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Abstract . –  This paper presents the analysis and design of a 
novel mini-robotic platform that is able to perform 
translational and rotational sliding with sub-micrometer 
positioning accuracy and develop velocities up to 1.5 mm/s. 
The platform actuation system employs vibration micro-
motors.  The dynamic model of the platform and of its 
actuation system is presented, and analytical expressions are 
derived which provide design guidelines for the platform. 
Simulations are performed which verify the analytical results 
and demonstrate the platform capabilities. The platform 
design is simple, compact and of low cost. Also the energy 
supply of the mechanism can be accomplished in an 
untethered mode using simple means such as single cell 
batteries. 
 
Index terms – micro-positioning, vibration motors, 
dynamic simulation   

I. INTRODUCTION 
In the last decade, micro-robotics has become an 

increasingly important field of research. Domains of 
application such as micro fabrication, biotechnology, 
microscopy and opto-electronics demand miniaturized or 
micro-robotic platforms that provide ultra high precision, 
flexibility and a wide mobility range. Extensive research 
has been carried out in the design and realization of 
miniature mobile robotic platforms. Motion principles and 
actuation mechanisms that combine sub-micrometer 
motion of high resolution and the speed virtues of coarse 
positioning have been the subject of intensive studies, see 
for example [1], [2].  

A lot of work has been carried out especially in 
piezoelectric micro-positioning systems, for example see 
[1-5]. Possibly the most popular micro-positioning motion 
mechanism is the stick-slip principle which is implemented 
using piezoelectric actuators.  A characteristic example is 
the micro-platform presented in [1] which is capable of 
positioning accuracy of less than 200nm and provides 
velocities of up to 5mm/s. A different motion principle 
based on piezo-actuators and electromagnets, is presented 
in [5], where the interaction of piezo-electric elements and 
electromagnetic actuators results in a step length of 
7.0 mµ  and a velocity of 1.16 .  /mm s

Although piezoelectric actuators provide the required 
positioning resolution and actuation response for micro-
positioning, usually they suffer from complex power units 

that are expensive and cumbersome and which do not 
allow for untethered operation. Furthermore, piezoelectric 
actuators are complex systems that exhibit non-linear 
behavior and as a result they lack accurate mathematical 
model that can provide a reliable prediction of the system’s 
behavior.  

This paper presents the analysis and design of a novel, 
simple and compact mini-robotic platform that is able to 
perform translational and rotational sliding with sub-
micrometer positioning accuracy and velocities up to 
1.5mm/s. All the components of the mechanism including 
its driving units are of low cost and readily available. The 
motion mechanism is based on the interaction of 
centripetal forces due to vibration of micro-motors and 
friction forces at the base supports. The concept was 
inspired by observing the motion of devices that vibrate, 
such as cellular phones or unbalanced washing machines 
[6, 7].  First, analysis of the motion principle physics is 
provided. Then, the dynamic model of the platform and of 
its actuation system is presented and analytical expressions 
are derived which provide guidelines for the design of the 
platform. Using a basic platform design, simulations are 
performed which verify the analytical results and 
demonstrate the platform capabilities.  Finally, a set of 
equations for open loop control of the platform are derived 
and tested through a simple example. 

II. MOTION PRINCIPLE  
The motion principle is first demonstrated, using a 
simplified single DOF mobile platform of mass M. The 
motion mechanism uses a mass m rotated by a motor O  
mounted on the platform as shown in Fig 1.  

 
Fig. 1. Simplified 1 DOF platform. 

Assume that the mass m rotates on a vertical plane at a 
constant speed ω , about point O  and that the platform is 
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constrained to move along the y-axis only.  The forces 
exerted on point  due to the rotating mass m are given 
by (moment due to the rotating mass is considered 
negligible): 
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where g is the acceleration of gravity, and r is the length of 
the link between m and O. If the rotational speed ω is 
above a critical value, then oy  overcomes static friction 
forces and the platform begins to slide. The equations 
describing the motion along the y-axis and the static 
equilibrium along the z-axis are: 
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where µ  is the coefficient of kinetic friction. The results 
of a numerical simulation of the above equations are 
presented in Fig 2.  

