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Abstract - In this paper, we study the passive dynamics of 
quadrupedal bounding, based on a simplified model of our 
Scout II quadruped robot. Surprisingly, numerical return map 
studies reveal that passive generation of a large variety of cyclic 
bounding motion is possible. Most strikingly, local stability 
analysis shows that the dynamics of the open loop passive 
system alone can confer stability of the motion! Stability 
improves at higher speeds, which is in agreement with recent 
results from biomechanics. These results can be used in 
developing a general control methodology for legged robots, 
resulting from the synthesis of feed-forward and feedback 
models that take advantage of the mechanical system, and might 
explain the success of simple, open loop bounding controllers on 
our experimental robot. 

I. INTRODUCTION 

Mobility and versatility are the most important reasons for 
building legged robots, instead of wheeled and tracked 
robots, and for studying legged locomotion. Animals exhibit 
impressive performance in handling rough terrain and they 
can reach a much larger fraction of the earth landmass on 
foot than most of the existing wheeled vehicles. Most mobile 
robotic applications can benefit from the improved mobility 
and versatility that legs might offer. 

Twenty years ago, Raibert set the stage with his 
groundbreaking work on legged robots by introducing a 
three-part controller, for stabilizing running on his one-, two-, 
and four-legged machines, [10]. His controllers, although 
very simple, resulted in high performance running with 
different gaits. Other research showed that even simpler 
control laws, which do not require task-level or torso-state 
feedback, can be used to stabilize running, [2]. Indeed, 
previous work on our quadruped robot Scout II (Fig. 1) 
showed that open loop control laws simply positioning the 
legs at a desired touchdown angle, result in high performance 
running at speeds up to 1.3 m/s, [12]. 

Similar results showing that complex full state feedback 
control laws may not be necessary to generate rhythmic 
motion have also been obtained in the context of biology and 
biomechanics. Pearson described experiments in animals, 
which show that the high level nervous system is not required 
for generating the rhythmic motions for walking, [8]. 
Therefore, one can assume that complex, neural equivalent 
control laws are not required to generate walking in animals. 
To explore the role of the mechanical system in control, 
Kubow and Full developed a simple two-dimensional 
dynamic model of a hexapedal runner (death-head cockroach, 

Blaberous discoidalis), [6]. The model had no equivalent of 
nervous feedback among any of its components and it was 
found to be inherently stable. This work first revealed the 
potential importance of mechanical feedback in simplifying 
neural control by demonstrating that stability could result 
from leg moment arm changes alone. 

 
Fig. 1. Scout II: A high performance, autonomous four-legged robot. 

In an attempt to set the basis for a systematic approach in 
studying legged locomotion, Full and Koditschek introduced 
the concept of templates and anchors, [5]. To study the basic 
properties of sagittal plane running, the Spring Loaded 
Inverted Pendulum (SLIP) template has been proposed, 
which describes running in animals that differ in skeletal 
type, leg number and posture, [5]. Recently, Seyfarth et. al., 
[11], and Chigliazza et al., [3], found that for certain 
touchdown angles, the SLIP becomes self-stabilized if the leg 
stiffness is properly adjusted and a minimum running speed 
is exceeded and they discovered that by increasing speed, the 
system becomes less sensitive to perturbations. Similar return 
map studies by Cham et. al. show that robustness can be 
achieved without sensory feedback but with a properly 
designed mechanical system [4]. 

In this paper, motivated by the recent results described 
above, we attempt to provide an explanation for simple 
control laws being adequate in stabilizing a complex task like 
quadruped running, based on a simple sagittal “template” 
model. Passively generated cyclic motions are identified 
based on a return map and a regime where the system is self-
stabilized against perturbations is also found. 

The practical motivation for studying the passive dynamics 
(defined as the unforced response of the system under a set of 
initial conditions) is threefold. First, if the system remains 
close to its passive behavior, then the actuators have less 
work to do to maintain the motion and energy efficiency, an 
important issue in mobile robots, is improved. Second, if 
there are operating regimes where the system is passively 



stable, then active stabilization is not required or else will 
require less control effort and sensing. Finally, the passive 
dynamics of a system can be used as a design tool to specify 
desirable behavior of complex, underactuated dynamical 
systems, where reference trajectory tracking is not possible. 

