
  

Abstract�— This paper presents the design and practical 
implementation of an autonomous dynamic positioning scheme, 
i.e., the stabilization of linear and angular velocities as well as 
the position and orientation, of a novel triangular floating sea 
platform. The required closed-loop forces and moments must 
be provided by three rotating pump jets, located at the bottom 
of three partly submerged cylinders located at the three corners 
of the platform. With this control configuration the platform is 
over-actuated, i.e., it has more control inputs than degrees of 
freedom (DOF). Design rules that maximize the manipulability 
of the platform, and a control allocation scheme that allows 
goal realization without violating thruster capabilities are 
developed. Simulations results, including environmental 
disturbances, are presented that demonstrate the performance 
of the controller, and the allocation scheme employed. 

I. INTRODUCTION 
LOATING platforms are widely used in the offshore 
petroleum industry, as portable pipeline systems, as 

research, in-the-field laboratories, etc, [1]. To accomplish 
their task these platforms must be kept stationary at a desired 
position and orientation. Therefore, they are equipped with 
appropriate actuation systems that provide the necessary 
dynamic positioning to counterbalance the sea wave, wind 
and current induced forces and moments, and the 
uncertainties in modeling the dynamics of the platform. 
Floating platform dynamics are inherently nonlinear due to 
the rigid body dynamics and, more importantly, due to the 
strong hydrodynamic interactions, [2]. Hence, in order to 
design efficient closed-loop controllers, nonlinear techniques 
must be adopted. Control allocation schemes must also be 
designed; usually, such vessels have redundant actuators, 
i.e., they have more control inputs than DOF yielding an 
over-actuated control system. Thus, the closed-loop control 
forces and moments need to be efficiently distributed to the 
actuators in such a way that the control objective is realized 
without violating operational constraints (e.g. thrusters�’ 
capability). The above problem leads, in general, to a 
constrained optimization problem that is hard to solve using 
even state-of-the-art iterative numerical optimization 
software in a safety-critical real-time system with limiting 
processing capacity, [3]. Nevertheless, real-time iterative 
optimization solutions have been proposed [4], [5], and [6]. 
Optimal thrust allocation has been addressed in [7]. 
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Thrusters that can be rotated, and thus produce two force 
components in the horizontal plane, are usually mounted 
under the hull of the vessel. Optimization schemes for such 
actuation configurations have been proposed for example in 
[8]. In [9], controllability problems regarding the plane 
motion were studied. The authors presented preliminary 
results on the subject in [10]. 

The aim of this work is the dynamic modeling and the 
stabilization of linear and angular velocities as well as of 
position and orientation, of a novel triangular floating 
platform, see Fig. 1. Our main goal is the practical 
implementation of such an autonomous dynamic positioning 
scheme, with real time capabilities.  

 
Fig. 1.  The triangular floating platform (under construction). 

The required, closed-loop force and moment is provided 
by three rotating pump jets. The system is over-actuated, i.e., 
it has more control inputs than DOF. Hence, we design a 
properly control allocation scheme in order for the control 
objective to be realized without violating the thrusters 
capability. This scheme is based on the pseudo-inversion of 
the transformation matrix relating the control forces and the 
jets thrust. Furthermore, we formulate design rules that 
maximize the manipulability of the platform, based on the 
condition number of the normalized transformation matrix 
relating the control forces and the jets thrust. 

This methodology provides a fast, reliable, and 
computationally inexpensive algorithm related to the 
complex, on-line, iterative ones. Simulation results, 
including sea current and wind forces, are presented to 
demonstrate the performance of the controller, and 
allocation scheme. 

II. PLATFORM SYSTEM DESCRIPTION 

A. General Description 
The platform, which is under construction, is called 

�“DELTA VERENIKI�”, and will be used during the assembly 
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of the deep-sea high-energy neutrino telescope �“NESTOR�”, 
[11], see Fig. 1. It consists of a triangular structure mounted 
on three double-cylinders, one at each corner of the 
structure. The plane of the triangle is parallel to the sea 
surface. These cylinders provide the necessary buoyancy 
since part of their body is immersed. The actuation of the 
platform is realized utilizing pump jets at the bottom of the 
three cylinders, fully submerged. A diesel engine drives each 
pump, while an electro-hydraulic motor can rotate the jet 
providing vectored thrust. 

B. Geometry and Kinematics 
The main body of the structure has the shape of an 

isosceles triangle with LAB = LAC, and LBC the length of the 
base, see Fig. 2. The structure has its center of mass (CM) 
coinciding with point G, along the symmetry axis at a 
distance dAG from the vertex A. 
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Fig. 2.  A 2D representation of the platform. 

