
 
 

 

  

Abstract— Dynamic stability allows running animals to 
maintain preferred speed during locomotion over rough 
terrain. It appears that rapid disturbance rejection is an 
emergent property of the mechanical system. In running 
robots, simple motor control seems to be effective in the 
negotiation of rough terrain when used in concert with a 
mechanical system that stabilizes passively. In this paper, we 
show that a quadruped robot could be able to perform self-
stable running behavior in significantly broader ranges of 
forward speed and pitch rate with suitable mechanical design. 
The results presented here are derived by studying the 
stability of passive dynamics of a quadruped robot running in 
the sagittal plane in a dimensionless context and can be 
summarized as: (a) the self-stabilized behavior of a quadruped 
robot for a particular gait is related to the magnitude of its 
dimensionless inertia, (b) the values of hip separation, 
normalized to rest leg length, and the leg relative stiffness of a 
quadruped robot affect the stability and should be in inverse 
proportion to its dimensionless inertia, and (c) the self-stable 
regime of quadruped running robots is enlarged at relatively 
high forward speeds. 

I. INTRODUCTION 
egotiation of rough terrain is the most important 
reason for building legged robots, as opposed to 

wheeled and tracked ones. Animals exhibit impressive 
performance in handling rough terrain and hence they can 
reach a much larger fraction of the earth landmass on foot 
than wheeled vehicles. Their robotic counterparts have not 
yet been benefited from the improved mobility and 
versatility that legs offer. Early attempts to design legged 
platforms resulted in slow, statically stable robots, which 
are still the most prevalent today; see [1] for a survey.  

In this paper, however, we focus on dynamically stable 
legged robots. Two decades ago, Raibert set the stage with 
his groundbreaking work on dynamic legged locomotion by 
introducing very simple controllers for stabilizing running 
on one-, two- and four-legged robots, [2]. Later on, Buehler 
designed and built power autonomous legged robots with 
one, four and six legs, which demonstrate running in a 
dynamic fashion, [3]. Tekken robotic quadruped by Kimura 
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and co-workers is an example of another design and control 
approach for dynamically stable running based on 
neurobiological principles, [4].  

Despite their morphological and design differences, all 
these robots are propelled forward using control laws 
without intense feedback. For instance, Poulakakis et al. on 
quadrupedal robot Scout II demonstrated recently that 
simple controllers, requiring only touchdown detection and 
local feedback from motor encoders, can be used to stabilize 
running, [5]. These controllers simply position the legs at a 
fixed touchdown angle during the flight phase and result in 
stable bounding.  

In a loose sense, these experimental findings in robotics 
are in qualitative agreement with developments in biology. 
As experimental evidence suggests, high level nervous 
system is not required for steady state level running, and 
mechanisms entirely located within the spinal cord are 
responsible for generating the rhythmic motions of legs 
during locomotion; see [6] and [7]. Further, control during 
rapid locomotion is dominated by the mechanical system as 
recent research in physiology indicates; see [8] and [9].  

In this paper, motivated by the experimental findings in 
existing robots, we investigate whether the self-stable 
regions of complex running tasks, such as bounding, can be 
enlarged. Our analysis departs from the recent 
developments regarding the self-stabilization property of 
quadruped robots, such as SCOUT II by Poulakakis et al., 
where it is shown that the dynamics of the open loop 
passive system alone can confer stability of the motion, 
[10]. It was found that bounding gaits can be passively 
generated as a response of the system to an appropriate set 
of initial conditions and a regime where the system is self-
stabilized against small perturbations from the nominal 
conditions was identified. However, this regime involved 
running with forward speeds of 3-4 m.s-1 and bounding 
with 100-200 deg.s-1 (pitch rate), which is not practically 
achievable with existing quadruped robots.  

In our work, however, stability analysis of the passive 
dynamics of quadruped robots is studied in a dimensionless 
context, inspired by the approach followed in [11], 
revealing further intrinsic properties and unveiling aspects 
of quadrupedal running. It is shown that proper selection of 
robot physical parameters can provide self-stable running 
behavior in significantly broader ranges of forward speed 
and pitch rate, which are, most importantly, physically 
realistic. We anticipate the proposed guidelines to assist in 
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the design of new, and the modification of existing robotic 
quadrupeds.  

