
 
 

 

  

Abstract— In this paper a novel multipart control is 
developed for a trotting quadruped robot. The control is 
designed to drive the quadruped to a steady-state motion with 
desired forward speed and apex height, using only one actuator 
per leg. The body pitching motion is controlled to be small. The 
controller is applied to the robot and the complete system is 
used to develop a parametric study for the robot. The study 
examines the behavior of the actuator effort and the leg 
touchdown angles, over a parametric region of both the robot 
physical parameters and the gait parameters. Interesting 
results appear, not previously reported, that may contribute to 
enhanced robot design and better gait selection for a given 
robot. Typical findings are that a robot should be lighter-
weight when running on more slippery terrain, as well as that 
certain higher forward speeds require less actuator effort than 
other slower speeds. 

I. INTRODUCTION 
ONSIDERABLE research has recently focused on the 
control and design of quadruped legged robots that are 

capable of dynamic locomotion. Widely different 
approaches have been followed to successfully control the 
robots. To name a few approaches, a form of PD control has 
been used [1], and also delayed feedback control has been 
applied [2]. Further, a number of quadruped designs have 
been realized, with very different physical parameters, such 
as body mass, leg length, etc. Some of these are the Tekken 
[3], BigDog [4], and KOLT [5] robots.  

An interesting issue in legged robots, that still remains 
relatively untouched, is the effect of gait characteristics, 
such as forward speed and apex height, and robot physical 
parameters, on key quantities of the robot motion. Such key 
quantities are the actuator effort and the leg touchdown 
angles. Specifically, it still remains to be seen how such 
quantities vary for some parametric range of robot physical 
parameters and gait characteristics, and whether the nature 
of this variation makes some parametric regions more 
desirable than others. Also, the underlying mechanisms of 
such variations have yet to be fully explored. 

The actuator effort required to sustain the motion of a 
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quadruped robot, see Fig. 1a, determines the minimum size 
of the robot actuators. Also, the magnitude of the leg 
touchdown angles greatly affects the likelihood of slipping. 
Therefore, the unveiling of how the actuator effort and the 
leg touchdown angles change across the parametric region 
of the robot physical parameters and the gait characteristics 
could facilitate improved robot design and the matching of a 
more suitable gait to a given robot. Some work in this 
direction was done in [6], although this considered a one-
legged robot and did not study a parametric region of robot 
physical parameters, only of gait characteristics. For this 
work, we adopt a planar quadruped model with a unit 
dimensionless inertia, similar to the models used in [7,8] 
which study dynamic properties of quadruped robots.  
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      (a)            (b) 
Fig. 1  (a) Quadruped robot and (b) trotting gait phases in the plane. Only 
the phases in which the robot is colored black are present in ideal trotting. 

In this work we first develop a novel multipart controller 
that drives a trotting quadruped to some desired forward 
speed and apex height. The control retains the pitching 
motion to a minimum, and uses only one actuator per leg. It 
has a parametric form that allows it to be applied to a range 
of robots with different physical parameters. This control is 
used to perform a parametric study on the quadruped robot. 
The aim of the parametric study is to unveil how the actuator 
effort and the leg touchdown angles change for ranges of 
physical robot parameters and gait characteristics. The study 
examines the case of robot design for a particular gait, as 
well as the evaluation of gait suitability for a particular 
robot. The study unveils interesting trends which are 
discussed and compared to results in the literature. One 
example has to do with how the mass of a robot should be 
modified for running on lower-friction terrain. Section II 
follows to present the robot model used in this work. 

II. QUADRUPED ROBOT MODEL 
A.  Quadruped Robot 
The quadruped robot studied has the form shown in Fig. 

1a. The robot is purposely simple and incorporates basic 
elements that are found in the majority of legged robots. 
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Each leg of the robot has a prismatic joint with a linear 
spring to provide compliance, and each hip is actuated. By 
using a simpler model, the conclusions of the parametric 
study are more general than they would be from studying a 
more specific robot case. Note that virtually all quadruped 
robots that are capable of dynamic locomotion have a hip 
joint, a hip actuator and some sort of passive compliance in 
the leg, as does the robot studied here. 

A quantity of known importance in the literature is the 
dimensionless inertia of the robot body, which is defined as: 
 2/( )J I md=  (1) 
where I  is the body inertia that is relevant to the pitching 
motion, m  is the body mass, and d  is half the hip spacing. 