To describe the kinematics of plane motion, two reference 
frames are employed, the inertial reference frame {I} and the 
body-fixed frame {B}, see Fig. 2. As shown, the origin of 
{B} frame coincides with the platform CM. The xb body axis 
is aligned with the symmetry axis of the platform, the yb 
points left, and zb points upwards. Hence, the kinematics 
equations of the plane motion are: 
   x = Rv  (1a) 
where 
     x = [x, y, ]T  (1b) 

    v = [u, , r]T  (1c) 

 

   

R =
c s 0
s c 0
0 0 1

 (1d) 

with s  = sin( ), c  = cos( ). In (1), x and y represent the 
inertial coordinates of the CM and  the orientation of {B} 
with respect to the {I} frame; u and v are the surge and sway 
velocities respectively, defined in the body-fixed frame, and 
r is the yaw (angular) velocity of the platform, see Fig. 2. 

Due to the fact that the hydrodynamics interactions are 
between the water and the submerged part of the cylinders, 
we also need the kinematics relations between the cylinders 

and the CM in order to derive equations for the 
hydrodynamic forces and moments. First, we introduce some 
necessary notations: BsA/G is the position of point A with 
respect to G expressed in frame {B}, and BsB/G , and BsC/G 
have similar meaning; BvG = [u,v]T is the linear velocity 
vector of the CM, BaG = B(dv/dt)G is the linear acceleration 
vector, and  = dr/dt is the angular acceleration, all 
expressed in frame {B}. Then, the following geometric 
relations hold: 
    

BsA/G = [dAG ,0]T  (2a) 

    
BsB/G = [ dDG , dBD ]T  (2b) 

    
BsC /G = [ dDG , dDC ]T  (2c) 

Velocities and accelerations are given by: 
    

B vA = [u, + rdAG ]T  (3a) 

     
BaA = [u r2dAG , + dAG ]T  (3b) 

    
B vB = [u rdBD , rdDG ]T  (3c) 

     
BaB = [u dBD + r2dDG , dDG r2dBD ]T  (3d) 

    
B vC = [u+ rdDC , rdDG ]T  (3e) 

     
BaC = [u+ dDC + r2dDG , dDG + r2dDC ]T  (3f) 

C. Dynamics 
The structure oscillates in the vertical direction because of 

the weight and buoyancy equilibrium: specifically, when the 
weight of the structure increases �–within certain bounds�– the 
cylinders are submerged further, yielding increased 
buoyancy and vice-versa, see Fig. 3. The height of the 
cylinders above the surface is computed as: 
   h = Huc (1/ Ruc

2 )(m / (3 ) Rlc
2 Hlc )  (4) 

where  is the water density and m is the mass of the 
structure. Actuation and control in this direction is outside 
the scope of this work. 
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Fig. 3.  A side view of the double-cylinder structure. 

The hydrodynamic forces are due to the motion of the 
cylinders into the water: the added mass force is a linear 
function of the acceleration of the cylinder, while the drag 
force is a quadratic function of the cylinder velocity. These 
forces are modeled according to Morison�’s Equation [12]. 
As an example, we derive here the force on a cylinder at 
point A, expressed in body-fixed frame {B}: 

 
   

fA = CA [R uc
2(Huc h)+ Rlc

2 Hlc ] BaA

       CD [Ruc (Huc h)+ Rlc Hlc ] B vA
B vA

 (5) 
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where CA is the added mass coefficient and CD the drag 
coefficient. The forces on the cylinder are equivalent with an 
equal force and a moment acting on the CM. For example, 
the force in (5) gives 
    G = BsA/G × fA  (6) 

It is already mentioned that the jets can provide vectored 
thrust and thus more flexibility in control design, Fig. 2. 
Symbols JA, JB, and JC denote the magnitudes of the thrusts 
while A, B, and C denote the corresponding rotation 
variables. These thrusts provide control forces in xb and yb 
axes, Fx and Fy respectively acting on the CM, and torque Mz 
about zb, according to the linear transformation: 
   c = BJ  (7a) 
where 
 

  c = [Fx , Fy , Mz ]T  (7b) 

 

   

B =
1 0 1 0 1 0

0 1 0 1 0 1
0 dAG dDC dDG dDC dDG

 (7c) 

    J = [JAs A , JAc A , JBs B , JBc B , JCs C , JCc C ]T  (7d) 
with s  = sin( ), c  = cos( ). 