 
Fig. 2. Forces and displacement of a 1DOF mechanism. 

From the third plot of Fig. 2, it becomes apparent that 
the platform exhibits a net displacement towards the 
positive y direction. This is due to the fact that the vertical 
reactions exerted on the platform by the ground, lead by 

 the lateral force oy , see first plot of Fig 2. As a 
result, during the second quadrant of the rotation of mass 
m, where most of the forward motion takes place, the 
vertical reaction reduces from the value 

90 f

( )M m g+  to its 
minimum value. On the contrary during the fourth 
quadrant, where most of the reverse sliding takes place, the 
vertical reaction increases from ( )M m g+ to its maximum 
value. Hence, during reverse sliding the friction forces are 
greater than the friction forces during forward sliding and 
the velocities developed during reverse motion are smaller, 
see plot 2, Fig. 2. Consequently, the reverse displacement 
is smaller compared to the forward displacement, resulting 
to a net forward displacement of the platform to the left. 
Reversal of ω will lead to a reversal of the direction of 
motion.   

III. 3DOF PLATFORM 
The design of a 3DOF mini-robotic platform takes 
advantage of the aforementioned motion principle and 
focuses towards the creation of a mobile mini-robot with 
the following design objectives: The platform should be 
capable of performing , ,x y θ  motion. It should be able to 
reach positioning resolution of the order of sub-microns 
and also it should be able to develop speeds of several 
mm/s. Its size should be less than 5 cm2 so that multi-robot 
cooperation within a workspace of limited area would be 
feasible. Finally the cost of constructing and powering the 
robotic platform should be as small as possible.  

Platform base: The geometry of the base of the 
mini-robot is an equilateral triangle of length . Three 
small rigid supports A, B and C located at each vertex of 
the triangle provide the contact points between the 
platform and the ground, see Fig. 3a. The 3-contact point 
configuration is favored due to the fact that it is not over-
constrained and ensures static equilibrium along the 
vertical axis. The center of mass of the base coincides with 
the geometrical center of the equilateral triangle. 

l

      
Fig. 3.   (a) Platform base.     (b) Vibrating motor. 

 

Actuators: The actuation of the platform employs 
miniature-vibrating motors. The vibrating motor is axially 
coupled to an imbalance load see Fig. 3b, and the control 
input is the spin speed ω of the motor. During rotation, the 
eccentric mass of the load generates dynamic forces, which 
are applied to the platform.  

Three identical vibrating motors D, E and F, are 
symmetrically mounted on top of the platform as shown in 
Fig. 4.   

 
Fig. 4. Actuation and reaction forces. 

If actuators D and F spin at an opposite sense of 
rotation while E is inactive, then the platform slides along 
the positive x-axis, if their sense of rotation is reversed 
then sliding occurs along the negative x-axis. Similarly 
when D and E or E and F actuators spin at an opposite 



 

sense of rotation, then the platform slides at a direction 
angle of 120  or  with respect to the x-axis 
respectively, see Fig 4. When all actuators spin with same 
sense of rotation, then pure rotation about the platform 
center of mass (CM) is performed. 
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IV. DYNAMICS  
1. Dynamic model 

The assumptions on which the dynamic model is based 
are: (i) The imbalance load can be modeled as a point mass 

, rotating at a distance r from the motor axis. (ii) All 
actuators are identical. (iii) Every rotating mass m spins at 
a constant speed 

m

ω and the plane of rotation is normal to 
the plane of the base. (iv) All rotating masses are in phase. 
(v) The Coulomb friction model with constant friction 
coefficient µ  is adopted. (vi) All involved bodies are 
rigid. (vii) Due to platform symmetry, it is assumed that 
actuation forces along the base plane and moments about 
the z-axis are equally distributed on the three supports. 