II. SYSTEM MODELING 
In this section we introduce a simple model for studying 

and analyzing gaits where pitching motion is a significant 
mode in the system’s motion, e.g. bounding. Inspired by the 
Spring Loaded Inverted Pendulum (SLIP) model, which 
exhibits natural stability, we aim at identifying a template 
for studying the dynamics of gaits with body pitching. Note 
that the bound cannot be studied using the SLIP since it 
does not capture body’s oscillatory motion.  

The fact that bounding is essentially a natural mode of 
the system, and that only minor control and energy effort 
are required to maintain running, practically motivated us 
to study the passive dynamics of the system, which is the 
unforced response of the system under a set of initial 
conditions. This unactuated and conservative model is 
shown in Fig. 1, while its parameters are given in Table 1.  
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Figure 1. The template for quadrupedal running in plane and gait phases. 

 
TABLE 1.  

VARIABLES AND INDICES USED. 
Symbol Variable Symbol Variable 

x COM horizontal pos. g acceleration of gravity 
y COM vertical pos. m body mass 
θ body pitch angle J body inertia 
γ leg absolute angle d hip to COM distance 
φ leg relative angle f as an index: front leg 
xbt back toe horizontal pos. b as an index: back leg 
xft front toe horizontal pos. j dimensionless inertia 
l leg length r relative leg stiffness 
lo leg rest length p half hip separation 
k leg spring stiffness Fr Froude number 
f axial force at leg s time scale 

hapex flight apex position * dimensionless 

 
As shown in Fig. 1, the planar model represents the 

lateral half of a quadruped, and consists of a rigid body and 
two springy massless legs, attached to either side of the 
body. Actuators control the angle of each leg with respect to 
the body. Each modeled leg represents the back or the front 
leg pair, in which the two back or front legs are always in 
phase and is called the virtual leg, [2]. Each virtual leg has 

twice the stiffness of the robot leg. 
System dynamics are derived using a Lagrangian 

formulation, with generalized coordinates to be the 
Cartesian variables describing the center of mass (COM) 
position and main body attitude. During flight, the robot is 
under the influence of gravity only. Throughout stance 
phase, robot’s toes are fixed on the ground, and act as 
lossless pivot joints.  

The resulting set of equations is manipulated next to be 
independent of the choice of units, i.e. dimensionless. The 
non-dimensional variables are formed in ways that define 
the morphology of the quadruped robot or that correspond 
to ratios of robot physical parameters in the model 
equations. To achieve that, the following dimensionless 
variables are introduced, 

 *t t s=  (1) 

 * * * 2, ,o o ox x l x s x l x s x l= = =& & && &&  (2) 

 * * * 2, ,o o oy y l y s y l y s y l= = =& & && &&  (3) 

 * * * 2, ,s sθ θ θ θ θ θ= = =& & && &&  (4) 
where s is the time scale of the system, while the rest of the 
variables are defined in Table 1.  

By substituting (1)-(4) into the equations of motion one 
gets a dimensionless description of the system. The 
resulting motion of the COM is then characterized by a time 
scale, which is associated to the inverse of the natural 
frequency of the horizontal motion, 

 2 1o os g l s l g= ⇒ =  (5) 
While the individual dimensionless equations would be 
different if one uses another time scale, the relationships 
between them would be invariant. 

Selection of the time scale as in (5), results to a number 
of dimensionless parameter groups, which are widely used 
by experimental biologists. These include: (a) Froude 
number Fr ([5]), defined as 

 oFr v g l=  (6) 
where v is the robot forward speed, (b) dimensionless inertia 
j ([12]), i.e. robot body inertia normalized to md2, 

 2j J m d=  (7) 
and (c) leg relative stiffness r ([13]), which is given as 

 .or k l m g=  (8) 
Also, the normalized half hip separation p is introduced,  
 ,op d l=  (9) 

while force variables are normalized as 
 * , , .i if f mg i b f= =  (10) 
The sought-after dimensionless description of the system 

is given by (11)-(15) for the double stance, in the form of a 
set of differential and algebraic equations,  

 ( ) ( )* * * * *1 sin 1 sinb b f fx r l r lγ γ= − − − −&&  (11) 

