric posi-
tive definite matrix of size N X N. These are also the
properties of the inertia matrix for the fixed-based system.
Finally, since C* is derived from H*, it will have the same
form as the fixed-based C, which is derived from H. Hence
the dynamic equations of both systems have the same struc-
ture as defined above.

If the spacecraft becomes very large, m; and I, approach
infinity, and H* and C* converge to H and C. This should
be expected, because a very large spacecraft will not react to
the manipulator’s motions and the system will behave essen-
tially as a fixed-based system. Also, the order of the system
remains fixed, equal to N, regardless of the size of m, and
1,. Finally, since the motion of the space manipulator is
controlled with respect to its own base, the Jacobian relating
its joint rates to its end-effector velocities is identical to that
of the fixed-based manipulator, called J. The above observa-
tions hold equally for the simple joint control problem where
a J is not required.

Thus we conclude that nearly any control algorithm that
can be used for fixed-based manipulators can also be used for
space manipulator systems under spacecraft end-point or joint
control. Of course, since the system matrices are different,
the control gain matrices may be different in the two cases.
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B. Inertially Referenced End-Point Motion Control

The inertial position and orientation of the end effector of a
space manipulator is a function of the position and orientation
of its spacecraft and of its manipulator joint angles q. It can
be shown that the dependency of the end-effector coordinates
on the position of the spacecraft can be eliminated by writing
the system kinematics with respect to the system CM and by
integrating the linear momentum equation. The dependency
on the spacecraft orientation cannot be eliminated because the
angular momentum given by (16) cannot be integrated analyt-
ically to yield a spacecraft’s orientation as a function of the
manipulator’s joint angles [11], [12]. However, these refer-
ences further show that it is still possible to construct a
Jacobian that relates joint motions § to end-effector velocities
X in the form:

X

[iE’ “’E]T = J*q

J* = diag (Ty, To)°T*(q)

(21)
(22)

where £ ; is the end-point inertial velocity, w is the end-point
inertial angular velocity, and °J*(q) is a 6 x N Jacobian that
is a function of both the manipulator configuration q and of
the system mass and inertia properties. If N = 6, then °J*(q)
becomes a square matrix. T, depends on the spacecraft
attitude, which can be measured or estimated as shown in
[11]. Clearly, this is a difference between fixed-based and
free-floating manipulators. It is unnecessary to use spacecraft
attitude where the inertial motion is measured with respect to
the spacecraft frame, such as in [7] and [8]. In that case, the
Jacobian required in (21) is simply °J*(q).

It is well known that the Jacobian J of a fixed-based
manipulator is a 6 X N matrix that depends on q and the link
lengths of the manipulator. J* or °J*(q) has the same
dimensions as J and also depends on q as well as on the %v ik
vectors, scaled by the 0D,}j(i, J=0,..., N) inertia matri-
ces. This means that the free-floating system differential
kinematics, although complicated, have the same structure as
the kinematics of the same manipulator with a fixed base, as
defined above. Indeed, if a spacecraft’s mass and inertia, m,
and I,, are large, T, approaches a constant matrix and
diag (T, T,)°J*(q) results in the normal fixed-based manipu-
lator Jacobian. Mass and inertia dependencies vanish.

However, one important difference is that the workspace
of a free-floating system can be divided in two regions, the
path-independent workspace (PIW) and the path-dependent
workspace (PDW) [11], [12]. If the end-effector path has
points in the PDW, the manipulator may become dynami-
cally singular, i.e., its Jacobian J* or °J*(q) becomes
singular, although it may not be kinematically singular,
meaning alignment of axes or points at the workspace bound-
aries. At a dynamic singularity, the end-effector cannot move
in some direction and this represents a physical limitation. A
workspace location may induce a singularity or not depend-
ing on the path or history of the motion. This is explained
as follows: In general, a workspace location can be reached
by an infinite number of sets of configurations q and of
spacecraft orientations. The particular set in which the sys-
tem will reach some workspace location will depend on the

path taken to reach it. This property is due to the nonintegra-
bility of the angular momentum equation. If the configuration
in which a workspace location is reached is singular, then
this workspace location induces a singularity; otherwise it
does not. If the end-point path belongs entirely in the PIW,
no dynamic singularities are induced. This leads to the
additional condition that a controller must be able to over-
come or avoid these singularities.