The platform analysis involves the body-fixed frame B 
and the inertial frame O. The adopted notation is i

jf  
where the superscript  is the frame index and subscript  
is the component 

i j
, ,x y z  index. The superscript denotes 

frame B. Frame O uses no superscript. Forces  
include the normal and frictional contact forces at contact 
points A, B and C respectively. The angle 

b
, ,b b b

a b cf f f

θ  is the angle 
of the eccentric mass with respect to the vertical axis as 
shown in Fig. 5. Forces  and f  (see 
Fig. 4), are the actuation forces and moments exerted on 
and about the corresponding motors and are given by: 
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where ω θ= &  is motor angular velocity and r  is the 
imbalance mass m distance from the axis of rotation. The 
position vector describing the contact points A, B and C 
are denoted by  and the position vectors 
describing the tip of the motors axis D, E and F are 
denoted by .  The Newton-Euler equations of 
the platform are [8]: 
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where  is the rotation matrix between frames B and O, 
is the base angular velocity,  is the platform inertia 

matrix and 

R
ω b I

[ , ]Tx y=x is the base CM position in the 
inertial frame. Due to the platform symmetry and planar 
motion, [0,0, ]Tψ=ω & ,  is substituted by I zzI  and the 
term  is zero.  b b b×ω I ω

2. Threshold values of spin speed ω  
The platform is not able to slide for all values of motor 

angular velocities ω . In particular if ω  is below a critical 
value slω , then actuation forces are not large enough to 
induce motion. If speed ω  is greater than the critical value 

slω , then forces are strong enough to counteract friction 
and consequently to induce motion. On the other hand, if 
ω  is very large i.e. greater than a critical value tipω , then 
tipping occurs and platforms stability is lost. The range of 
permissible driving speeds ,sl tipω ω ω⎡∈ ⎣ ⎤⎦  is defined as the 
operating range of the platform. The objective is to choose 
parameter values in order to maximize the displacement 
per step and to maximize the value of tipω  so that platform 
velocity is maximized. To this aim, analytical expressions 
are derived which relate the minimum slω  and minimum 

tipω  to platform’s physical parameters. Also, the analytical 
expression for the total displacement per cycle is derived 
and its relation to the design parameters is examined. Fig. 
5 depicts the circular trajectory described by each rotating 
mass during a complete cycle, and also relates the motion 
state of the platform to the angular position of the spinning 
mass. It is assumed that slω ω>  i.e. that sliding is induced.   

 
Fig. 5.  Mass rotation during a single cycle. 

For simplification purposes, and for exploiting the 
merits of analytical solutions, slω  and tipω  are determined 
only for the cases of pure translation and pure rotation.  
Consider the case of pure translation along the x-axis 
where slω ω= , sliding is impending and friction forces 
have reached the static limit: 

  (6) ( )b b b b b b
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Solving (6) for ω , yields: 
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Where µ  is the coefficient of friction and parameters 
,M m  and  are defined in Fig. 4 and 5. From (7), it is 

evident that for every 
r

θ  there is a particular critical speed 
slω . Since the mass describes complete circles, it is 

necessary to determine the angle θ  at which the minimum 
slω  occurs.  Differentiating (7) with respect to angle θ  

and setting the result equal to zero yields the angle at 
which the minimum slω  occurs: 
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Substituting (8) into (7) and after simple algebraic 
manipulations, the minimum critical speed for translation 
is obtained: 
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It may happen that due to system geometry, the 
platform reaches a tipping condition before slip. In this 
case, the equilibrium of moments about the y-axis is 
marginally stable and reactions and  are reduced 
to zero. Taking moments about contact point B and solving 
for 

b
azf b

czf

tipω  yields: 
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where parameter H is the height of the triangular base as 
shown in Fig. 4 and parameter  is the distance from the 
motor axes to the ground.  

oh
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Substituting (11) into (10), and writing , where 
 is a constant of proportionality, results to: 
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The condition for min minsl tipω ω<  yields: 
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Equation (13) is a design condition, which must be met 
to ensure slip during linear motion. Next, the case of pure 
rotation is studied. 