Using the above computations, we derive the equations of 
motion of the platform in plane motion, expressed in body-
fixed frame {B}: 
    Mv = f + c  (8a) 
where, the mass and added mass matrix is 

   

M=

m 3mA 0 0

0 m 3mA (2dDG dAG )mA

0 (2dDG dAG )mA Izz (dAG
2 +2dBD

2 +2dDG
2 )mA

 (8b) 

where mA is the coefficient of the acceleration in (5), and IZZ 
the mass moment of inertia about the zb axis. Also, 
     v = [u, , r]T  (8c) 

 
   
f = [ fx , fy , fz ]T  (8d) 

where f is a nonlinear function of the velocities of the system 
not given here due to space limitations. 

III. DESIGN ISSUES 
Due to hydrodynamic forces and practical constraints, the 
shape and the overall size of the platform was given. 
Nevertheless, the ratio between the base and the side of the 
isosceles triangular structure, and the location of the 
platform�’s center of mass along the symmetry axis, point to 
two interesting design issues. We study this problem by 
analyzing B, which is a suitable matrix because depends 
only on platform geometry. 

Consider equation (7a), which describes the linear 
transformation relating the control forces and moment and 
the jet thrusts. In order to analyze transformation matrix B, 
and make our analysis insensitive to size or unit systems, we 
normalize (7a) according to 

    c
* = B*J  (9a) 

where 
 

  c
* = [Fx , Fy , ( Mz / dV )]T  (9b) 

 

   

B* =

1 0 1 0 1 0

0 1 0 1 0 1

0
dAG

dV

dDC

dV

dDG

dV

dDC

dV

dDG

dV

 (9c) 

   dV = (LAC + LBC ) / 2  (9d) 
The normalized matrix B* still depends only on platform 

geometry, and maps the elements of J into the force 
elements of *

c. Next, we investigate its condition number k, 
i.e. the ratio between the highest and lowest singular value. 
We choose to work with k, because its value represents a 
measure of the relation between control values and jet load 
distribution. Hence, our aim is to keep k as low as possible 
in order to distribute forces at each jet as equally as possible. 
The singular values of matrix B*B*T are found to be: 

 
  

2 = 3, 1,3 =
3+ dAGn

2 + 2dDCn
2 + 2dDGn

2 ± K

2
 (10a) 

where 

 
  

K = ( 3 dAGn
2 2dDCn

2 2dDGn
2 )2

4(2dAGn
2 + 6dDCn

2 + 4dAGndDGn + 2dDGn
2 )

 (10b) 

with dXYn = dXY/dV. Since the extensive search of the singular 
values shows that the inequality 1  2 > 3 is always true, 
the condition number k of matrix B*B*T is equal to 1/ 3.  
Further investigation of k in reasonable limits (LAB = 45m, 
and 20m < LBC < 70m) results in the following conclusion. 
The condition number k is minimum when, (a) LBC is 
minimum, and (b) the ratio r = dAG/(dAG+dDG) is equal to 2/3 
(see Fig. 2). Note, that for every value of LBC within the 
search area, k has local minimum when the ratio r is equal to 
2/3, see Fig 4. 
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Fig. 4.  Condition number k as a function of r and LBC. 

Due to space and practical implementation constraints, it 
was not possible to construct the platform with minimum 
LBC, but r is very close to optimum. 

IV. CLOSED LOOP CONTROL DESIGN 
In this section, we design a closed loop controller for 
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dynamic positioning purposes. We assume as closed control 
input the vector c. In the next section we transform this in 
jet J vector requirements. From (8a) it is 
     v = M 1(f + c )  (11) 
yielding three scalar equations 
    u = fu1 + fu2 Fx  (12a) 

 
   
= f 1 + f 2 Mz + f 3Fy  (12b) 

 
   
r = fr1 + fr 2 Fy + fr3 Mz  (12c) 

where the various f�’s are functions of the states. We observe 
that there are input couplings in (12b) and (12c) but the 
corresponding coefficients   f 2  and   fr 2  are very small, 

justifying the consideration of   f 2 Mz  and 
  
fr 2 Fy  as small 

disturbances that are bounded and that can be counteracted 
by a robust closed loop controller. Hence, in the last two 
equations the control design variables are Fy and Mz 
respectively. Setting 
   Fx =1/ fu2 ( fu1 fu2 )  (13a) 

 
  
Fy =1/ f 3( f 1 f 3 )  (13b) 

   Mz =1/ fr3( fr1 fr3 )  (13c) 
with , , and  auxiliary control design variables, we have 
the system 
   u =  (14a) 
    = + f 2 Mz  (14b) 

 
   
r = + fr 2 Fy  (14c) 

From (1a) we can write 
   x = Rv +Rv  (15) 
Setting the control variables , , and  from (14) as 
 

    
v = RT (f fb Rv) , (16) 

selecting the feedback such as to include integral action, i.e. 

