
 
 

 

 

  

Abstract—One of the most demanding tasks for a robotic 
servicer is capturing a target. During this task, the mechanical 
systems can be subject to large forces for short duration 
(impacts). In space servicers, these impacts may render the 
capturing of a target impossible without the use of undesirable 
fuel-consuming maneuvers. This paper presents an approach 
for minimizing impact reactions, using the Center of Percussion 
(CoP), a characteristic of rigid bodies rotating around an axis. 
This work generalizes and delineates the exact requirements 
for its use. Application of CoP in multibody systems is 
demonstrated using the Newton-Euler Algorithm. 
Implementation guidelines are discussed. Simulations of a 
planar space robot system, and a three-dimensional PUMA-like 
manipulator on a satellite base confirm the benefit of using the 
CoP during tasks that include impacts. 

I. INTRODUCTION 

he exploitation of space requires the establishment of 
both human and robotic presence. Towards this, various 
roadmaps indicate the need for the realization of a 

robotic orbital infrastructure for tasks such as satellite 
servicing, orbital debris removal and construction of large 
assemblies on Earth or other planetary orbits. To this end, 
On-Orbit Servicing (OOS) plays a central part. 

A demanding task for OOS is capturing a target by a 
space robotic system, consisting of a satellite base and one 
or more manipulators mounted on it. Difficulties arise due to 
the dynamic coupling between the base and the manipulator, 
see for example [1]. Capturing is inevitably connected with 
impact forces as the chaser and the target come into contact. 
This task is more challenging when the robotic system and 
the target have comparable mass. In order to minimize the 
reaction forces, the reduction of impulse on the body using 
the Extended Inertia Tensor has been proposed [2], and the 
concept of virtual mass and the impedance matching of both 
systems were studied [3]. Notable works focus on the 
problem taking into account the system dynamics, mainly 
the post impact ones, e.g. [4]. 

This work proposes a method for minimizing negative 
reaction stresses on the chaser during impacts. It exploits the 
physical characteristics of any body capable of rotating 
around an axis. It is based on a property known in 
mechanics, called the Center of Percussion (CoP) or 
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Percussion Point. Its primary use is in sports equipment (e.g. 
tennis rackets, baseball bats) and hand tools (e.g. hammers). 
For example, if an external force acts on a bat’s CoP, less 
stress is produced on the hands of a player (sweet spot), e.g. 
[5]. The CoP has been of limited use so far in other areas 
although some interesting works have been developed 
during the last decade. In [6], a novel method which exploits 
the CoP for legged locomotion is proposed, by considering 
the foot while in stance, as a pivot. Another work for bipeds 
uses the CoP for weight lifting [7]. In [8], the authors use the 
CoP to minimize the reactions on a wagon when it 
encounters an object. In [9], the existence of multiple CoPs 
at flexible beams is presented. Generally, the analytical 
description in the bibliography is scarce. An earlier version 
of this work, which presented preliminary ideas, is [10]. 

The motivation for exploiting the CoP for a robot, 
especially a space-borne one, is twofold. First, the use of the 
CoP is expected to reduce the reaction forces on its joint 
bearings, reducing the developed stresses and consequently 
the probability of mechanical failure. Secondly, especially 
for space systems, the reaction reduction minimizes the 
translational forces that affect the free-flier base, minimizing 
the tendency of the chaser to move away from the target 
after an impact (especially following an unsuccessful 
capture). Staying close to the target also minimizes the fuel 
that would be required to approach the target again. 

This paper establishes the theoretical basis of CoP in 
Section II, and generalizes the concept in 3D in Section III. 
In Section IV, its use in multibody systems is shown using 
the Newton-Euler Approach (NEA). Implementation 
guidelines for various manipulator types are discussed in 
Section V. In Section VI, simulations of a planar space robot 
system, and a space robot with a 3R manipulator confirm the 
benefit of using the CoP during tasks that include impacts. 