III. PASSIVE DYNAMICS OF BOUNDING 

The template model for the passive dynamics of Scout II is 
shown in Fig. 2. Note that it can also be used to study other 
running gaits in the sagittal plane, like pronking. The goal of 
this analysis is to determine the conditions required to permit 
steady state cyclic motion of Scout II. 
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II. EXPERIMENTS WITH SCOUT II 

Scout II has been designed for power-autonomous operation: 
The two hip assemblies contain the actuators and batteries, 
and the body houses all computing, interfacing and power 
distribution (Fig. 1). The mechanical design of Scout II is an 
exercise in simplicity. Besides its modular design, the most 
striking feature is the fact that it uses a single actuator per leg 
– the hip joint provides leg rotation in the sagittal plane. Each 
leg assembly consists of a lower and an upper leg, connected 
via a spring to form a compliant prismatic joint. Thus each 
leg has two degrees of freedom (DOF): the hip DOF 
(actuated), and the linear compliant DOF (passive). Fig. 2. A template for studying sagittal plane running on Scout II. 

In bounding, Scout uses its front and back legs in pairs, 
thus the essentials of the motion take place in the sagittal 
plane. According to the virtual leg concept, [10], the back 
and front physical legs can be replaced by single back and 
front virtual legs, respectively. The controller is based on two 
individual, independent leg controllers, without a notion of 
the overall body state. The front and back virtual legs each 
detect two leg states - stance and flight, which are separated 
by touchdown and lift-off events. There is no actively 
controlled coupling between the back and front legs – the 
bounding motion is purely the result of the controller 
interaction through the multi-body dynamic system. During 
flight, the controller servoes the flight leg to a desired, fixed, 
touchdown hip angle, then sweeps the leg during stance until 
a sweep limit, is reached. In the stance phase, a constant 
torque of 35 Nm is commanded at the hip (however, the 
actual applied torque is determined primarily by the motor’s 
torque-speed limits, until the sweep limit is reached, [12]).  

The controller presented in Section II is triggered by leg 
touchdown and liftoff events and results in the bounding gait 
presented in Fig. 3. Note that this bounding gait is different 
from the one studied in [1] and [10] in that there exists a 
phase where both the front and back legs are in stance 
(double leg stance). In each phase, the dynamic system 
equations are different since each of them is characterized by 
a different constraint set. 

To derive a simplified mathematical model for Scout II, we 
assume massless legs. Also, a toe in contact with the ground 
is treated as a frictionless pin joint. In each phase, the 
equations of motion are 
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el
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where [ Tx y ]θ=

el G
q , see Fig. 2,  is the mass matrix and 

,  and  are the vectors of the velocity dependent 
forces, the elastic and the gravitational forces respectively. 
The transition equations for touchdown and lift-off are 

M
V FScout II is an under-actuated, highly nonlinear, intermittent 

dynamical system. The complexity is further increased by the 
limited ability in applying hip torques due to actuator and 
friction constraints and by the existence of unilateral ground 
forces. Moreover, as Full and Koditschek state in [5], 
“locomotion results from complex high-dimensional, 
dynamically coupled interaction between an organism and its 
environment”. Thus, the task itself is complex too, and 
cannot be specified via reference trajectories, or forward 
speeds. Despite this complexity, simple control laws can 
stabilize periodic motions, resulting in robust and fast 
running. Indeed, the controller described above does not 
require any task level feedback like forward velocity. 
Surprisingly, it also does not require body state feedback: one 
only needs to know the position of the leg with respect to the 
body and its state (flight or stance). It is therefore natural to 
ask why such a complex system can accomplish such a 
complex task via minor control action. As outlined in this 
paper, a possible answer is that Scout II's unactuated, 
conservative dynamics already exhibits stable bounding 
cycles, and hence a simple controller is all that is needed for 
keeping the robot bounding. 

 0sin cos td
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where ,i b f=  for the back (- in (2a)) and front (+ in (2a)) 
virtual leg respectively. The complexity of the equations 
precludes finding the return map analytically, and therefore 
we must resort to a numerical evaluation of the return map. 

To define the return map, we use the apex height in the 
double leg flight phase as a reference point since it allows for 
the touchdown angles to explicitly appear in the definition of 
the return map as kinematic inputs available for control. 
Therefore, we seek a function that maps the apex height of 
the n th stride to the apex height of the ( )1n + th stride i.e. the 
return map. The states at the n th apex height constitute the 
initial conditions for the cycle, based on which we integrate 
the double flight phase equations, until the back leg 
touchdown event occurs. This event triggers the back leg 
stance phase, whose dynamic equations are integrated using 
as initial conditions the final conditions of the previous phase 



(since massless legs are considered there are no impacts at 
touchdown). 
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Fig. 3. Bounding phases and events. 