In order to induce pure rotation about the CM of the 
platform all three masses are rotating at the same speed, in 
a clockwise or anticlockwise direction depending on the 
desired sense of rotation. Following similar reasoning with 
the translational case it is found that: 

 
1/ 2

1/ 2
2 2 1/ 2

2 (3 / ) (3 / ),  ( )
33 (4 )sl tip

g M m g M m
rr a

ω ω
µ−

⎛ ⎞+ +
= =⎜ ⎟+⎝ ⎠

(14) 

Equations (14) are design equations that contribute to the 
determination of parameters , ,r mµ  and M . 
3. Analytical derivation of the displacement  

The net displacement per cycle is found as follows. A 
single motion step of the platform is broken up into the 
forward phase (forward displacement) and the reverse 

phase (reverse displacement), see Fig. 5.  Starting from the 
forward phase, the slip angle 1θ  is derived from (7):  

 1
1 ( )fθ ω−=  (15) 

Then, the linear acceleration of the forward phase is 
integrated with respect to θ  and yields (all motion 
variables are expressed with respect to frame ):  O
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Where forward  is the displacement along the direction 
of motion. Next, 

x
( ) 0forwardv θ ′ =  is solved for θ ′ . Then 

setting 2θ θ ′= and integrating  from v 1θ to 2θ  yields: 
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At an angle 2θ the forward phase stops and the reverse 
phase begins. Repeating the previous steps for the reverse 
phase, yields: 
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The net displacement is a function of ω  and is given by: 
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Similarly, the net rotational motion is given by: 
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4. Design parameters 
The equations derived above provide the following 

design guidelines: From (13) and (14) it is clear that in 
order to increase tipω , parameter H  or equivalently the 
base surface should be maximized and parameter , i.e. 
the motor height, should be minimized. The material at the 
contact points should exhibit a low coefficient of friction 
in order to increase the total displacement per step as 
indicated by (20) and (21). The parameter  according to 

oh

r



 

(20) and (21) is proportional to the total displacement per 
cycle, but according to (12) and (14) tipω is inversely 
proportional to the square root of . An average value of 

 is selected in order to increase the step length per cycle 
with out reducing substantially the value of 

r
r

tipω .  
The above design rules apply to both translational and 

rotational motion and it is evident that they are extended to 
the general plane motion. On the other hand, increasing the 
value of parameter  decreases a tipω  translational but 
increases the value of tipω rotational. Hence, an average 
value of parameter  is desired in order to balance 
between translational and rotational operating range. It 
should be mentioned that the limited workspace of the 
working environment does not allow for a platform with 
side length larger than 5 and consequently this imposes 
an upper limit to parameter 

a

cm
H . Finally from (20) and (21) 

it is observed that mass M and inertia I  should be kept 
low, otherwise the net displacement is reduced 
considerably.   

A typical vibrating micro-motor that complies with the 
above guidelines and the dimensional constraints of the 
platform is the SHICOH SE-S4E (B1A) coreless vibration 
motor whose mechanical and electrical characteristics are 
depicted in Table 1. The consideration of the above 
analysis leads to the set of design parameter values listed 
on Table 2. 

TABLE 1 
VIBRATING MOTOR SE-S4E SPECIFICATIONS 

Parameter Value Parameter Value 
Rated Voltage 1.3V Vibration 212.74 /m s
Operating 
Voltage 

0.9V~1.6V Weight of 
motor 

1.1g 

Road Speed 9000min-1 Radius of 
unbalanced 
mass 

2mm 

Starting 
Voltage 

0.8V Motor diameter 4mm 

Starting 
Current 

120mA Motor length 14.4 mm 

Armature 
Resistance 

12  Ω   

 
TABLE 2 

DESIGN PARAMETERS 
Parameter Value Parameter Value 

r 0.002-0.004 m l  0.05m 

m 0.001kg oh  0.004m 

M 0.03 kg µ  0.5 

V. SIMULATION 
A dynamic simulation of the generalized plane motion 

of the platform is implemented using MATLAB and 
SIMULINK. The aim of the simulation, is to verify 
analytical results and to demonstrate the platform motion 
capabilities. 