 ( ) ( )* * * * *1 cos 1 cos 1b b f fy r l r lγ γ= − + − −&&  (12) 
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 ( ) ( )( )* * * *1 cos 1 cosf f b br l l p jθ φ φ= − − −&&  (13) 

where 

 
( )
( )

* * * * * *

* * * * * *

Atan2 sin , cos

Atan2 sin , cos

b bt

f ft

y p x p x

y p x p x

γ θ θ

γ θ θ

= − + −

= + − −
 (14) 

 
( ) ( )
( ) ( )

2 2* * * * * *

2 2* * * * * *

cos sin

cos sin

b bt

f ft

l x x p p y

l x x p p y

θ θ

θ θ

= − + + −

= − − + +
 (15) 

The dynamics for any other phase may be derived from 
that of the double stance, by removing appropriate terms.  

III. STABILITY ANALYSIS 
The goals of analysis are to determine the conditions 

required to permit steady state cyclic motion and find ways 
to apply these results to facilitate improved quadruped 
robots design. System periodic steady state trajectories are 
identical trajectories that repeat themselves during one cycle 
of locomotion. To formulate these trajectories, we employ a 
Poincaré Map technique, which connects system state at a 
well-defined locomotion event to state of the same event at 
the next cycle.  

This event is chosen here to be apex height, because the 
vertical velocity at apex height is always zero, which 
reduces the dimensions of the state vector. A second 
dimensional reduction to the state vector can be obtained by 
projecting out the horizontal component x of the state 
vector, since it is not relevant to describing the running 
gait. Thus, the state vector x* at apex height is given as, 

 * * * * * .y xθ θ =  x &&  (16) 

The state vector at apex height for some cycle n, xn
*, 

constitutes the initial conditions. Based on these, the flight 
equations are integrated until one of the touchdown events 
occurs, e.g., front or back leg stance. The touchdown event 
triggers the next phase, whose dynamics are integrated 
using as initial conditions the final conditions of the 
previous state. Successive forward integration of the 
dynamic equations of all the phases yields the state vector at 
apex height of the next stride, which is the value of the 
Poincaré return map F. If the state vector at the new apex 
height is identical to the initial one, the cycle is repetitive 
and yields a fixed point. Mathematically, this is given as 

 ( )
1

* * *,
n n n+

=x F x u  (17) 

where u* includes the inputs, which is the vector of 
touchdown angles, back and front leg, 

 * * *
, ,[ ]b td f tdγ γ=u  (18) 

Despite the fact that touchdown angles are not part of the 
state vector and they do not participate in the dynamics, 
they directly affect the value of return map as they 
determine touchdown and liftoff events and impose 
constraints on the motion of robot during stance phases. 

In order to determine the conditions required to result in 
steady state cyclic motions, we resort to a numerical 
evaluation of the return map using a Newton-Raphson 
method. By employing this method, a large number of fixed 
points can be found for different initial conditions and 
inputs. Variant dimensionless combinations of robot’s 
physical parameters, as defined in (7)-(9), also result to 
different fixed points. These design parameters vary 
between their extreme values found in experimental biology 
references, [14], as follows, 

 0.70 1.45,  10 30,  0.25 1.00j r p= − = − = −  (19) 
The existence of passively generated running cycles is by 

itself a very important result since it shows that such a 
complex activity can be simply a natural motion of the 
system. However, in real situations the robot is continuously 
perturbed, therefore, if the fixed point were unstable, then 
the periodic motion would not be sustainable. Hence, it is 
important to study the stability properties of fixed points 
found above and to identify robot physical parameters that 
improve robustness of system against perturbations. We 
characterize the stability of fixed points using the 
eigenvalues of the linearized return map. For that, we 
assume that the apex height states are perturbed from their 
steady-cycle values x , by some small amount ∆x. The 
model that relates the deviations from steady state, i.e. the 
incremental or small-signal model, is 

 * * * * * * *
1 ( , ) ( , )n n n+∆ = ∂ ∂ ∆ + ∂ ∂ ∆

x u
x F x u x x F x u u u  (20) 

with ∆x=x*– x  and ∆u=u*– u . For small perturbations, the 
apex height states at the next stride can be calculated by 
(20), which is a linear difference equation. If all the 
eigenvalues of the system matrix A, 

 * *( , )
=

= ∂ ∂
x x

A F x u x  (21) 

have magnitude less than one, then the periodic solution is 
stable and disturbances decay in subsequent steps. If not, 
then they grow and eventually repetitive motion is lost. 