In this work, the dimensionless inertia of the robot is 
chosen to be 1. This choice is inspired by the work in [9], in 
which the stability of a quadruped model was studied for the 
pronking gait, used as an abstraction of the trotting gait in 
the plane. In [9] it was found that a dimensionless inertia of 
1 provided a very wide range of stable pronking (or planar 
trotting) motions when compared with cases for which the 
dimensionless inertia was less than one. Further, in this 
paper we make use of the pitch motion control set out in 
[10], in which a unit dimensionless inertia was shown to 
have advantages in pitch control. It is simple for a robot to 
attain a specific value of dimensionless inertia by proper hip 
placement or redistributing body mass. 

B. Planar Model Dynamics 
The robot is studied in the plane of the forward motion for 

the case of the trotting gait. In the ideal case, the two 
diagonal pairs of the four legs are always in phase. During a 
stance phase, a diagonal pair of legs is on the ground, while 
the remaining pair is not in contact. The pair of legs in 
contact with the ground alternates after each stance phase. 
Projecting this on to the plane of the forward motion, results 
in the configuration shown in Fig. 2. The trotting gait is 
shown in the plane in Fig. 1b with four phases, although in 
ideal trotting only the double stance and flight phases exist. 
The two legs shown may be either of the diagonal pairs of 
the robot that are in contact with the ground. The legs that 
are not in contact are not shown. 
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Fig. 2  Planar quadruped robot model. 

In Fig. 2, the body has its center of mass (CoM) at its 
geometrical center. The legs each have total mass lm , inertia 

lI , and are actuated by torques fτ , bτ  at the two hips. Each 
leg includes viscous friction in the prismatic joint, of viscous 
coefficient b . Table 1 displays variables and indices used. 

During the stance phase, the influence of the leg mass is 
negligible, and the dynamics may be derived with a 
Lagrangian approach, using body Cartesian coordinates, x , 
y , and pitch, θ , as generalized variables: 

 1( )
d
dt −

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥− + + + +⎣ ⎦ ⎣ ⎦k,b k,f b,b b,f

q q
q M F F F F G

 (2) 

where [ ]Tx y θ=q , M  is the mass matrix, G  are the 
gravity dependent terms, k,iF  are due to elastic leg forces 
and b,iF  are leg related forces due to the viscous friction in 
the prismatic leg joint ( ,i b f=  for the back and front leg). 

In flight, the system CoM performs a ballistic motion. 
Also, the angular momentum of the system of the body and 
legs, with respect to the system CoM, is conserved. 

Further, with reference to Fig. 2, it is useful to associate 
the Cartesian coordinates with the leg lengths and leg angles 
during the stance phase when two legs are on the ground: 
 1tan ( sin , cos )b bty d x d xγ θ θ−= − + −  (3) 

 1tan ( sin , cos )f fty d x d xγ θ θ−= + − −  (4) 

 2 2( cos ) ( sin )b btl x x d y dθ θ= − + + + −  (5) 

 2 2( cos ) ( sin )f ftl x x d y dθ θ= − + − + +  (6) 

where btx  is the position of the back foot, ftx  is the position 
of the front foot during the double stance phase.  

TABLE 1 
VARIABLES AND INDICES USED IN THE WORK 

x CoM horizontal position L  leg rest length 
y CoM vertical position b  viscous friction coefficient 
θ  body pitch angle g  acceleration of gravity 
l  leg length lm  leg mass 
γ leg absolute angle lI  leg inertia 

sumγ sum of leg absolute angles ,b tdγ  back leg touchdown angle 

difγ difference of leg absolute angles ,f tdγ  front leg touchdown angle 
k  leg spring stiffness τ  hip torque 

bm  body mass stT  stance duration 
m  total robot mass f  as index: front leg 
I  body inertia b  as index: back leg 
d  hip joint to CoM distance td  as index: value at touchdown

III. CONTROL DESIGN 
In this section, we present a novel control approach for 

the quadruped robot, which will facilitate the parametric 
study in Section IV. The control is designed to control both 
the forward speed and the apex height attained during the 
flight phase. The pitching motion is kept to a minimum, so 
as to be compatible with the trotting gait. Also, only one 
actuator is used per robot leg. Finally, the control has a 
parametric form and can be simply applied for a range of 
robot physical parameters and gait characteristics. No tuning 
is required as all control parameters are analytically 
computed. To the best of our knowledge, a controller with 
these capabilities does not exist in the literature. 