Successive forward integration of the dynamic equations 
of all the phases yields the state vector at the ( 1n )+ th apex 
height, which is the value of the return map calculated at the 
n

P

th apex height. If the state vector at the new apex height is 
identical to the initial, then the cycle is repetitive. We seek 
such “re-entry” conditions, i.e. fixed points of the return map 

, 4 2: × → 4

)n , (3) (1 ,n n+ =x P x u

with 
T

y xθ θ =  x , 
Ttd td

b fγ γ =  u . Note that the 
touchdown angles are inputs available for control. 

IV. PASSIVE BOUNDING CYCLES 

We want to find an argument  in (3) that maps onto itself, 
i.e. we want to solve the equation 

x

 , (4) ( )− =x P x 0

for all (experimentally) reasonable values of touchdown 
angles. Existence of solutions for (4) is not guaranteed, but 
seems to be the rule rather than the exception. 

The search space is 4-dimensional with two free 
parameters, since for different values of touchdown angles, 
different solutions may be obtained. To describe  as a 
nonlinear function by analytically integrating the dynamic 
equations over this space is impossible. Thus the search is 
conducted numerically using the Newton-Raphson method, 
where an initial guess, 

P

0
n , for the fixed point is assumed 

and then updated using the equation 
x
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−
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where  corresponds to the n n th apex height and  
corresponds to the number of iterations. 

k

To find a solution we evaluate (5) iteratively until 
convergence (the error between kxn  and 1k+xn is smaller than 

). The value of  at 1 6e − P kxn  is calculated through the 
numerical integration of the dynamic equations (the adaptive 

step Dormand-Price method was used with 1 6e −  and 1 7e −  
relative and absolute tolerances, respectively) during a 
complete cycle. Since central difference approximation is 
used to evaluate numerically the Jacobian of the return map, 
each iteration involves nine evaluations of the return map . 
Evaluating (5) is computationally intensive, however, if the 
initial guess is reasonable and a solution exists, this method 
finds it usually in less than eight iterations. 

P

Surprisingly, using the above method we were able to find 
many fixed points of the return map , for different initial 
guesses and different touchdown angles. All these fixed 
points exhibited some very useful properties concerning the 
symmetry of the bounding motion. In Fig. 4 plots showing 
the evolution of the states during one cycle of the bounding 
motion corresponding to a fixed point are presented. It is 
apparent that the pitch angle 

P

θ  is zero at the apex height. 
This property has been observed for all the fixed points 
found. 

 
Fig. 4. Evolution of the state variables during one bounding cycle, 
corresponding to a fixed point. The vertical lines show the events. 

Fig. 5 presents the leg lengths and the leg angles for the 
back and front virtual legs during one cycle and for the fixed 
point of Fig. 4. Careful inspection of Fig. 5 reveals another 
important property of the fixed points. It can be seen that the 
touchdown angle of the front leg is equal to the negative of 
the lift-off angle of the back leg while the touchdown angle 
of the back leg is equal to the negative of the lift-off angle of 
the front leg i.e. 
 td lo

f bγ γ= − , td lo
b fγ γ= − . (6) 

As shown in Figs. 4 and 5, the passively generated 
bounding motion exhibits symmetric properties about the 
middle of the double stance phase. This is always true for all 
the fixed points found randomly by following the method 
described above. It is interesting to note that in the case of the 
SLIP model, a necessary and sufficient condition for fixed 
points is the symmetric stance phase, i.e. the lift-off angle is 
equal to the negative of the touchdown angle [3]. We will use 
this property to derive a more systematic searching procedure 



Fig. 6 displays fixed points for 1 m/s forward speed, 0.35 
m apex height and varying pitch rate. It can be seen that there 
is a continuum of fixed points, which follows an “eye” 
pattern, accompanied by two external branches. The 
existence of the external branch means that there is a range of 
pitch rates where two different fixed points exist for the same 
forward speed, apex height and pitch rate. This is quite 
surprising since the same total energy and the same 
distribution of that energy among the three modes of the 
motion --forward, vertical and pitch-- results in two different 
motions depending on the touchdown angles. As it can be 
seen from Fig. 6, the fixed points that lie on the internal 
branch correspond to a bounding motion where the front leg 
is brought in front of the torso, while the fixed points that lie 
on the external branch correspond to a motion where the front 
leg is brought towards the torso’s Center of Mass (COM). 

for finding fixed points at specific forward speeds and apex 
heights. 