1. Software design. Simulation software comprises: (i) A 
complete dynamic model of the platform (ii) A dynamic 
model of the actuators (iii) A set of functions that solve for 
the reaction forces and friction forces at each contact point. 
(iv) A differential kinematics model. At every time step 
the procedure presented in Fig. 6 is implemented. The 
input to the system is either the motors speed or the motors 
input voltage. 

 

Fig. 6. Program flow chart. 

2. Simulation example. The simulation example 
demonstrates pure translation at a direction 120  with 
respect to the x-axis. To this aim rotational speeds of 
motors D and E are set at 

o

2250d rpmω =  and 
2250e rpmω = −  respectively. Plot 1 of Fig. 7 demonstrates 

the platform displacement along the x and y axis as a 
function of time. Plot 2 demonstrates the velocities along 
the x and y-axis and Plot 3 depicts the lateral actuation 
forces, the friction forces, the variation of static friction 
limit (Coulomb level) and the centre of mass velocity for a 
single cycle. Observe that when the actuation forces 
exceed the static friction limit, the friction is saturated at 
that limit and motion is induced. The net displacement per 
cycle for 2250d rpmω = is 4 mµ . The average velocity is 

.  30.15 10 /m s−⋅

 
Fig .7. Translational motion with and . 2250d rpmω = 2250e rpmω = −

It should be noted that the motion principle holds even 



 

for phase differences up to 15 . On the contrary, the 
synchronization assumption (same spin speed) has to be 
strictly satisfied or otherwise the phase difference will 
increase by ( e d t)ω ω−  leading to an unpredictable 
platform behavior. Hence, closed loop control of the 
motors rotational speed, or utilization of stepper motors 
instead of DC motors, is essential for reliable operation. 

VI. OPEN LOOP CONTROL 
It is important to derive an open loop control of the 

platform in order to be in position to specify the required 
ω (control input) that results to the desired displacement 
per cycle (input command). To this aim, the inverse 
function  is calculated numerically, where 1( totalf xω −= )
ω  is the motor angular speed and totalx  is the net 
displacement during a cycle. The determination of the 
inverse function requires the solution of a non-linear 
system of four equations which is formed by (7), 

2( ) 0forwardv θ = , 3( ) 0reversev θ =  and (20) expressed in the 
following functional form:  
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Given the desired totalx , the system is numerically 
solved for ω . Following the same reasoning, a set of 
similar equations is generated for the rotational motion.  

As an example of the open loop control efficacy, 
consider the case where it is desired to perform the 
following path: (i) 25 mµ translation along the positive x-
axis implemented through five steps of 5 mµ , (ii) 1  
anticlockwise rotation about z, implemented in 5 steps of 

, (iii) again, perform a

mrad

0.2mrad 25 mµ translation at an 
angle of 1 with respect to the x-axis. Solving (22), it 
is found that 

mrad
5x mµ=  requires 2256trans rpmω = . 

Similarly, it is found that the rotational step of 
requires 0.2mrad 2196rot rpmω = . The time duration of 

each control command is set to: 
(   )60controlt Number of steps /ω= .  

 
Fig. 8. x, y and ψ displacement. 

Plot 1 of Fig. 8 demonstrates the trajectory of the 
platform along the x-axis. Plot 2 depicts the trajectory 
along the y-axis and Plot 3 demonstrates the trajectory of 
the angleψ . The step sizes are the expected ones.  

Inertia of the spinning mass was neglected in this 
example. In a hardware experiment however, inertia will 
be present and during large acceleration or deceleration 
will affect the platform motion by generating transient 
motion and thus reducing the platform resolution to a few 
steps. 

VII. CONCLUSIONS 
The paper presented the analysis and design of a novel 

mini-robotic platform that is able to perform translational 
and rotational motion on the plane. The mini-robot can be 
constructed from inexpensive and readily available 
components, and its power requirements can be provided 
by a single cell battery. Analytical expressions and 
simulation results predict that the positioning resolution of 
the platform is of sub-micrometer order, its maximum step 
is about 40 mµ  and its maximum average velocity is about 

.  1.5 /mm s
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