II. 2D CENTER OF PERCUSSION ANALYSIS 

Assumptions. The following assumptions apply [11]: (i) 
Impacts are between rigid bodies. The contact area remains 
small in comparison to other dimensions, (ii) Impact forces 
are very high and for short duration, therefore the impulse of 
forces like gravity is negligible. It is assumed that there is no 
considerable change at system configuration during an 
impact. This applies also in zero-g even if there is no fixed 
base, because each joint appears as fixed in a position during 
impact (“quasi-fixed”), and (iii) Relative velocities between 
bodies are within the limits of low speed impacts in order to 
avoid plastic yield. No requirement is set for the exact 
impact/contact model or the coefficient of restitution. The 
assumptions are valid also for the 3D and multibody cases. 
Manipulator workspace and singularity issues are out of the 
scope of this work. 
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The concept of CoP. The CoP is a property of bodies 
able to rotate about a fixed axis. If an impact occurs at the 
CoP, the reaction force which is exerted on the fixed rotation 
axis (i.e. on the bearings of the rotational joint), tends to a 
minimum including zero. Let a beam, see Fig. 1, that can 
rotate about a Rotation Axis (RA). An impact occurs at a 
point on the longitudinal axis and the overall movement of 
the body consists of the superposition of (i) a translation in 
the direction of the impulse, therefore an inertial force is 
exerted at its RA and (ii) a rotation around its Center of 
Mass (CM), thus exerting an inertial force at the RA, at a 
direction opposite to that of the previous one (CM acts as a 
fulcrum). The vectorial sum of the forces exerted on the RA 
is the reaction force during the impact. If the impact occurs 
at the CoP, it will produce zero reaction force. 

 

Figure 1. The concept of CoP: how the reaction forces can be zeroed. 

To study this concept analytically, consider the free 
body diagram in Fig. 2. Assume an impact force at some 
point (impact point - IP) along the longitudinal axis. For 
purposes of generality, the impact force can have any 
direction. Balance of forces and moments yield, 

   
−m ⋅vcm ⋅sinθ = −m ⋅θ ⋅rcm ⋅sinθ = Nx − Fimp ⋅cos φ+ θ( )  (1) 

   
m ⋅vcm ⋅cosθ = m ⋅θ ⋅rcm ⋅cosθ = N y − Fimp ⋅sin φ+ θ( )  (2) 

 
   
I o ⋅θ = −l ⋅Fimp ⋅sinφ  (3) 

where all symbols are defined in Fig. 2 and m is the mass of 

the body. The body polar inertia I o  around the RA at O is, 

   I
o = I c + m ⋅rcm

2  (4) 

where I c  is the body polar inertia with respect to the CM.  

 

Figure 2. Free body diagram of a beam under impact force. 

The impact point is located at distance 

 
 
l = lcop + r = rcop + rcm( ) + r  (5) 

from point O. Integrating (1) - (3) for a small fraction of 
time, transforms the forces into corresponding impulses 
(e.g. Nx →ΩNx ) and accelerations into velocities. Applying 

algebraic manipulation and trigonometric identities, the 

magnitude of the impulse of the reaction force N , ΩN , is 

given by, 

  
ΩN

2 =ΩNx
2 +ΩNy

2 =ΩFimp

2 ⋅ 1+ CID
2 − 2 ⋅CID( ) ⋅sin2 φ⎡

⎣
⎤
⎦  (6) 

with 

 
  
CID = l ⋅rcm ⋅m ⋅ I o( )−1

 (7) 

where  is the Coefficient of Impact Design, a term 

which relates the physical characteristics of the body to the 
location of the impact. Equations are simplified using the 
non-dimensional impulse 

 
   
ΩN = ΩN

2 ΩFimp

2  (8) 

Equation (6) does not depend on the beam angle , but it 
depends solely on the angle of impact  and the position of 

impact due to (7). In order to find the CoP, one can set  

   
ΩN = 0 ⇔φ = Arcsin 2 ⋅CID −CID

2( )−1/2⎡
⎣⎢

⎤
⎦⎥
= Arcsinβ  (9) 

The term   Arcsin  is valid for  β ≤1 , while the radicand of 

the square root is valid only for 0 <CID < 2 , meaning that 

 β ≥1 . Therefore, the reaction impulse will be eliminated if 

and only if 

 
   
ΩN = 0 ⇔β = 1⇔φ = ±π 2 and CID = 1  (10) 

The sign defines the force direction. Equation (10) proves 
the uniqueness of the CoP along the longitudinal axis of a 
beam. From (7), and using (10) and (5) for r = 0  (impact 
occurs at the CoP), it can be found that the CoP’s location is 

 
  
rcop = I c ⋅ rcm ⋅m( )−1

 (11) 

If rcm → 0⇔ rcop → +∞ , i.e. the reaction forces cannot be 

eliminated on a statically balanced body. If 
rcm → +∞⇔ rcop → 0 , the CoP coincides with the CM. 