 

    

f fb = [xR , yR , R ]T K D[x xR , yR yR , R ]T

K P[x xR , yR yR , R ]T

K I [x xR , yR yR , R ]T dt
0

t

 (17) 

and using the following positive definite diagonal gain 
matrices KD=diag{kdx,kdy,kd }, KP=diag{kpx,kpy,kp }, and 
KI=diag{kix,kiy,ki }, then the controlled system becomes, 

 

   

x xR = kdx (x xR ) kpx (x xR )

kix (x xR )dt
0

t

+ x

 (18a) 

 

   

y yR = kdy ( y yR ) kpy ( y yR )

kiy ( y yR )dt
0

t

+ y

 (18b) 

 

   

R = kd ( R ) kp ( R )

ki ( R )dt
0

t

+
 (18c) 

In (18), �“R�” denotes a reference (desired) variable, and x, y 
and  are small and bounded disturbances. 

V. CONTROL ALLOCATION 
In this section, the proposed control allocation scheme that 
has been implemented is illustrated. The goal is to distribute 
the closed-loop control forces and moments efficiently to the 
actuators in such a way that the control objective is realized 
without violating thruster capabilities. 

Equation (7) describes the linear transformation between 
the vector J=[JAs A, JAc A, JBs B, JBc B, JCs C, JCc C]T, and 
the control variables C=[Fx, Fy, Mz]T. In order to realize the 
control algorithm described above, we calculate J, using 
(7a), according to: 
   J = B+

c  (19) 
where B+=BT(BBT)-1 is the pseudo-inverse of matrix B, and 
the obtained solution locally minimizes the norm of J�’s 
elements. Note here that since the system is over-actuated, 
infinite solutions exist to (7a). Utilizing the presence of 
redundant actuation controls, (19) can be modified by the 
addition of the homogenous solution: 
    J = B+

c + (I J+J)J0  (20) 
For example, would be a suitable solution in the case, we 
need C = [0, 0, 0]T, when the jet thrusts cannot be zero due 
to diesel engine constraints. However, in this work we 
assume that this is not the case; therefore we employ the 
solution described in (19). 

Next, from (7) and (19) we calculate the desired 
magnitudes and angles of the jet thrusts according to the 
following equations. 

 

  

Jq,des = (Jqs q )2 + (Jqc q )2

q,des = a tan 2(Jqs q , Jqc q )
 (21) 

where q=A, B, C. However, the desired values calculated in 
(21) cannot be supplied immediatly because of actuator 
dynamics. Here, we model the dynamic of the jets angle 
according to: 
 

   q = (1 / ts )( q,des q )  (21) 
where ts is the model�’s time constant. In addition, according 
to the specifications, the thrust of each jet is limited to 15kN. 

VI. SIMULATION RESULTS 
Our goal in this example is to stabilize the floating 

platform position in a circle with center in (0,0) and a radius 
equal to 5m, and the platform direction in 0 deg, with a 
tolerance equal to ±5 deg. The initial errors are set as xe = 
6.0, ye = -2.5, in m, e = -5 deg, ue = 0.1, ve = 0.0, in m/s, 
and, re = 0.01 in rad/s. Note, that sensor noise (according to 
our hardware specifications) is added to position and 
orientation readings. 

A. Without Environmental Disturbances 
In this section we present simulation results to 

demonstrate the performance of the controlled dynamical 
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system without environmental disturbances. Some 
characteristic parameters used are given: geometric data LAB 
= 45, LBC = 35, m = 42×5103, Ruc = 2.2, Huc = 6.5, Rlc = 3.5, 
Hlc = 3.0, all in SI units and the hydrodynamic coefficients 
are CD = 0.8, CA = 0.8. The gains of the controller were 
chosen as kdx = kdy = 0.5, kd  = 0.3, kpx = kpx = kpy = 0.2, and 
kix = kix = kiy = 0.0 i.e., no integral action is implemented 
initially. In Fig. 5, the resulting trajectory of the CM of the 
platform in the inertial 2D space is displayed. 

 
Fig. 5.  The 2D path of the CM of the platform. 

The linear and angular velocities are depicted in Fig. 6 (a, 
c, and e,) while in Fig. 6 (b, d, and f) we see the position and 
orientation variables. Despite the saturation of the jet thrusts, 
and the finite velocity of the jet rotation, we observe that the 
platform is stabilized within the required limits. 
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Fig. 6.  (a), (c), (e) Linear and angular velocities, and (b), (d), (f) Position 
and orientation variables. 