To relieve the paper of cumbersome math and to focus on 
the parametric study, we endeavor to make use of our 
previous analysis in [10]. Note that [10] does not provide a 
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complete control method, but rather an analysis of the 
dynamics and a control method for the pitching motion. 
Here, we use these results to develop a complete controller. 
Also, the gait studied in [10] was pronking, however the 
model used was the same as the one used here.  

As a design decision, the torques applied at the back and 
front hips during the stance phase will be equal and constant 
throughout the stance phase, although the constant value 
may change from cycle to cycle. Three control inputs are 
available, namely the back and front leg touchdown angles 
and the equal hip actuator torques during stance, τ . During 
flight, the hip actuators position the legs for touchdown.  

Our approach for the derivation of the control strategy 
follows the philosophy of the multipart approach introduced 
by Raibert [7]. The problem of controlling the complete 
robot motion is split into separate subproblems. Each 
subproblem deals with controlling a particular elementary 
motion of the robot. In our robot, the three elementary 
motions are the vertical, the forward and the pitching 
motions. Our approach differs from [7], as we use only one 
actuator per leg, and do not need the concept of “virtual 
legs”. Also, as our robot is highly underactuated, we must 
consider the effect of the control inputs on multiple degrees 
of freedom (DoF), and the effect of one DoF on another. 

To formulate the mathematical aspect of the control, we 
make use of our previous analysis in [10]. In this previous 
work, after some algebra, we arrive at an expression that 
describes each of the elementary motions. We use here 
directly these expressions to compute the control inputs.  

A. Vertical motion 
Starting from the dynamics in (2), and using (3) to (6), it 

is found that the vertical motion of the robot during the 
double stance phase is well described by the following, [10]:  

  ,,2 2 2 cos cos
2 2

dif tdsum td
b b

xtm y by ky m g kL
L

γγ ⎛ ⎞⎛ ⎞
+ + =− + − ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (7) 

where ,sum tdγ  is the sum of the leg touchdown angles, ,dif tdγ  
is the difference of the leg touchdown angles. 

The physical meaning of (7) is revealed by noting that the 
vertical motion is governed by a driven oscillator. In 
trotting, ,dif tdγ  is small enough to have little influence in the 
cosine. Therefore, (7) can be rewritten as: 

 ( ),2 2 2 cos ( 2) ( )b b sum tdm y by ky m g kL xt Lγ+ + =− + −  (8) 

Given the initial conditions for y, (8) may be solved. The 
required calculation of the duration of the stance phase is 
accomplished as in [10]. Then, (8) is used to compute ,sum tdγ , 
such that the robot acquires some desired vertical liftoff 
velocity or, equivalently, some attained apex height. The 
solution is provided by function 1f :  
 , 1 ( , , , , , , , , )sum td des

gait parametersrobot parameters

f m k L d I b g x hγ =  (9) 

B. Forward motion 
The forward motion equation, as found in [10], is: 

   ( ) ( ),sin 2 / ( ) /b sum td b fm x k L y xt L Lγ τ τ= − − − − +  (10) 

In (10), the forward dynamics is coupled with the vertical 
motion of the robot. This is easily interpreted as being due to 
the influence of the prismatic leg springs on the forward 
motion of the robot. From (10) it is sought to compute the 
necessary hip torque τ  during stance to maintain the speed 
at the desired value. To compute the applied torque, we use 
the result of solving the vertical oscillation from (8), and 
also the sum of the touchdown angles computed in (9). So 
the applied torque is provided by the function 2f : 
 2 ,( , , , , , , , , , )des sum td

robot parameters control parametergait parameters

f m k L d I b g x hτ γ=  (11) 

C. Pitching motion 
In [10], the pitching motion is predicted by the equation: 

 

2 2

,,

2 2

2 sin sin
2 2

b

dif tdsum td
b f

I d b d k
xtkLd
L

θ θ θ
γγ

τ τ

+ + =
⎛ ⎞⎛ ⎞

− − −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (12) 

Here, we observe again that the governing dynamics have 
the form of a driven oscillator. The control must keep the 
pitching motion of the robot to a minimum. We use the pitch 
control approach developed in [10], with the difference that 
the inertia and motion of the two legs not involved in the 
stance phase must be taken into account. The difference of 
the leg touchdown angles is computed so as to suppress 
deviations of pitching from the zero value: 
   , 3 ,( , , , , , , , , , , )dif td des sum td

robot parameters gait parameters control parameters

f m k L d I b g x hγ γ τ=  (13) 

D. Control implementation 
In this section we explain in detail how the control is 

implemented in practice, and the sequence of events. 
Sensors on the robot provide leg angle position and velocity, 
leg length and velocity, and body pitch and pitch velocity. 
The quantities associated with the legs may be measured 
with rotary and linear encoders respectively, while 
successful experiments measuring pitch or even using pitch 
feedback are already available in the literature [11,3,2]. 