 
 

 

Fig. 5. Evolution of the leg length and angle. 

V. CONTINUUMS OF FIXED POINTS 

For Scout II's bounding running, a specific horizontal speed 
at apex and a sufficient apex height that prevents toe stubbing 
are useful functional requirements. Therefore, the scheme 
described above is modified here so that the forward speed 
and apex height become its input parameters, specified 
according to running requirements, while the touchdown 
angles are now considered to be “states” of the searching 
procedure, i.e. variables to be determined from it. By doing 
so, the search space states and the vector of the parameters 
(“inputs” to the search scheme) are respectively 

 , . (7) * Ttd td
b fθ θ γ γ =  x [* Ty x=u ]

n

It is important to mention that the numerical integration of 
the equations of motion starting from the apex height event, 
results in the calculation of lift-off angles and not of the 
touchdown angles of the legs at the next apex height event. 
This is a direct consequence of the assumption of massless 
legs. Thus, to calculate the gradients needed to implement the 
Newton-Raphson scheme, the lift-off angles must be 
“mapped” to touchdown angles based on the symmetry 
described by (6). Then, by using the Newton-Raphson 
algorithm, we update the initial guess until convergence is 
achieved (for more details see [9]). 

Note that the above search scheme does not explicitly 
ensure that 
 , 1n ny y+ = 1nx x+ = , (8) 

 
Fig. 6. Fixed points for 1m/s forward speed and 0.35 m apex height. 
Snapshots show the motions corresponding to the fixed points. 

Fig 7 presents fixed points for forward speeds varying 
from 1.5 to 4 m/s and for a 0.35 m constant apex height. It 
can be seen that at higher speeds, the “eye” pattern shifts to 
higher values of the touchdown angles, i.e. larger touchdown 
angles are required to maintain higher speeds, a fact which is 
in agreement with Raibert’s findings, [10]. No external 
branches of fixed points at speeds higher that 1 m/s were 
found. Note that the fixed points shown in Fig. 7 correspond 
to different energy ranges, which do not overlap, a fact that is 
particularly important for designing controllers since it shows 
that different speeds require different energies, see [9] for 
more details. Therefore, an energy-tracking controller is 
necessary. 

In reading Figs. 6 and 7, it is useful to note that the region 
close to the vertical axis corresponds to pronking-like 
motions. Indeed, recall that, at the apex height 0θ =  always, 

which is a consequence of the definition of a fixed point. 
Instead, in the new search scheme, we required that (6) holds. 
However, examination of the search results shows that the 
conditions described by (8) are also satisfied. This numerical 
fact shows that the conditions described by (6) are equivalent 
to the conditions for the existence of a fixed point. Note that 
this behavior is analogous to that of the SLIP, where the 
symmetric stance phase is a condition for a fixed point, [3]. 



(see Fig. 4 in Section IV). As we approach the vertical axis of 
Figs. 6 and 7 ( ), the touchdown angles of the front and 
back legs tend to become equal. A gait with 

0θ =
0θ = , 0θ =  

and equal touchdown angles for the front and back legs 
corresponds to the pronking gait, where the front and back 
legs strike the ground almost in unison. Therefore, points 
near the vertical axis correspond to pronking-like motions. 
Useful conclusions concerning the stability of the bounding 
and the pronking gaits will be discussed in the next section. 

x

− x

 
Fig. 7. Fixed points for a 0.35 m apex height and speeds from 1.5 to 4 m/s. E 
is the total energy. 

VI. STABILITY OF PASSIVE BOUNDING 

The existence of passively generated bounding running 
cycles is by itself a very important result since it shows that 
an activity as complex as running can simply be a natural 
motion of the system. However, in real situations the robot is 
continuously perturbed, therefore, if a fixed point were 
unstable, then the periodic motion would not be sustainable. 
In this section, we characterize the stability of the fixed 
points found in Section V using local stability analysis. 