B. With Environmental Disturbances 
Next, simulation results with wind and sea current 

disturbances are presented. Wind forces (surge and sway) 
and moment (yaw) are calculated according to: 

 
  
Xwind =

1
2

CX ( R ) wVR
2 AT  (22a) 

 
  
Ywind =

1
2

CY ( R ) wVR
2 AL  (22b) 

 
  
Twind =

1
2

CT ( R ) wVR
2 AL L  (22c) 

where CX and CY are the force coefficients and CT is the 
moment coefficient. They are functions of the relative angle, 

R, between the wind and platform direction, and are taken 
from tables. w is the density of air in kg/m3, AT and AL are 

the transverse and lateral projected areas in m2, and L is the 
overall length of the platform in m. VR is the relative wind 
speed (Fig. 7), and is given in knots, see [13] and [14]. We 
also impose a sea current with velocity (in m/s) shown in Fig 
7. In order to improve the performance of the controller so 
as to counterbalance environmental disturbances, we activate 
the integral part of the controller setting kix = kix = kiy = 0.01. 
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Fig. 7.  Wind and sea current velocities. 

In Fig. 8, the dynamic positioning performance of the 
controller is illustrated against the environmental 
disturbances. 

 
Fig. 8.  Dynamic positioning with environmental disturbances. 

Fig. 9 (a, b, c, d, e, and f) shows the thrusts of the jets and 
the corresponding angles. The linear and angular velocities 
are depicted in Fig. 10 (a, c, and e,) while in Fig. 10 (b, d, 
and f) we see the position and orientation variables. Again, 
despite the disturbances and the actuators constraints, the 
platform is stabilized within the required limits. 
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Fig. 9.  (a), (c), (e) Jet thrusts, and (b), (d), (f) Jet angles (with 
environmental disturbances). 

?GH?



0 100 200 300−2
−1

0
1

t, [s]

u, 
[m

/s]

0 100 200 300−0.5
0

0.5

t, [s]

v, 
[m

/s]

0 100 200 300−0.01
0

0.01

t, [s]

r, [
rad

/s]

0 100 200 300−5
0
5

10

t, [s]

x, 
[m

]

0 100 200 300−5
0
5

t, [s]
y, 

[m
]

0 100 200 300−5
0
5

t, [s]

ps
i, [

de
g]

 
Fig. 10.  (a), (c), (e) Linear and angular velocities, and (b), (d), (f) Position 
and orientation variables (with environmental disturbances). 

VII. PRACTICAL IMPLEMENTATION 
For the implementation of the above described control 
system, we utilize three GPS receivers, and two antennas, 
see Fig. 11a and Fig. 11b respectively, which provide the 
position and orientation of the platform. Two RTK GPS 
receivers are connected with the antennas and give the 
orientation data. The position is supplied from the third GPS 
receiver, which is connected also with one of the antennas. 
The GPS receivers have an accuracy of ±1 m. 

 
Fig. 11.  (a) GPS receiver. (b) Antenna. (c) PC104 control station. (d) 
Analog output modules with power supply. 

 
Fig. 12.  Structure of the implemented system. 

The signals of the GPS receivers are transmitted to the 
control station via RS232 ports. The control station is a 
PC104 tower consisting of a cpu module and a module with 
four RS232 ports, see Fig. 11c. The control station is 
operated by the real time linux operating system Xenomai. 
The control algorithm and allocation scheme is coded using 
the C programming language. The software has as input the 
position and orientation of the platform and calculates 

according to the above described algorithms, the desired jet 
thrusts and angles. The output values control the analog 
modules (Fig. 11d), which drive the jets. The implemented 
system, whose structure is depicted in Fig. 12, will be 
integrated in the platform when its construction is finished. 
This will allow us to try the controller in the field. 

VIII. CONCLUSION 
This paper reports the implementation of an autonomous 
dynamic positioning scheme of a new triangular floating 
platform, with real time capabilities. The system is over-
actuated, i.e., it has more control inputs than DOF. Hence, 
we designed an appropriate control allocation scheme in 
order for the control objective to be realized without 
violating thruster capabilities. This scheme is based on the 
pseudo-inversion of the transformation matrix relating the 
control forces and the jets thrust. In addition, we formulated 
design rules that maximize the manipulability of the 
platform, based on the condition number of the normalized 
transformation matrix relating the control forces and the jets 
thrust. The methodology provides a fast, reliable, and 
computationally inexpensive algorithm compared to the 
complex, on-line, iterative ones. Simulation results, 
including environmental disturbances, were presented to 
demonstrate the performance of the controller and allocation 
scheme. 
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