From the above discussion we conclude that the structure
of the kinematics of a free-floating manipulator under iner-
tially referenced end-point control are the same to the
fixed-based manipulator case, with the additional conditions
that the system’s Jacobian depends on the spacecraft’s atti-
tude and that dynamic singularities may occur. Furthermore,
since the dynamics for this case are identical to those dis-
cussed above for spacecraft-referenced end-point control,
they have the same structure as a fixed-based system. Thus it
follows that nearly any control algorithm that can be used for
fixed-based manipulators can also be used for free-floating
space manipulators under inertially referenced end-point con-
trol, provided, of course, that the appropriate matrices are
used. For example, laws like resolved rate, resolved acceler-
ation, impedance control, or computed torque can be used in
space if one uses the appropriate Jacobian and inertia matrix.
If these matrices are exactly known, then, as in the fixed-based
manipulator case, there is no need for end-point sensing
control. The controller can rely entirely on information pro-
vided internally by the system. However, end-point sensing
may be needed for space manipulator systems when the
uncertainty in the system parameters is so large that the
resulting errors are unacceptable. This is also true for
fixed-based systems.

C. Differences Between Free-Floating and Fixed-Based
Manipulators

So far we have focused our analysis on the similarities
between fixed-based and free-floating systems and have shown
that it is possible to develop space control algorithms based
on nearly any algorithm used for fixed-based manipulators.
Now we discuss some of the practical implementation points
of free-floating space manipulator control.

1) Terrestrial fixed-based manipulator Jacobians depend on
the joint angles q only. In space, the system Jacobians also
depend on spacecraft orientation, see (22). This orientation
can be calculated, as shown in [11], [12], or measured on
line by additional sensors. No such procedure is needed for
fixed-based systems.

2) Singularities are functions of the kinematic structure of
the terrestrial fixed-based manipulator only. In space, dy-
namic singularities exist that depend on the mass and inertia
distribution [11], [12]. A point in the space system workspace
can be singular or not depending on the path taken to reach
it. These singularities represent physical limitations and must
be avoided.

3) In general, the knowledge of kinematic parameters,
such as link lengths, may be enough for fixed-based manipu-
lator control purposes. Since Jacobians of free-floating space
systems depend on a system’s dynamic properties, the sys-
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tem’s kinematic properties are not enough for control pur-
poses. In addition, system dynamics are more complicated
and depend on products of inertias that can increase the
errors in obtaining inertia matrices. External sensing or on or
off-line parameter identification can be very important for
space systems.

4) It is not possible to map desired Cartesian workspace
points to a unique set of desired joint angles q for free-
floating manipulators in space, as can be done for fixed-
based manipulators, because infinite sets of joint angles cor-
respond, in general, to some workspace point. Which of
these sets of joint angles will actually result when the end
point reaches the desired workspace point depends on the
path taken to reach this point. This characteristic of space
systems excludes one early manipulator control algorithm,
the *‘point-to-point’” control [17]. A restriction may apply
also to adaptive algorithms which assume that dynamic pa-
rameters appear in the equations of motion linearly [12].

The above analysis confirms that, with some weak condi-
tions, nearly any control algorithm that can be used in
fixed-based systems can also be used in free-floating systems.
These conditions include the estimation or measurement of a
spacecraft’s orientation and the avoidance of dynamic singu-
larities. Knowledge of a system’s dynamic properties is
helpful, as it is in fixed-based systems. If these properties are
not known with sufficient accuracy, end-point sensing can be
used. This is demonstrated below by applying a control
algorithm developed for fixed-based manipulators to a space
system under inertially referenced end-point control.

2 DOF Manipulator

Spacecraft

Fig. 4. A planar free-floating manipulator system.

TABLE 1
THE SYSTEM PARAMETERS
Body {; (m) r; (m) m; (kg) I; (kgm?)
0 0.5 0.5 40 6.667
1 0.5 0.5 4 0.333
2 0.5 0.5 3 0.250

than their fixed-based counterparts. This Jacobian J* should
be compared to the fixed-based manipulator Jacobian J given
by

(Lt r)s = (L +r)s,
(h+r)e + (L +r)ey,

— (L +1y)s,

(L +ry)ep,
(24)

Ja) =

It can be seen that J* and J have the same structure. The
system inertia matrix is found according to the analysis
presented above (see the Appendix for details). The result is

D, + D,) D,(D,+ D
°d,, + 2%, +°d _ (Dt D)) °d +°d22—“2( 1+ D)
( ) 1 12 22 D 12 D
DZ(DI +D2) D22
0d12 +0d22 - T 0d22 - ?