To investigate stability, we assume that the apex height 
states are perturbed from their steady-cycle values , by 
some small amount . The discrete model that relates the 
deviations from steady state is 

∆x

 , (9) 1n n+∆ = ∆ + ∆x A x B nu

where ∆ =x x , ∆ = −u u u . For small perturbations, the 
apex height states at the next stride can be calculated by the 
linear difference equations (9). If all the eigenvalues of the 
system matrix  have magnitude less than one, then the 
periodic solution is stable. 

A

Fig. 8 shows the eigenvalues of matrix  for forward 
speed 1 m/s and apex height 0.35 m and varying pitch rate. 
Note that the same pattern is observed for different forward 
speeds and apex heights. As it was expected, one of the 
eigenvalues is always located at one, representing the fact 
that the system is conservative. Two of the eigenvalues start 
on the real axis, and as 

A

θ  increases they move towards each 

other, they meet on the real axis and finally they move 
towards the rim of the unit circle. The third eigenvalue starts 
at a high value and moves towards the unit circle but it never 
gets into it, for those specific values of forward speed and 
apex height. Therefore there is no region of parameters where 
the system is passively stable for speed 1 /x m s=  and apex 
height 0.35y m= . 

 
Fig. 8. Root locus showing the paths of the four eigenvalues as the pitch rate 
increases. 

To show how the forward speed and the apex height affect 
the stability of the motion we present Figs 9 and 10. Fig. 9 
shows the magnitude of the larger eigenvalue at different 
forward speeds. For sufficiently high forward speeds and 
pitch rates, the larger eigenvalue enters the unit circle while 
the other two eigenvalues remain well behaved. Therefore, 
there exists a regime where the system can be passively 
stable. This is a very important result since it shows that the 
system can tolerate small perturbations of the nominal 
conditions without any control action taken! This fact could 
provide a possible explanation to why our Scout II robot can 
bound, without the need of complex state feedback. It is 
important to mention that this result is in agreement with 
recent research from biomechanics, which shows that when 
animals run at high speeds, passive dynamic self-stabilization 
from a feed-forward, tuned mechanical system can reject 
rapid perturbations and simplify control [5], [6]. Analogous 
behavior has been discovered by McGeer in his passive 
bipedal running work, [7], and recently in the SLIP template, 
[3], [11]. 

Fig. 10 shows how the norm of the maximum eigenvalues 
changes as a function of the pitch rate, at different apex 
heights, keeping the forward speed constant at 3 m/s. It can 
be seen that the lower the apex height is, the less unstable the 
system is. Therefore, greater forward speeds and lower apex 
heights contribute to the stability of the open loop system. 
This fact has been observed in both simulations and 
experiments, where for a given energy level, the system 
stabilizes itself at high pitch rates and low apex heights. 

It is important to note that, as depicted in all the above 
plots (Figs. 8, 9 and 10), the largest eigenvalue obtains its 



maximum value when the pitch rate θ  is small. Recall that 
the region where θ  takes small values corresponds to a 
pronking-like motion, where both the front and back legs hit 
and leave the ground in unison. Thus, we can conclude that 
pronking-like motions (low-pitch rates) are more unstable 
than bounding, (high pitch rates). This behavior can be 
explained based on the concept of the dimensionless moment 
of inertia , developed by Murphy and Raibert [10], j

VII. CONCLUSION 

 2

Ij
mL

= , (10) 

In this paper we studied the passive dynamics of the 
bounding running gait of a simple conservative (energy 
preserving) model of our Scout II robot. Based on the 
analysis of a numerically derived return map, we found that 
the bounding cycle can be passively generated with 
appropriate initial conditions. Moreover, there exists a regime 
where the model stabilizes itself without the need of any 
control action. This might explain why simple controllers, as 
reported in [12], are adequate in stabilizing a complex 
dynamic task like quadruped running. Also, these results are 
in agreement with recent results from biomechanics. Self-
stabilization can facilitate the design of control laws for 
dynamically stable legged locomotion by designing 
controllers that expand the domain of attraction of that 
behavior. These controllers are currently under investigation. 

where I , , and  are defined in Fig. 2. Based on 
simulations, Raibert and Murphy found that when 

m L
1j <  the 

torso rotates easier (high-pitch rates) than it translates (low-
pitch rates), resulting to bounding motions, [10]. For an 
analytical proof of this observation, see [1]. For Scout II, 

, thus pronking is not a natural gait for Scout II 
when efficient, high-speed locomotion is needed [9]. 

0.74j = 2
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