With reference to Fig. 3, we can follow through the 
control sequence, to outline how it would work and to better 
understand the parametric analysis that follows.  
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  (a)       (b)      (c)     (d)    (e) 
Fig. 3.  Sequence of control computations that give the control inputs, i.e 
the leg touchdown angles and the constant hip torque applied during stance. 

Let us now assume that the robot is at the point of liftoff 
from the ground. Using sensor data and robot geometry the 
full robot state is known, i.e by solving (3) to (6) for the 
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robot states using on-board computing, see Fig. 3b. Once the 
state at liftoff is known, the flight dynamics is relatively 
simple to integrate, and so the expected touchdown state of 
the robot can be found, Fig. 3c. Next, the three functions in 
(9), (11), (13) are used to compute ,sum tdγ , τ , and ,dif tdγ , 
such that at the next apex point, the robot will have the 
desired forward speed, height, and zero pitching. 

E. Control Application Example 
As a simple demonstration of the viability of the control 

method, a simulation of a quadruped robot in the 3D 
simulation software ADAMS is shown here, with the motion 
of the robot body constrained to the plane of forward 
motion. The control drives the robot to a desired forward 
speed and apex height, while retaining a limited pitching 
motion. The robot response is shown in Fig. 4.  

0 1 2 3 4 5 6 70
0.2
0.4
0.6
0.8
1.0

0 1 2 3 4 5 6 7
-10

-5

0

5

10

t (s)

θ (deg)

t (s)

x (m/s)
.

(b)(a)

desired

desiredactual

actual

 
Fig. 4.  Robot response to the controller in Fig. 3, in a 3D simulation in 
ADAMS. Speed control at 0.5m/s. (a) Forward speed, (b) body orientation. 

IV. PARAMETRIC STUDY 
The parametric study focuses on the actuator effort and 

the sum of the leg touchdown angles, referred to in the 
following as the Parametric Study (PS) variables. In 
particular, we examine how the PS variables change as a 
function of a range of robot physical parameters, such as 
body mass or leg length, and also for a range of gait 
characteristics, meaning the forward speed and apex height.  

To implement the parametric study, the PS variables must 
be calculated for many different robot physical parameters 
and gait characteristics. To obtain a single set of values for 
the PS variables, the control algorithm in Fig. 3 is applied to 
the robot with the given physical parameters. The given 
forward speed and apex height are fed to the controller, and 
the system is simulated using Matlab. Once the robot enters 
a steady-state motion, the PS variables are known from the 
simulation data. Typically, the robot enters a steady-state 
motion after about 10 cycles of trotting. 

One of the PS variables is the actuator effort. The actuator 
effort study is restricted to the actuator effort during the 
stance phase. The reason for this is that leg positioning 
during flight was done using a bang-bang type control which 
always applied torques of the same magnitude, over all 
parametric regions, changing only their duration. Therefore, 
there was no benefit to including them in the parametric 
study. When sizing the robot actuators, the magnitude of 
flight phase actuator effort can be regarded as a constant 
condition that must be fulfilled. 

The advantages of the control algorithm in Fig. 3 for 
implementing the parametric study are now apparent. 

Controlling both the forward speed and the apex height was 
necessary to obtain values for the PS variables over the 
parametric regions. The control’s parametric form makes it 
simpler to apply for a variety of robot physical parameters 
and gait characteristics. Also, as the actuators apply constant 
torques during stance, the actuator effort can be directly 
compared over the parametric region.  

It is anticipated that the results of the parametric study are 
largely indifferent to the particular type of control applied to 
the robot. Part of the reason for this is that the robot studied 
only has one actuator per leg. In this case, little of the 
robot’s natural dynamics can be forced by any type of 
control. Due to the high underactuation, the control can only 
attempt to stimulate internal dynamic mechanisms. 
Additionally, due to parametric form of the control, the 
control algorithm coefficients are recomputed for every set 
of robot parameters. In this sense, one may say that the 
control is optimized for each robot. As a result of the above, 
the conclusions of the study should hold qualitatively for 
many types of control. 