IV. A PLANAR EXAMPLE

Here, the relatively simple, fixed-based algorithm, called
the transpose Jacobian control by Craig [18], is applied to the
simple, planar, free-floating space manipulator system shown
in Fig. 4, whose parameters are given in Table I. As shown
in [13], the system Jacobian in (22) is given by

The system inertia matrix H*, is a 2 X 2 symmetric matrix
whose elements are functions of the joint angles ¢, and g,.
Note that D represents the inertia of the whole system with
respect to its CM and thus is always a positive number. The
above matrix can be seen to have the same structure as the
fixed-based inertia matrix H, whose elements are given by

cos(8) —sin(8) ]OJ
* = [ . *(q) (23a) h. h
sin (8 cos (8 11 12
where “ “ Hia) = [hIZ hzz] (26e)
Ora(r) _ _1_ ~(Bs + v512) Dy Bs\D, = y5;,(Dy + D))
= D[‘“(Dl + D,) + (Bc, +yc12) Dy _(a+BC1)D2+7cl2(D0+DI):| (230)

and s, =sin(g,), ¢, =cos(q, + ¢q,), etc. The inertia
scalar sums D, D,, D, and D, are defined in the Appendix
by (A8) and « =°rg, B ="rf, and v =2c} + r,. Lengths
o, (3, and y are manipulator link lengths scaled by the mass
ratios (m; /M). Since each D; and D are functions of g, the
Jacobian elements are more complicated functions of the q

By =1+ ml? + my(l + )+ 2myl (1, + 1))
ccos(q,) + L + myl)}
hia = hy = myly (1, + ) cos (q,) + I, + myl)?

hyy = I, + m,L7. (26b)
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At the limit, when both m, and I, approach infinity, it is
easy to see that 3=/, +r, y—> 1L, +r,, ie., they ap-
proach the manipulator link lengths, while m,/M — 1,
m /M—-0, m,/M—0, Dy/D—-1, D,/D—0, and
D, /D — 0; T, becomes a constant transformation from the
manipulator base frame to the inertial frame, usually the unit
matrix; and finally, J* — J, the fixed-based Jacobian, and
H* — H, the fixed-based inertia matrix, as given by (24) and
(26), respectively.

One can select any control algorithm that can be used for
fixed-based manipulators, using the two matrices H* and J*,
depending on the manipulator task. Here, the transposed
Jacobian control is used, augmented by a velocity feedback
term for increased stability margins. The end-point position
and velocity x = [x, y]T and X = [%, 7]7 can be calculated
or measured directly. Assuming we measure X and X, the
control law is

7= FT{K (x4 — X) — Kok} (27)

where X, is the inertial desired point location. K , and K ,
are positive definite diagonal matrices. Note that this algo-
rithm drives the end point to the desired location but does not
specify a path. If the control gains are large enough, then the
motion of the end-point will be a straight line. The torque
vector is nonzero till the (X, — X) and x are zero, or until
the vector in the brackets in (27) is in the null space of J*7.

Fig. 5 depicts the reachable workspace, the PIW, and the
PDW for this example. The boundaries of all three are circles
with their center at the system CM. The PDW is found by
noting that the distance of the end effector from the system
CM is a function of the system configuration g only. All
singular configurations g, obtainable by solving the det (J%)
=0, can be mapped to circles with their centers at the
system CM. The union of all these circles gives the PDW.
Subtracting the PDW from the reachable workspace results in
the PIW. For a more general exposition of this subject, the
reader is referred to [11] and [12].

First, the end-point path will be restricted to the PIW part
of the workspace, and hence dynamic singularities will be
avoided. Fig. 6 shows the motion of the end-point from the
initial location (1, 0) to the final (0.8, 0.8). This path is
shown in Fig. 5 as path A. The control gain matrices are
Kp = diag (5, 5) and K, = diag (15, 15). The end-point
path, shown with a heavy line, is almost a straight line and
converges to the desired location. Shown also is the end-point
path that results when the control law, given by (27), uses the
fixed-based Jacobian given by (24). In this case, the end-point
diverges from the straight line because it does not resolve the
error term correctly. Depending on the situation, the use of
the fixed-based Jacobian can create stability problems [9].
Fig. 7 shows the spacecraft attitude § and the joint angles as
a function of time, during the end-point motion depicted in
Fig. 6, when J* is used. Note that although the spacecraft
attitude changes for about 35°, the manipulator end-point
converges to the desired inertial location as it would do if its
base were fixed.

Next, the end-effector is commanded to follow a straight
line path from (2, 0) to (1.5, 1.5), shown as path B in Fig. 5.

Py System Center
of Mass

Path Dependent
Workspace (PDW)

y (meters)
o
|

Path Independent
15 ‘Workspace (PTW)
-2
Reachable Workspace
a \ Boundaries
T T 1 T I
-3 -2 -1 0 1 2 3
X (meters)
Fig. 5. The reachable, PIW and PDW, for the system shown in Fig. 4.
08
0.6
- J*
\E, 0.4+
>
0.2 J
00 T
08 0.9 10
x (m)
Fig. 6. End-point paths in the PDW using J* and J.
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3 T — |
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~ h——
o 04
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-200 T T
0 5 10 15
Time (s)

Fig. 7. The spacecraft orientation 6 and the joint angles ¢, and g, along
the path shown in Fig. 6.