IV. RESULTS & GUIDELINES 
Using this systematic procedure for finding stable fixed 

points described previously, conclusions on how the system 
responds under a set of initial conditions and design 
parameters can be drawn. Surprisingly, there are parametric 
regions where the system is stable and can passively tolerate 
departures from the fixed points. The purpose of this section 
is to quantify the properties of passively generated periodic 
motion for quadruped robots.  

To demonstrate how motion characteristics and design 
parameters affect the stability of the motion, we present 
figures that display isolines of the magnitude of the larger 
eigenvalue of system matrix A, as defined in (21). The 
largest eigenvalue norm is interpreted as heights with 
respect to the x-y plane, where x-y variables are either 
motion characteristics, such as forward speed and pitch rate, 
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or the dimensionless combinations of robot physical 
parameters defined in (7)-(9), e.g. dimensionless inertia, leg 
relative stiffness and normalized half hip separation. For 
certain values of these variables the larger eigenvalue enters 
the unit circle, while the other eigenvalues remain well 
behaved. This fact shows that, for these parameter values, 
the system is self-stabilized. In all figures, the grey hatched 
area corresponds to unstable regions, i.e., regions where at 
least one eigenvalue is located outside of the unit circle and 
the system is not passively stable. The magnitude of the 
“non-participating” variables is shown in the title of each 
subplot in every figure. 

To this end, isolines of the largest eigenvalue norm at 
various pitch rates and values of dimensionless inertia are 
displayed in Fig. 2. The contour plots are drawn for 
dimensionless apex height 1.1, leg relative stiffness 12, and 
normalized half hip separation 0.85. The magnitude of 
these variables has been chosen such as to correspond to the 
physical parameters of Scout II, [10]. The reason for this 
choice is to demonstrate how an existing robot can be 
mechanically modified in order to expand the domain of 
attraction of its self-stabilized behavior.  
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Figure 2. Largest eigenvalue norm at various pitch rates and dimensionless 
inertias and forward speeds. 
 

The main conclusion from the analysis performed by 
Poulakakis et al. is that there exists a regime where the 
Scout II robot can be passively stable, [10]. Similar findings 
are evident in Fig. 2, where the four subplots have been 
plotted for dimensionless forward speeds (Froude number) 
from 2.40 to 0.78. For the particular mechanical design 
adopted for the Scout II robot, the self-stable regime, where 
all the eigenvalues lie inside the unit circle, is achieved for 
bounding at sufficiently high forward speeds. This was also 
reported in [10].  

However, as it can be deducted by Fig. 2, by changing the 
value of dimensionless inertia, the Scout II robot can 
expand its self-stable regime and passively bound at 

suprisingly lower forward speeds. It is simple for a robot to 
attain a specific value of dimensionless inertia by proper hip 
placement or redistributing body mass. 

Finding 1. Large forward speed favors the self-stabilized 
behavior of quadruped robots, as it enlarges the regime 
where the mechanical system can reject rapid 
perturbations. When the quadruped robot is moving more 
slowly, the magnitude of dimensionless inertia must take 
extreme values in order to sustain the self-stabilizing 
characteristics; greater than one for low pitch rates and 
less than one for high pitch rates. 

According to Poulakakis et al. ([10]) the largest 
eigenvalue obtained its maximum value when the pitch rate 
was small. Recall that the region where pitch rate takes 
small values corresponds to a pronking-like motion, where 
both the front and back legs hit and leave the ground in 
unison and pitch rate is minimized. Thus, they had 
concluded that pronking-like motions (low pitch rates) are 
“more unstable” than bounding (high pitch rates). This fact 
was also observed in experiments with the Scout II. As seen 
in Fig. 2, this is true when the dimensionless inertia is less 
than one. However, attaining a value of dimensionless 
inertia that is greater than one could provide to Scout II 
robot self-stabilizing characteristics for pronking motions, 
as well. Note that the lower the forward speed, the greater 
the value of dimensionless inertia must be. 