General impacts. Next, we examine the sensitivity of 

  ΩN  when either the CID  or the angle φ  change. Fig. 3a 

shows 
 
∂ ΩN( ) ∂φ  as a function of φ . It can be seen that the 

sensitivity is highest when CID = 1 . Similarly Fig. 3b shows 

 
∂ ΩN( ) ∂CID  as a function of CID . We observe that the 

highest sensitivity is at φ = 90o . This sensitivity analysis 

showed that deviations from the normal impact angle yield 
higher rate of change of the reaction forces than deviations 
from the impact location of the CoP; yet the penalty is that at 
the non-CoP points the reaction forces can never be 
eliminated. The controller should try to achieve the 
requirements of the percussion point as in (10), and if this is 
not achievable it should try to keep the angle of the impact 

as close toφ = 90o  as possible. 

III. CoP ANALYSIS IN 3D IMPACTS 

We consider the rigid body of Fig. 4 whose Center of 
Rotation (CR) is located at the spherical joint O. Let a force 

 CID

θ
φ
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Fimp  acting on it. The equations of motion for the Coordinate 

System (CS) a :{xyz}  are 

 
 

aFo = m ⋅ av∑ cm
= aN + aFimp   (12) 

 
  

a Mo = d dt a Io ⋅ aω( ) = a limp ×
a Fimp( )∑  (13) 

where N  is the reaction force at O and Io  is the inertia 
matrix of the body with respect to O. For any CS, the 

following holds (  13  is the 3x3 unit matrix) 

 vcm = ω × rcm   (14) 

 limp = rcm + rimp = rcm + rcop + r = lcop + r  (15) 

 
   
Io = Ic + m ⋅ rcm

T ⋅rcm ⋅13 − rcm ⋅rcm
T( )  (16) 

where Ic  is the inertia matrix with respect to CM. 
Integrating for a short duration (12) and (13), using (14) and 
performing some algebraic manipulation we find that 

 a Io ⋅ aω = a limp × m ⋅ aω × arcm −
aΩN( )⎡⎣ ⎤⎦   (17) 

 

 

 

Figure 3. Change rate of non-dimensional impulse as (a) Impact angle 
changes and (b) as the coefficient of impact design changes. 

 

Figure 4. A 3D rigid body rotating around a spherical joint and the 
geometrical elements used to derive the CoP conditions in 3D case. 

where aΩN  is the reaction impulse at point O, and can be 

considered as the vectorial sum of a normal, ΩN⊥ , and a 

parallel,  ΩN , component to the impact vector limp : 

  ΩN =ΩN⊥ +ΩN   (18) 

Using (18) in (17): 

 a Io ⋅ aω − a limp × m ⋅ aω × arcm( ) = aΩN⊥ ×
a limp   (19) 

The parallel component  ΩN  does not produce a moment 

around O and cannot be cancelled because its line of action 
passes through the CR. Therefore, we focus on eliminating 
the ΩN⊥  due to Fimp⊥ , for which 

 limp ⋅Fimp⊥ = 0   (20) 

This condition corresponds to the angle requirement in (10). 
To zero ΩN⊥ , we require that the left side of (19) be equal to 

zero ( a limp ≠ 0 ). For such a point, a limp =
a lcop , and therefore 

 a lcop × m ⋅ aω × arcm( ) = a Io ⋅ aω   (21) 

During impact the instantaneous rotation axis is defined by 

 t̂ = aM aM with aM = a limp ×
aFimp   (22) 

Let also unit vectors n̂  and ŝ  normal to each other and to t̂  
so that an orthogonal CS b :{nst}  is formed. The 

instantaneous angular velocity in this CS is then
 

 bω = 0 0 ω t( )T   (23) 

Equation (21) is written as 

 
  
a Io ⋅ aω = m a r×

cm
aω× a lcop   (24) 

Where r×  is the matrix that corresponds to a cross product 

 r = x y z( )T ⇔ r× =
0 −z y

z 0 −x
−y x 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (25) 