Fig. 8 shows the actual end-effector path. Note that initially
the end-effector moves along a straight line until it reaches
point B, where a dynamic singularity occurs for the first
time. At this point the end-effector diverges from the desired
path and the joint angles start oscillating around singular
configurations, as shown in Fig. 9. Finally, the end-effector
converges to point C, which is an equilibrium point. Note
that if an inverse Jacobian algorithm had been used, it would
have failed numerically at point B.

In this example, we have assumed that the end-point
position and velocity are measured. However, if we know the
system parameters exactly, they can both be calculated. To
do this, one has to measure the joint angles q and calculate
the spacecraft attitude integrating numerically (16). Then the
manipulator would rely entirely on internally provided infor-
mation and would not need end-point sensing. However, it
may be very difficult to obtain the correct values for all the
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Fig. 8. An end-point path in the PDW where dynamic singularities occur.

q N (degrees)

q,

0 1'0 20
" Time (s)

Fig. 9. The spacecraft attitute 6 and the manipulator joint angles g, and g,
along the path shown in Fig. 8.

system dynamic parameters and any errors will be magnified
due to the products involved in the computations. Thus, it is
not the physics of the problem that forces the use of end-point
control, but rather the incomplete information about the
dynamics of the plant. This fact is also true for fixed-based
manipulators, although in this case the uncertainty is less
severe because the system matrices depend on fewer parame-
ters.

Following the above procedure, any control algorithm that
employs the system H* and J* can be designed. However,
control methods that depend on the cancellation of terms, like
the computed torque methods, require the exact system iner-
tia matrix H*, and thus emphasis must be placed in its
computation.

V. CONCLUSIONS

A fundamental study has been performed of the character-
istics of control algorithms, which may be applied to the
motion control of free-floating space manipulators. The re-
sults obtained show that nearly any control algorithm that can
be applied to conventional terrestrial fixed-based manipula-
tors, with a few additional conditions, can be directly applied
to free-floating space manipulators. We hope that the results
encourage the development of more effective control algo-
rithms for free-floating space manipulator systems.
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APPENDIX

For the planar two-link system, shown in Fig. 4, the two
coordinates of the end-effector x and y are assumed to be
controlled by the two manipulator joint angles g, and g,.
The end-effector orientation is not controlled for this 2-DOF
system (N = 2), hence (21) for this system is simply

o d T _ oy
X=TIg dt[x’y] J*q (A1)
where J* is given by (23).

In the following the construction of the system interia
matrix will be demonstrated. First, express all v, in (7) is
the frame of the ith body according to (4), (5), and (6). For
the sake of simplicity assume that all r; and 1; are parallel to
the x axis of the ith frame. Hence, only the x component of
the ‘v;, is nonzero and is given by

1

Org = ﬁ"omo
0 % 1
¢ = _ﬁro(ml +m,)
" = ‘i"o(ml +my) =1,
M
= i{"1(”’0 +my) + 1mg}
M
'ef = i(11’"0 - rymy)
M
U= - L{ll(”’n +my) + rym,)
M
2r;“=ilz(m +m)+r
M 0 1 2
= ilz(”"o +m)
M
F = - —1—12m2 (A2)
M
where the total mass of the system M is given by
M=my+m +m,. (A3)

For this example, the transformation matrix from the space-
craft frame to the inertial frame T is given by

cos ()
sin (6)

—sin ()

cos () (A4)

T,(6) = Rot (6) = [

where 0 denotes the spacecraft attitude, as shown in Fig. 4.
Only the planar subpart of the transformation matrices is used
for simplicity. The transformation matrices °T; are found
using (9):

°T, =Rot(q,) °T, = Rot(g,)Rot(q,). (AS)
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For the planar case, the inertia matrices °D, s

spond to (3) and (12), reduce to the scalars °d; ;,

which corre-
given by

mylm, + m
0d00:10+ 0( 1 2)r02

0 MoTo

dy = M {11(”‘1 +m,) + ’1”’2} cos(g,) ="dy,

Ydyy = %’012 cos (g, + g,) =%y,

et T T
°d,, = {m},vr[nz ril, + m;;nz L(, + r,)} cos (q,) =%,
®dy =1, + ma(mo + m) 1,2, (A6)

M
Both ‘u,(i =1, 2) in (11) are equal to [0 O 1]7; the OF,
matrices reduce to
[1 0]

°F, = [1 1]. (A7)

For simplicity, drop the left superscripts from °D ; and set

2
D, = ;0"(1,,, i=0,1,2
D=D,+ D, +D,. (A8)

Using (13) and (18), the inertia matrix H* is written as
2 2 D.D.
H*(q) = > > OFiT(Odij - 4) F.
i=1 j=1 D

Substituting into (A6), (A7), and (A8) yields the explicit
form of H* given as (25).

(A9)
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