The dimensionless moment of inertia, see [12] for 
definition, describes the “resistance” to rotational versus the 
“resistance” to translational motion, due to the mass 
distribution. In a diagrammatic manner, dimensionless 
inertia can be thought of as two equal point masses that 
represent the total mass of the system concentrated at the 
hips of the torso for the case of unit dimensionless inertia 
(J=md2), located between the hips for the case 
dimensionless inertia greater than one (J>md2) and located 
outside the hips for the case dimensionless inertia less than 
one (J<md2). Note that the distance from the COM at which 
the point masses are located is the radius of gyration. 
Therefore, depending on the location of the equivalent point 
masses, i.e. the magnitude of dimensionless moment of 
inertia, pronking-like motion, where pitch motion is 
negligible, or bounding, where the pitch motion is 
dominant, is favored. 

Finding 2. The self-stabilized behavior of a quadruped 
robot for a particular gait is related to the magnitude of its 
dimensionless inertia. Dimensionless inertia less than one 
provides self-stabilizing characteristics for bounding 
motions (high pitch rates), while pronking-like motions (low 
pitch rates) are self-stable for quadruped robots with 
dimensionless inertia greater than one. 

The effect of normalized half hip separation is depicted 
in Fig. 3, as four subplots have been plot for normalized 
half hip separation from 0.325 to 1.000. As in Fig. 2, 
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isolines of the largest eigenvalue norm at various pitch rates 
and dimensionless inertias are displayed in Fig. 3. The 
contour plots are drawn for dimensionless apex height 1.1, 
dimensionless forward speed (Froude number) 2.04 and leg 
relative stiffness 12, which are again adopted from the 
Scout II robot. 
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Figure 3. Largest eigenvalue norm at various pitch rates and dimensionless 
inertias and half hip separations. 
 

The main conclusion drawn by analyzing Fig. 3 is that 
the self-stabilized regime of the quadruped robot is 
enlarging when the normalized half hip separation is 
decreasing. Decreased normalized half hip separation 
simply means that body length is smaller for the same leg 
length. Small body length results to increased “resistance” 
to rotational motion compared to translational motion, i.e. 
the hip will move upwards due to linear acceleration instead 
of moving downwards due to rotational acceleration. In this 
case, pitch motion is not favoured and pronking-like 
motions dominate. For the Scout II robot, for which the 
“resistance” against rotational motion is smaller than that 
against translational motion (dimensionless inertia less than 
one, i.e. J<md2), dimensionless hip separation should be as 
large as possible to allow for self-stable bounding at lower 
(practically achievable) pitch rates, which is easy to achieve 
by proper hip placement. 

One may reach the same conclusion by analyzing Fig. 4 
and Fig. 5, where the contour plots of the largest eigenvalue 
norm at various pitch rates and values of leg relative 
stiffness are drawn. Once again, the magnitude of the 
variables has been chosen such as to correspond to the 
physical parameters of Scout II robot. Specifically, the 
dimensionless apex height is 1.1 and the dimensionless 
forward speed (Froude number) is 2.04. In Fig. 4, the 
dimensionless inertia is 0.850, as in Scout II, while in Fig. 5 
the dimensionless inertia is chosen to be 1.225 to 
demonstrate the effect of relative leg stiffness on quadruped 
robots with dimensionless inertia greater than one. The 

effect of normalized half hip separation is represented 
graphically by Fig. 4 and Fig. 5, as the four subplots in each 
figure have been plotted for normalized half hip separation 
from 0.325 to 1.000. 
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Figure 4. Largest eigenvalue norm at various pitch rates and leg relative 
stiffnesses and half hip separations. 
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Figure 5. Largest eigenvalue norm at various pitch rates and leg relative 
stiffnesses and half hip separation. 
 

In Fig. 4, it is evident that the self-stabilized regime of 
bounding quadruped robots with dimensionless inertia less 
than one is enlarging while the normalized half hip 
separation is increasing. Contrastingly, as Fig. 5 implies,  
normalized half hip separation should be decreased for 
quadruped robots with dimensionless inertia greater than 
one that pronk or bound at low pitch rates so as to enlarge 
their self-stabilized regime. A specific value of hip 
separation is easily attained by proper hip placement. 