Eq. (24) written in frame b yields 

 b Io ⋅ bω − mbr×cm
bω× b lcop = 0   (26) 

Eq. (26) and (23) result in 

 ω t ⋅

bI ont +m ⋅rcm,t ⋅ lcop,n
bI ost +m ⋅rcm,t ⋅ lcop,s

b I ott −m ⋅ rcm,s ⋅ lcop,s+ rcm,n ⋅ lcop,n( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0   (27) 

where rcm, i=n,s,t( )  and lcop, i=n,s,t( )  
refer to the i component of the 

corresponding vector in CS b. For (21) to be valid all three 
rows of (27) must be equal to zero. The case where ω t = 0  

is trivial (no impact occurs). The vector of (27) cannot be 
totally eliminated except if: 

i) t̂  is a principal inertia axis of the body. Then, 

 
bI ont =

bI ost = 0    (28) 

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

(a) Impact Angle    in degrees 

C
ha

ng
e 

R
at

e 
of

 
N

on
-d

im
en

si
on

al
 I

m
pu

ls
e C

ID
 = 1

 0.2

  0.4

  0.6

  0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b) Coefficient of Impact Design CID

C
ha

ng
e 

R
at

e 
of

 
N

on
-d

im
en

si
on

al
 I

m
pu

ls
e 

 = 90o

 54o

 72o

 18o
36o

3456



 
 

 

 

ii) There is symmetry with respect to the ns  plane, i.e.  

 rcm,t = 0  (29) 

iii) Equation (20) applies. 

iv) Using the last row of (27) and (29), the impact occurs at 
a point which satisfies 

 
   
brcm ⋅

b lcop =
bI o

tt ⋅m
−1    (30) 

which by virtue of (15) and (16) it is 

 
   
brcm ⋅

brcop =
bI c

tt ⋅m
−1  (31) 

Eq. (31) requires that the IP, the CR and the CM should be 

collinear. In the planar case, t̂  is substituted with ẑ , and 
(31) reduces to (11). Also if only (20) and (31) apply, the 
reaction forces can be still minimized but not eliminated. 

IV. CoP FOR MULTIBODY SYSTEMS 

The CoP for multibody systems can be found using Newton-
Euler Algorithm (NEA). Consider two adjacent links, Fig. 5. 

Note that the external impact force 
   
fimp,i  acts on the impact 

point, which is located at 
   
run,i  from CM and 

   
−rdist ,i  from 

next joint {i+1}. To this end the equations of interest are: 

 
    
i vC ,i =

d
dt

iω i ×
i rC ,i +

i v i( )  (32) 

 
    
i Fi = mi ⋅

i vC ,i  (33) 

 
   
i Mi =

d
dt

C ,i I i ⋅
iω i( )  (34) 

 
   
i fi =

i R i+1 ⋅
i+1fi+1 −

i fimp,i +
i Fi  (35) 

 

   

i ni =
i Mi +

i R i+1 ⋅
i+1ni+1 +

i rC ,i ×
i Fi +

+ i ri+1 ×
i R i+1 ⋅

i+1fi+1 −
i rimp,i ×

i fimp,i

 (36) 

Also 

 
   
i rimp,i =

i rC ,i +
i run,i  (37) 

 
   
i ri+1 =

i rC ,i +
i run,i +

i rdist ,i  (38) 

where all vectors are defined in Fig. 5. Equations (32) - (36) 
are integrated for a small fraction of time. Algebraic 
elimination of a number of terms from (36) using (32) - (35) 
and (37) - (38) and integration of (36) yield: 

 

    

irC ,i +
irun,i( )× iΩf ,i =

irun,i × mi ⋅
iω i ×

irC ,i( )− C ,iIi ⋅
iω i

⎡
⎣⎢

⎤
⎦⎥

A

−

− irdist ,i ×
i R i+1 ⋅

i+1Ωf ,i+1
⎡
⎣

⎤
⎦

B

+

+ irun,i × mi ⋅
i v i( )⎡

⎣⎢
⎤
⎦⎥

C

+ i ni −
i R i+1 ⋅

i+1ni+1( )∫⎡⎣⎢
⎤
⎦⎥

D

 (39) 

 

Figure 5. Free body diagram of two adjacent manipulator links. 