Finally, the problem to be studied involves a large number 
of parameters, leading to many potential case studies, but 
our aim here is to illustrate the most interesting findings. 
The study is split into two main cases. In the first case, 
specific gait characteristics are given, and preferred regions 
of robot physical parameters are sought for this gait. The 
second case considers a robot with given physical 
parameters, and identifies regions of gait characteristics that 
are advantageous for this robot.  

A. Evaluating a robot design for a given gait 
First, let us examine the variation of the sum of the leg 

touchdown angles, ,sum tdγ , for a robot body mass range. The 
remaining physical parameters of the robot are kept constant 
and the same applies to the desired apex height. With 
reference to the symbols in Table 1, the robot has bk =6000 
N/m, d =0.25 m, L =0.3 m and b =10 N.s/m. 

In Fig. 5, it can be seen that ,sum tdγ  increases as the body 
mass increases, for three forward speeds. Since the robot is 
more prone to slip as the legs hit the ground with larger 
angles, it would be preferable for the robot to be lighter-
weight when running on slippery terrain. It is perhaps 
interesting that, for different reasons, the opposite technique 
is often used to improve traction for wheeled vehicles.  
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Fig. 5  Sum of the leg touchdown angles used for a range of the body mass, 
and for three different forward speeds. The touchdown angles increase with 
robot mass and speed. 
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The reason for this increase in ,sum tdγ  is due to the larger 
mass causing a greater deflection of the spring during 
stance, which generally leads to larger losses. As the robot is 
unactuated in the prismatic joint, to pump energy into this 
DOF, the legs must hit the ground with greater angles. This 
pumping mechanism is described in [12]. 
Result 1: For lower-friction terrain, it is preferable for a 
robot to be lighter-weight. 

It is also interesting to examine what happens in the case 
where the ratio of the spring stiffness over the mass of the 
robot body remains constant. This ratio is often referred to 
as the relative stiffness of the system, and gives a measure of 
how hard the leg spring is, indifferent of the absolute value 
of the spring stiffness. For three different constant values of 
relative stiffness, the sum of the leg touchdown angles ,sum tdγ  
is plotted versus the robot body mass, in Fig. 6. Note that the 
x axis represents a change in both the body mass and the 
spring stiffness, so that the relative stiffness remains 
constant. As can be seen, the value for ,sum tdγ  decreases with 
robot body mass, for a constant relative stiffness. This 
demonstrates that important parameters of the robot motion 
vary, even while retaining a constant relative stiffness. It 
also appears that having a stiffer system, i.e a larger relative 
stiffness, leads to smaller values for ,sum tdγ , for the same 
robot body mass. 
Result 2: The sum of the leg touchdown angles decreases 
for systems with higher relative stiffness. 
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Fig. 6  The sum of the touchdown angles over the robot body mass, for three 
constant values of the relative stiffness (500 N/(m.kg), 1000 N/(m.kg), 1500 
N/(m.kg)). The sum of the touchdown angles decreases for stiffer systems, 
for the same body mass. 

Another key physical parameter of the robot is the length 
of the legs. In Fig. 7, the required hip joint torque during the 
stance phase was computed in steady-state running, for 
various lengths of the robot leg. It is evident that there is a 
strong correlation between the required torque and the 
length of the leg. In Fig. 7, the data is gathered for three 
forward speeds, ranging from 0.7 m/s to 0.9 m/s. It can be 
seen that dependence on speed is not particularly significant 
in this range, when compared to the large variations over the 
leg length. The mechanism behind this result is simple; as 
the leg lever increases, more torque is needed to produce the 
same forward force. Consider a typical actuator setup, such 
as a 24V 60W DC motor of Maxon Motors, combined with 
a planetary gear with a ratio of 50. The torque that this 

combo can continuously provide is 4.3Nm. In Fig. 7, the 
shaded area shows unachievable region using the above 
actuator. Observing Fig. 7, one can notice that for speeds 
down to 0.7 m/s, leg lengths of up to 0.35 m can be used. 
Result 3: The greatest leg length that may be used is limited 
by the maximum torque of the actuator and the minimum 
desired speed for the robot. 
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Fig. 7  The hip actuator torque, for various values of the free length of the 
robot leg, and for three different forward speeds. The actuator hip torque 
increases with the leg free length. The shaded area shows the region that is 
not achievable with a particular actuator setup, described in the text. 