Finding 3. The self-stabilized regime of pronking-like 
motions (low pitch rates) for quadruped robots with 
dimensionless inertia greater than one is enlarging while 
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the normalized half hip separation is decreasing. Larger 
dimensionless hip separation allows for self-stable 
bounding at a wider range of pitch rates for quadruped 
robots with dimensionless inertia less than one. 

With respect to the effect of leg relative stiffness on the 
stability of the motion and the self-stabilizing 
characteristics of the robot, two conclusions are drawn by 
analyzing Fig. 4 and Fig. 5. Based on Fig. 4, the self-
stabilized regime of bounding quadruped robots with 
dimensionless inertia less than one is enlarging while the 
relative leg stiffness is increasing. Contrastingly, based on 
Fig. 5, relative leg stiffness should be decreased for 
quadruped robots with dimensionless inertia greater than 
one that pronk or bound at low pitch rates so as to enlarge 
their self-stabilized regime. 

The former can be explained by the fact that harder 
springs at legs, a typical case where leg relative stiffness is 
increased, result to less compression along the leg during 
leg-ground interaction, which typically leads to less 
pitching. Since the “resistance” against rotational motion is 
smaller that the “resistance” against translational motion 
when J<md2 (dimensionless inertia less than one), self-
stable motions at lower pitch rate are possible; see Fig. 4 to 
graphically visualize this.  

On the other hand, leg relative stiffness is increased when 
the mass of the system is decreased in a proportional 
manner; see (8) for definition. Smaller mass means that the 
“resistance” against translational motion is less or 
equivalently that the “resistance” against rotational motion 
is dominant. In that case, i.e. for quadruped robots with 
dimensionless inertia less than one (J>md2), lower pitch 
rates are required to allow for self-stabilizing behavior; see 
Fig. 5 for depiction.  

Finding 4. Leg relative stiffness for a quadruped robot 
should be chosen according to the magnitude of the 
dimensionless inertia. Dimensionless inertia less than one 
suggests that relative leg stiffness should be as large as 
possible to enlarge the self-stable regime of the system. 
Contrastingly, relative leg stiffness should be decreased for 
quadruped robots with dimensionless inertia greater than 
one that pronk (or bound at low pitch rates) so as to 
enlarge their self-stabilized regime. 

Taking into account the above mentioned findings, the 
following design guidelines could be proposed for Scout II 
quadruped robot that might improve its performance:  

(1) Scout II would passively bound at lower forward 
speeds by changing the value of its dimensionless inertia. 
By attaining a value of dimensionless inertia that is greater 
than one, it would obtain self-stabilizing characteristics 
even for pronking-like motions. This is easily attained by 
proper hip placement or body mass redistribution.  

(2) Scout II would be able to perform self-stable bounding 
behavior at lower and practically achievable pitch rates, 

even if its dimensionless inertia is kept less than one, by 
increasing its normalized hip separation. This could be 
easily achieved either by proper hip placement or by 
shortening its legs rest length. 

(3) The self-stabilized regime of the existing Scout II 
bounding robot could be further enlarged if its legs relative 
stiffness is increased, which could be attained simply by 
increasing its legs spring stiffness or by shortening their rest 
length. 

V. CONCLUSION 
Stability analysis of passive dynamics of robotic 

quadrupeds was studied in a dimensionless context. It was 
shown that mechanical design can provide self-stabilizing 
characteristics to a quadruped robot against external 
perturbations and result to dynamically stable running with 
bounding and pronking-like gaits with physically realistic 
forward speeds and pitch rates. We anticipate that the 
proposed guidelines will assist in the design of new, and 
modification of existing quadruped robots. These can be 
summarized as: (a) greater forward speeds enlarge the self-
stable regime of quadruped running robots, (b) the self-
stabilized behavior of a quadruped robot for a particular gait 
is roughly related to the magnitude of its dimensionless 
inertia, and (c) the values of normalized hip separation and 
leg relative stiffness affect the stability of quadruped 
running robot and should be in inverse proportion to its 
dimensionless inertia. 
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