To obtain iΩ f ,i = 0 , terms A − D  in (39) should be zero. 

Note that according to (20), only the normal components of 

a force can be eliminated. Thus for the normal components: 

• A : is (26) so by virtue of (31) 

 irun,i =
ircop,i    (40) 

• B : For this term to be zero, joint {i+1} must be 
located at the CoP of link {i}. To eliminate B  both an 
external impact and reaction forces from link {i+1} should 
act on this point, therefore 

   
i rdist ,i = 0 . Such a case implies 

that the external impact force acts directly on the bearings 
of link {i+1}. For this reason, in the following analysis one 
force acts at a link at any time, either the impact force, or 
the reaction force from next link. 

• C : is very small, since   
i v i  is small or zero and can 

be neglected. This is reasonable due to the assumptions set 
earlier. 

• D : includes joint moments. It can be neglected due 
to the small time duration and the integration. However, it is 
expected that deviations due to the different postures of 
links {1} to {i-1} and links {i+1} to end effector, will exist.  

The above analysis concludes that in order to minimize 
reaction forces on joint bearings, it is best to position a 
revolute joint at the CoP of the previous body, while the 
impact should occur at the CoP of the last link. 

V. IMPLEMENTATION GUIDELINES 

We focus on rotational joints as this is the most common 
type for space applications. It is assumed that the use of 
special drives, allows the links to be decoupled from their 
actuators, rendering the joints essentially passive. The 
following guidelines apply to joints, able to rotate freely: 

a.  An impact should occur as near as possible to the 
measured CoP and at normal angle with respect to 
longitudinal axis which is defined by the RA (2D Case) or 
RP (3D Case) to the IP. To this end, the robotic system must 
prepare itself for the impact. The equations which describe 
the use of CoP are summarized by (20), (28), (29) and (31). 

b. Revolute joints should be normal to each other at the 
moment of the impact, see (10) and connected at their CoP, 
see (39) and (40)(assuming the latter property is achievable). 
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c.  To filter an impact, in 2D systems two revolute joints 
are needed, while in the 3D case, three revolute joints are 
needed, each one for each component of the impact force. 

d. In the presence of uncertainties, the configuration 
with successive normal links gives the best results. 

e.  If (d) above is not feasible, another option is to 
“divide” the n-body robot into two sub-bodies; the first 
includes bodies 1 to k-1 (body I), and the second includes 
bodies k to n (body II), see Fig. 6. Joint k should remain free 
and all the joints of body II are locked in an appropriate 
configuration. Calculating the impact location, the links of 
body II are selected so that both their characteristics and 
configuration can form a “rigid” body with mass and inertia 
according to (a) and (b). Body I rotates so that the axis of 
joint k will become normal to impact. 

 

Figure 6. Proposal for exploitation of CoP for a general 3D multibody 
system, by locking joints in a way to create a feasible CoP. 

Interesting issues related to the effect of parametric and 
structural uncertainties do arise. Preliminary trials show that 
the system response is robust to small such uncertainties. 

VI. SIMULATION RESULTS 

Planar Space Robot. The first set of simulations refer to 
a planar system, Fig. 7, which consists of a thruster-
equipped base, able to make x-y translational planar motions 
and a rotational motion around the z axis normal to its plane. 
Table 1 displays the physical properties of the system, 
including the position of CoP for the two rotational links. 
Simulation tests were run changing various parameters: (a) 
impact position on link 5, (b) the impact angle, (c) position 

of joint 5 on link 4 and (d) initial angles of joints  and . 

Both joints are free to rotate. The impact duration is 0.01s, 
and the magnitude is set equal to 10kN. Note that it was 
more convenient to plot forces and not impulses. Also, the 
plots present the force components on the local coordinate 
frame of each joint, i.e. the normal component of the impact 
force is parallel to the yi axis of the local CS of link i. 

Fig. 8 presents the reaction forces at link 5 after the impact: 
(a) changing the point of impact, and (b) changing the angle 
of impact on CoP. As shown in Fig. 8a the local reaction 
force is almost eliminated when the impact is located in 
CoP, whereas in Fig. 8b, the reaction force is almost 
eliminated when the impact angle is normal to link 5. 