B. Evaluating a gait for a given robot 
Now, let us examine the case of a robot with predefined 

physical parameters, in which case the parametric region of 
interest is limited to the gait characteristics. The aim is to 
identify whether some regions of gaits are advantageous, 
either regarding the required actuator effort, or the 
possibility of slipping, which is directly connected to the 
value of the touchdown angles of the legs. The robot has the 
physical parameters laid out in part A of this section, and a 
body mass of 15 kg. 

First, consider the case for which a particular apex height 
is desired. The required torque during the stance phase is 
shown in Fig. 8, for a range of forward speeds and for three 
different values of the apex height. For each apex height, in 
the range of speeds studied, there is a systematic decrease in 
the torque as the forward speed increases. 
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Fig. 8  The hip actuator torque, for various forward speeds of a robot. The 
data is shown for three different apex heights. The hip actuator torque 
appears largest for smaller speeds. 

It is expected that this decrease of actuator torque as a 
function of forward speed will not continue indefinitely. 
However, Fig. 8 is interesting as it demonstrates that slower 
speeds do not necessarily require lower torques, as may be 
expected. Note that the power consumed by the actuator 
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does not necessarily decrease with speed, as the revolving 
speed of the leg will increase with forward speed and the 
power is proportional to this speed. Despite the fact that 
power consumption may increase, the actuator torque is 
important for sizing the actuators. If the robot uses batteries, 
their function is also affected by these results, as the torque 
required is proportional to the electrical current drawn. 
Therefore it may be beneficial when running long distances 
to run at a speed at which the batteries discharge optimally. 

To interpret the result in Fig. 8, it is useful to recall the 
concept of the “neutral point” from Raibert’s work [7]. The 
neutral point represents the angle with which the studied 
robot leg would touchdown for steady forward running at 
some speed. As our robot has only one actuator per leg and 
not two, as in [7], the touchdown angles used by our control 
are expected to differ. At the neutral point, as defined in [7], 
the sum of the leg touchdown angles for our robot would be: 
 ,sum td stx T Lγ = ⋅  (14) 
The sum of the touchdown angles in (14), ,sum tdγ , 
corresponding to the neutral point, is plotted in Fig. 9 with 
crosses, for the same case as in Fig. 8. Also, the actual sum 
of the touchdown angles used is plotted in Fig. 9 with black 
curves. As predicted the two differ, but increasingly less as 
the speed increases. This is seen by plotting the difference of 
the two with red circles. The fact that the actual ,sum tdγ  used 
is much greater than that of the neutral point at smaller 
speeds means that at those speeds there is more resistance to 
the forward motion, as the foot lands further forward at 
touchdown [7]. This results in larger required torques at 
smaller speeds, to overcome the greater resistance. 
Result 4: Smaller speeds can require much higher actuator 
effort than moderate speeds, as the leg touchdown angles 
deviate more from the “neutral point” at small speeds. 
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Fig. 9  Sum of the leg touchdown angles, for a range of forward speeds and 
for three different apex heights (black curves). Also, the sum of the 
touchdown angles corresponding to Raibert’s “neutral point” is shown for 
the apex height of 0.34m (green crosses). Finally, the difference of the two 
is shown, again for the apex height of 0.34 m (red circles). 

Finally, it is worth mentioning the minimum that appears 
in the sum of the leg touchdown angles in Fig. 9. This 
minimum, which occurs at about 0.5 m/s for all three apex 
heights studied, suggests that this may be the best speed to 
use when running on surfaces with less friction, as the legs 
are more prone to slip for larger touchdown angles.  
Result 5: There exists an optimal speed to run at when on 
lower-friction terrain, which is neither very slow nor fast. 

CONCLUSIONS 
For the case of a trotting quadruped robot, a novel 

controller was developed, specially suited to a parametric 
analysis of the robot. The control was shown to be capable 
of setting both robot forward speed and attained apex height, 
using only one actuator per leg. The parametric study itself 
followed and led to a number of findings. On one hand, a 
given robot was studied for a variety of gait characteristics. 
On the other hand, the influence of robot physical 
parameters was considered for the cases were a specific gait 
is desired. Interesting findings included that (a) the mass of 
a running robot should be reduced when running on a lower-
friction terrain, (b) the sum of the leg touchdown angles 
increase as system stiffness increases, (c) the largest possible 
leg length for a robot is limited by the actuator torque limit 
and the lowest desirable speed of the robot, (d) some higher 
running speeds may require less actuator torque than for 
smaller speeds, (e) there is an optimal speed for running 
when on low friction terrain. These findings could assist 
with the design or modification of quadruped robots, as well 
as with the selection of the most suitable gaits for a robot. 
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