Deviations from zero are due to D  in (39). These results 

validate the previous analysis. Fig. 9 presents the motion of 
the robotic system with free joints after impact for (a) a non-
ideal configuration and (b) an ideal one with the two links 
normal to each other, and the force acting at the CoP normal 
to the final link. Both simulations last for 1.2 s. At final 
time, the CM of base has been translated 0.22m in the first 

case and 0.12m in the second case. The relatively fast link 
motion is due to the applied impact force and the system 
mass properties, which were selected for illustrative 
purposes. The response will be slower or faster depending 
on these values, but qualitatively similar. 

Table 1. Physical characteristics of planar system 

Link Mass 
(kg) 

Inertia  
(kg-m2) 

Joint 
length (m) CM (m) CoP (m) 

1 0 0 0 0 - 
2 0 0 0 0 - 
3 400 66.67 1 0 - 
4 40 3.33 1 0.5 0.6665 
5 30 2.5 1 0.5 0.6667 

 

Figure 7. The 2D Space System and its dofs used in simulations. 

 

Figure 8. Reaction forces on local coordinates of joint 5 for alternating a) 
different impact point and b) different impact angle. 

3D 3R system. The next set of simulations, presents a 3R 
PUMA-like robot with free joints. The joint axis of the first 
joint is at 90o with respect to the second one, which is 
parallel to that of the third joint, see Fig. 10. That is, it 
inherently satisfies the requirement of guideline (a). The 
properties of the system are presented in Table 2. The 
manipulator can be fixed on a large base, e.g. ISS or the 
Earth. The reaction forces on the bearings of joints and the 
reaction on the base are of interest. The impact force is 

Fimp = [1 11]
T kN , ||Fimp ||= 1.732kN ,  with duration 0.01s. 
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Figure 9. Motion snapshots of the 2D system with free joints following 
impact. (a) non-ideal configuration, (b) ideal configuration. 

Fig. 11 presents the results for two different setups; the blue 
dotted line presents a configuration, where all joints are 
located at CoP of links (denoted by C,C,C) and the initial 

angles are (q1,q2,q3) = (0
o,0o,90o ) . The red solid line 

presents a random setup with joints at the tip of each link 

(denoted by 1,1,1) and initial angles (q1,q2,q3) =
(0o, 30o, 45o ).

  

Table 2. Properties of RRR system under evaluation. 

Link Mass 
(kg) 

Inertia  
(kg-m2) 

Joint 
length (m) CM (m) CoP 

(m) 
1 10 1 1 0.2 0.5 
2 20 2.5 1 0.3 0.417 
3 5 0.5 1 0.15 0.667 

 

Figure 10. The 3D RRR robotic system under evaluation. 

Table 3 presents the magnitude of reaction forces per joint 
for some characteristic configurations and impact points or 
joint positions. As both the Fig. 11 and Table 3 show, the 
use of CoP has advantages. In Fig. 11 one may observe that 
at joint 1 (base) the forces developed are much lower when 
the guidelines are satisfied. However they are not zero due to 
the dynamic coupling between links and joints 1 and 2, and 

due to D  in (39). This can be seen also in the third and 

fourth cases of Table 3, where the third link has the same 
setup (impact on CoP) but different magnitudes have been 
found. Still the configuration with normal links and impacts 
on CoP minimizes the impulse reactions at the base. 

Table 3. Max reaction forces as a function of configuration & joint location.  

Absolute 
Forces in 

N 

1st Case 
(0o, 0o, 0o) 
(1, 1, 1) 

2nd Case 
(0o, 0o, 0o) 
(1, C, C) 

3rd Case 
(0o, 0o, 90o) 

(1, 1, C) 

4th Case 
(0o, 0o, 90o) 
(C, C, C) 

Joint 1 1583 1390 419 310 
Joint 2 1520 1337 355 220 
Joint 3 1307 1260 838 997 

 

 
Figure 11. Reaction forces at the RRR for two dinstict configuration cases. 

VII. CONCLUSIONS 

This work examined the use of the CoP during impacts. 
It has been shown that for any multibody system, there are 
advantages using the CoP. By following particular strategies 
prior to impact, the reaction forces on joints can be 
effectively minimized. Simulations validated this 
proposition. Implementation guidelines that make use of the 
CoP advantages for manipulators have been presented. The 
analysis was developed with space robots in mind; however 
this analysis can be utilized also by other robotic systems. 
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